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Molecular ordering in the smectic-E phase in the molecular-field approximatione
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The smectic-8 to smectic-E transition is discussed in terms of an orientational intermolecular potential
recently suggested by Meyer. Within the framework of the molecular-field approximation the transition
temperature is obtained from the lowest eigenvalue of an Hermitian matrix, and the ordered state below it is
described by the corresponding eigenvector. A condition is found for which the experimentally observed
herringbone structure is the most stable one.

I. INTRODUCTION

The richness of liquid-crystal phases seems so
great to the reader of the literature on this subject,
that it is not surprising that their understanding
is often far from being satisfactory. In some in-
stances different groups of authors disagree as to
the characterization and interpretation of these
phases, and even to their names. An example is
given by those smectic phases which present the
highest order, and whose distinction from the sol-
id at lower temperatures is not clearcut. For a
brief review of these smectic phases we refer
the reader to the paper by de Vries. '

X-ray-diffraetion experiments' have been re-
ported on a series of materials, in which the mol-
eeules in the smeetic layer occupy the positions
of a hexagonal lattice. We will restrict ourselves
to the discussion of this particular modification
of the smectic phase, leaving out other important
ordered smectic phases (e.g. , BBEA and TBBA),
which are not strictly hexagonal. "

Doucet et al.' studied the following materials:
p-phenyl benziliderie-p-amino-n-pentyl-cinnamate
(PABC), p-phenyl-benzilidene-p-amino-methyl.
2-butyl-cinnamate (PBAMBC*), and p-phenyl-
benzilidene-p-amino-methyl 1-heptyl-einnamate
(PBAMHC~). Each of these three materials has a
phase diagram of the following sort':

solid smeet'ic E —smectic B

smeetic A. = isotropic liquid.

The smectie-A modification is characterized
by the par'allel arrangements of the long molecular
axes (as in the nematic phase) and by the ordering
of the molecules in parallel layers, perpendicular
to the direction of the nematic order. In the smec-
tic-B phase the appearance of order within the
layer is observed'. the molecular centers form
a hexagonal lattice in two dimensions but there

is no order between layers. The short molecular
axes are not ordered and therefore the molecules
can rotate around their long axis, in this phase.
These facts seem to be well established experi-
mentally, even though the question of the molecu-
lar rotation in similar phases (e.g., the H phase
of TBBA) is a subject of controversy. " For a
classification of B phases see also Ref. 7.

The x-ray experiments on "monodomains" show'
the existence of a different smectic phase, at tem-
peratures below 160 or 168 'e (according to the
material) which is obtained by cooling the smectic
B. This phase is called smectic E, and the x-ray
data are interpreted' by assuming a freezing of
the molecular rotational degree of freedom around
the long axis. A small orthorhombic distortion of
the lattice is also observed at this B-E phase
transition.

The purpose of the present paper is to show how
the nature of the ordered E phase can be obtained
within the framework of the molecular-field ap-
proximation, provided that the orientational inter-
molecular interaction is known. . An estimate of
the transition temperature will also be given in
terms of the interaction parameters. We assume
that in the "disordered" smectic-B phase the cen-
ters of the molecules form a rigid two-dimension-
al hexagonal lattice and that the short molecular
axes rotate freely about their long axes which are
fixed in a direction perpendicular to the smectic
layers. The interaction between layers is neglect-
ed, which may be a good approximation foe smectic
phases, although some three-dimensional order
seems to be present in the Ephase. ' We believe that
the inclusion of an interlayer interaction should be.too
small to affect the results, because of the large
interlayer distance, as far as the two-dimension-
al order is concerned; it could, of course, intro-
duce an ordering between the layers and must be
taken into account in a calculation of the, solid
phase.
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II. MOLECU LAR-FIELD APPROXIMATION

A Landau theory of the B-E phase transition
has been presented recently. ' As usual in such
mean-field theories a free-energy functional is
written as a function af the order parameter (des-
cribing the packing of the molecules in the lower
E phase) and then minimized to find its equilibrium
value. A similar approach, often in use, ' is to
assume a phenomenological two-body potential
V(r„r,) and an average potential V(r, ) (dependent
upon the order parameter) to which each particle
is subjected (r, is the set of degrees of freedom
of particle i) Th. e order parameter is then calcu-
lated self-consistently imposing the condition

.V(r, ) f f(r )V( r )rdr

FIG. 1. Definition of the ahgles P;, Q&, and $;& in the
notation of Meyer (Ref. 8). The x axis is in the direc-
tion of a primitive hexagonal lattice vector. The xy
plane is parallel to the smectic layer.

