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Phase transitions in nuclear matter at finite temperatures
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A second-order virial equation of state for a symmetric system of nucleons (N = Z) interacting through a
deuteronlike force is established. The dependence of the virial coefficient on temperature and the square-well

parameters is discussed. The isotherms are analyzed, and it is shown that the gas-liquid phase transition
takes place at a much lower density than that commonly assumed to be the characteristic density of nuclear
matter.

I, INTRODUCTION

Recently, an interesting problem has been posed
' by several investigators. " It is concerned with

the state of nuclear matter in thermodynamical
equilibrium. Ordinary theories of infinite nuclear
matter rest on the supposition of a gaseous
phase" or a Fermi liquid' and there may be evi-
dence supporting the idea that it could also exist
as a crystal. " Neutron star matter provides an
excellent field of research on crystalline ordering
of nucleons, since it is well known that solidifica-
tion occurs at the crust of neutron stars where the
density ranges between 10 and 2&10' gcm . A

great deal of effort also has been devoted to as-
certain whether neutron star cores exhibit crystal-
line behavior at superhigh densities' (i.e. , those
which exceed by one or two orders of magnitude
that observed at the center of finite nuclei po- 2.8&& 10"gem '= 0.17 nucleon fm ') and it is
presently agreed that realistic forces do not lead
to crystallization.

The importance of a clear understanding of the
thermodynamics or nuclear matter runs far beyond
establishing its equilibrium characteristics as an
extended system. Two or three decades ago, at-
tempts to explain the observed data concerning rel-
ative abundance of elements, ' binding energies,
and nuclear stability properties were traced to the
problem of the origin of atomic species. '" The
whole machinery of thermodynamics and statistical
mechanics proved to be highly successful in yield-
ing both qualitative and quantitative explanations of
the distribution of elements. " Although there still
exists a serious polemic on the merits of either
equilibrium or nonequilibrium theories, '"'" these
pioneering works' "encourage further application
of current statistical methods to extended systems
of nucleons.

The aim of the present work is to develop a
simplified model of nuclear matter in an earlier
stage of its thermodynamical evolution. If we as-

sume that actual nuclear matter is frozen at T
=0 K, it is possible to conceive that it has reached
that situation through a "cooling" process during
which it could have experienced at least one phase
transition. It would then be interesting to have at
our disposal some criterion to analyze the kind of
phase transition involved and the order of magni-
tude of the thermodynamical variables at the criti-
cal point. To this purpose, we derive an equation
of state for an extended system of nucleons with
total isospin zero (i.e., N=Z) which interacts
through a deuteronlike force. Such a procedure is
within the spirit of stati. stical-equilibrium ap-
proaches to the description of nuclear-stability
properties, ' "where nuclear forces are dealt with

by recourse to a mass formula. "
%e follow the general prescriptions of I ee and

Yang" to get an expression for the second virial
coefficient in the usual cluster expansion of the
grand-partition function. " The equation of state is
then analyzed and it is shown that the system ex-
hibits a gas-liquid phase transition. The critical
temperature that arises from this equation of state
exceeds by one order of magnitude the clustering
temperature found in Ref. 11. Furthermore, the
critical specific volume is almost two orders. of
magnitude larger than that corresponding to nu-
clear matter density po.

In spite of the limitations of the model and of the
approximations involved, it provides another line
of evidence, now based on thermodynamical con-
siderations, 'to support the idea that nuclear mat-
ter in equilibrium is not an interacting Fermi gas.
In addition, the standard proc. edure employed in
this work might be checked against the complicated
many-body techniques that are usually present in
nuclear matter calculations, out of which a similar
result concerning the critical volume can be ex-
tra, cted."

In Sec. II we sketch the model and the formalism
employed. The calculations are displayed in Sec.
III and the final conclusions are presented in Sec.
IV.
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II. THE MODEL

I

From the fundamental equations given in Lee and
Yang's work" we first derive an expression for the
second cluster coefficient for an interacting Fermi
gas. Secondly, the particular choice of the inter-
action and, the magnitudes involved will be ex-
plained.

Our main task is to eliminate the fugacity

z=e",
from the pair of equations

expansion of the pressure P with respect to the
particle density 1/v, eliminating z between (2) and
(3), and truncate at the second-order term in 1/v.
The validity of this approximation, equivalent to
the hypothesis of a weakly interacting gas, will be
checked a Posteriori. The result is

P = (kT/v) [I+B(T)/v],

where

(6)

We easily find

PP= Z4&',
l=o

1
Ib,z ',

v i-o

with

(2)

(4)

where the factor 4 takes into account the spin-iso-
spin degeneracy. As for b„questions of antisym-
metrization are avoided" if we evaluate the differ-
ence b, -b,', the superscript zero corresponding to
a Fermi gas of free nucleons.

Let us define the thermal wavelength associated
with the reduced mass particle,

where p, k, ahd T are the chemical potential, the
Boltzmann constant, and the absolute temperature,
respectively. The b, 's are the cluster coeffici-
ents"'" for an infini. te volume.

Details of the calculation of b, are thoroughly
discussed in the literature. ""'"%e form a virial

X = (2wh'/rnkT)'~'.

If we introduce g(k), the density, of states around
the relative wave number k (wave-vector modulus)
in the center-of-mass system of a particle pair,
we fjnd

b, —b =, +exp(-Pz )+P exp rg(kj —g(k)'IdkI.
32&2

Z 2 $3'
1m 2m

The usual formulas"'" have been properly cor-
rected to include the spin-isospin degeneracy. The
subscript B denotes bound states while k, t, m are
the quantum numbers that label the continuum wave
functions for the reduced mass pa, rticle.

A simplification arises in (9) from the fact that
the exponential factor under the integral sign lim-
its the range of integration to that of low energies.
One is then left with an S-wave approximation. "
The density of states g(k) is easily related to the
phase. shift of the perturbed wave function g,«(r), "
and Eq. (9). finally gives

32&2
h, b', = ~ — -exp{-PE~)

+ — exp 'dk . 10

We then need a model for the system, from
which we can decide what E& and &, are going to
be. The present choice consists of an infinite
many-nucleon gas with N=Z, interacting through
a deuteronlike force as shown in Fig. 1. The well
parameters are chosen so as to produce only one
S -bound state.

Of course, a 'S force is unavailable to n-n and
P-p pairs. However, such a two-body potential
will produce in our system an infinite numbex' of
two-particle clusters with total isospin T, =0,

FIG. 1. Square-well potential with hard core at r =c.
Only one bound state is found at energy E~.
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which may provide a basis for further clustering
into more massive structures (o.-clusters, etc).
The presence of pairs of particles bound together
by a charge-independent force lies within the spirit
of independent-pair-model descriptions of nuclear
matter. ' In addition, as the assumed force does
not depend on spin or isospin, we can choose the
corresponding factor in the two-body wave function
so as to guarantee antisymmetrization.

As it is well-known, the S-wave phase shift is"
50= kb +-arctan[(k/k') tank'(b -c)],

where

k' =k +2mVO/k'. (12)

k'V = 2mV, Z'/n'+ k'Z' - 2mV, ~'/k', (13)

In order to make possible an analytic approxima-
tion to the integral in (10) we take advantage again
of the presence of the exponential factor and con-
sider

pressure for which

(19)

Furthermore, if in addition,

(20)

we are in the presence of the critical point. Ex-
amination of Eq. (5) reveals that conditions (19)
and (20) are only consistent with B(T)=0, which
yields zero critical volume and infinite critical
pressure.

We see from Eq. (18) that B(T) is parametrized
by 5, E» andy. The last two of these can be de-
termined if we fix 5 and t/'0 by the usual procedure
for solving a square-well potential in quantum
mechanics (see, for example, Ref. 17). Then for
a given well the virial coefficient can be plotted as
a function of T (Figs. 2, 3) and the temperature Ts
for which 8 =0 can also be drawn as a function of
any force parameter, say q, for a given b. Here

2mV, X'/5'» 1. (14)

The leading parameter is then VgkT and. it is easy
to verify that over a wide range of temperature,
up to kT -100 MeV, condition (14) is satisfied if
P, is not much less than 100 MeV. We then define

q = (1/k') tank'(b —c)
- [k/(2mV)' '] tan[(2mV)' '/k](b —c),

and Eq. (10) reads

32& 2 32' 2
b2=, b2+ ~ exp —Zs +

vA.

10

10

x —Q + 2 2 exp (16)

The second term under the integral sign can be
evaluated through the following steps: (i) A Four-
ier representation of the exponential factor; (ii)
an interchange of the order of integrations; and
(iii) a contour integration over the complex plane.
The calculation yields

32& 2 1&/2 Z' 32b
b, = b ',+, exp(-PEs) —,exp

nA, 271'g A,

10

10

and according to (6) the virial coefficient is

B(T)= (v 2/4)A. ' —2v 2 exp( —PE )A.'+2bx'

-v 2 z'exp(A. '/2vq) . (18)

- III. CALCULATIONS

The system under consideration will experience
a phase transition for a given T at the volume and

100 200 300 400 600 +(Me+ j
FIG. 2. Absolute value of the virial coefficient B(T)

up to the temperature T~ for which it becomes equal to
zero. The curves are parametrized by the well variable
g (in fm) while b and c are fixed at the values 1.34 and
0.4 fm, respectively. Notice that g= ~ corresponds to
a well with a bound state at zero energy.
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FIG. 3. The temperature T~ for which .B(T) = 0 as a

function of the well parameter q for fixed b and c.
FIG. 5. The virial expansion parameter vo/A3 as a

function of the temperature for q=-2.8 fm.

-3

4

5 log v

FIG. 4. Isotherms of the equation of state. For T
= Tz, the isotherm is just that of an ideal gas P =t/v .
For T &T~, the curves exhibit a phase transition point
Bp/Bv =0 snd the pressure becomes zero when v = }S(T}{.
Here q = —2.8 fm.

and in what follows we replace kT by T, i.e., we
measure T in MeV. The value of c is 0.4 fm every-

'where (standard hard-core radius in nuclear mat-
ter).

Having established a set of values for the force
it.is seen that for any temperature larger than or
equal to T, the system does not exhibit any phase
transition (Fig. 4). When T &Ts, B(T) being nega-
tive causes P to be zero for v={B( )T{, i.e. , it

goes asymptotically to -~ in a logarithmic scale.
The maximum for any isotherm occurs at a volume
v, =2{B(T){and a pressure P, =T/4{B(T){. These
values define the transition point. For volumes
smaller than v„ the isotherm loses sense, and it
becomes evident that for such a compressed sys-
tem the gaseous phase is no longer a possible
physical situation.

In Fig. 4, the square well has been designed so
as to fit the binding energy and the root-mean-
square radius of the deuteron. For this well, 5
= 1.34 fm and g = -2.8 fm. A test of consistency of
the procedure employed may arise from Fig. 5.
Here we have plotted vga. ' as a function of T. We
observe that for a wide range of temperature, even
beyond 100 MeV, v, /A.

' may be larger than unity.
Since the gas exists only for volumes larger than
vo it is concluded that the virial approximation
(cf. Sec. II) is justified. We stress this condition,
due to the fact that we are specially interested in
temperatures from 1 to 10 MeV, approximately,
which are the values appearing in earlier calcula-
tions on equilibrium descriptions of the relative
abundance of elements (Refs. 8-11). It is seen
from Fig. 5 that for these temperatures, which are
low when compared with T&, the growth of the
thermal, wavelength is overcome by the exponential
factors in v, and the validity of the second-order
virial expansion is guaranteed. Indeed, for 1~T
s 10 MeV, v, /A,

' is large enough to consider that
the gas does not, in fact, exhibit quantal effects.

Finally, we wish to examine to what extent the
typical parameters of the P-v isotherms may re-
produce any weD es'.."-..U I shed property of nuclear
matter. In Fig. 6 w:.- ~ the density pa=1/ve
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IV. CONCLUSIONS
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FIG. 6. The density Po at the transition point as a

function of T for g=-2.8 fm.

as a function of the temperature. We first notice
that for the range of interest of T values, the den-
sity remains up to 2 or 3 orders of magnitude
smaller that the commonly accepted figure for nu-
clear matter, p0=0. 17 nucleon fm '. This number
would correspond to a temperature about 200 MeV.
Now, although we include temperatures as high as
600 MeV in our drawings in order to make our de-
scription as complete as possible, at least formal-
ly, it should be borne in mind that several consid-
erations included ig the model collapse along the
main part of the whole interval [S-wave approxima-
tion in Eq. (9), neglect of Coulomb forces, condi-
tion (14), etc.]. If we remain with temperatures
about or below 10 MeV, for which the model is
valid, we find that a nuclear-matter-like system
cannot be found along our gaseous isotherms.

From the results presented in the preceding
section we can summarize as follows. We, have
seen that a nuclear like force, weakly attractive,
able to bind only one state, might be responsible
for two-particle clustering in a Fermi gas. Such
a gas would be almost nondegenerate; in conse-
quence, a second-order virial equation of state
would be g, satisfactory approximation to the "true"
equation of state. It would then provide a reason-
able clue that allows us to identify a gas-liquid
phase transition. The mai. n feature of this transi-
tion might be the fact that for any temperature
lower than 10 MeV, the density of the gas remains
much higher (i.e., two or three orders of magni-
tude) than the nuclear matter value p,. Tempera-
tures between 1 and 10 MeV are those expected to
fit nuclear-stability properties such as distribution
of elements and masses. " Accordingly, for these
temperatures, a nondegenerate gaseous phase de-
scribed in a second-order virial approximation
does not yield the "correct" nuclear matter dens-
ity. This resu1. t agrees qualitatively with that ob-
tained by de Llano and Tolmachev. " These authors
proved, by recourse to a particle-hole Green's-
function technique, that condensation of a nucleon
gas occurs at a density approximately equal to
0.03p, . The fact that our simple model has pro-
vided a conclusion comparable with that arising
from a much more sophisticated treatment would
then imply that two-particle neutron-proton clus-
ters play a relevant role in the condensation of nu-
clear matter.

Refinements of the calculations here presented
(i.e., extending the model so as to include a more
realistic force) are needed in order to decide
whether it is convenient to abandon the virial ap-
proximation and look for a more sophisticated
equation of state. Calculations are in progress
and will be given in a forthcoming paper. The au-
thor believes that in view of these results, it is
reasonable to attempt a thermodynamical descrip-
tion of nuclear matter as a clue for understanding
its actual equilibrium properties.
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