(3) can also be written
where

f(r ) ge-'P(r2) /)(r (2)

is the (normalized) one-particle distribution func-
tion.

In these approximations one has to assume from
the beginning the structure of the lower tempera-
ture phase in order to define the order parameter
and the one-particle potential. There is always the
need for a search of the state which stabilizes the
free energy (or the energy, at zero temperature),
even within a mean-field theory.

In the present work, the hindering of the free
rotation of the short molecular axes is assumed
to be due to 8, two-body nearest-neighbor inter-
action of the form'

V~,(y„yg,](,) =A eos'(y, —y, )

where

with

gtV I(2
i J

Vgvqgqv~

q', =—sin(2(t), ), q,'=- cos(2(t),) .

V,z
= [—,'A —B cos(4 ",,&)] sin(2$, ) sin(2$&)

+ [22+B cos(4$&J)] cos(2$, ) cos(2(t)&)

+ B sin(4 $,~)[sin(2(t), ) cos(2(t) ~)

+ cos(2p, ) sin(2$, )].
The orientational potential is thus given by

(4)

+Bcos(4$o) cos2(g, + P~)

+B sin(4$, &) sin2((()), + P&) .
The definition of P„(t)&,and g, &

is given in Fig. 1.
Equation (3) is the simplest interaction potential
compatible with the symmetry of the lattice. Any
realistic interaction, which might include quad-
rupole-quadrupole, Van der Waals, and exchange
terms (the exchange term being approximated as
in Meyer'), will have a form similar to this.

= gv„&q,&q, + const,
ts

(6)

where (6) is the mean-field approximation. Then
the thermal average of q„is given by

Using the abbreviation s= (i, p); t-=(j, v); r=(j', v')-
and the property vt~„=vf~, we write Eq. (5) as

1~V= —~v„q,q,
ts

q. e p1 PZ .&-q&q. 1d~ ~ ~ ~ de. ~ ~

0 I ~s

21'. . 1
x ~ ~ ~ exp -Pg v~ &qt&q. 1«i "' d&

0 ts

where N is the total number of molecules in a
smeetic layer and P = 1/kT.

Expanding the exponents to terms linear in q„
and noting that

f

�28'
28'

q„dy(-0, q q d@(gdd)Q~= ~Q)~g„„,
0 0

we find
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FIG. 2. a and b are primitive lattide vectors. The
coordinates of the nearest neighbors of the site at the
origin are also given.

A h5'
aF

(q„&=-apg v,„&q,). (8)

Equation (8) is a set of linear homogeneous equa-
tions which have a nontrivial solution whenever

det(vt„+2kT6t„)= 0.
The highest T for which the secular equation (9)
is satisfied will give an estimate of T,. Thus, if
X

„

is the lowest eigenvalue of the interaction
matrix v,

„

the transition temperature T, is given
by

kT, = -gQ„. (10)

(T, is greater than 0 only if X „(0.) The corres-
ponding eigenvector gives the ordered structure
below T,. This procedure requires the diagonal-
ization of the matrix v,„both.on the site indices
i,j and on the indices p, v. Noting that the matrix
v,

„

is periodic in space and that it connects every
site only with its six nearest neighbors, it is nat-
ural and easier to perform first the site diagonal-
ization by means of a Fourier transformation, and
then the diagonalization on p. and v.o '0

The Fourier transform of v'„„is written

a*=(I/a, —1/cn/3, 0), (12)

(13)b* = (0, 2/~3, 0) .
In Eq. (11), w assumes the six values sa, ab, and
+(b —a). In each case the scalar product k 7 is

k a=2nk„
k b=2rk„
k .(a -1)= 2v(k, —k ) .

(14a)

(14b)

(14c)

where the sum is performed over the six vectors
7' connecting site i to its neighbors.

gee note that the lattice is generated from the
two primitive noncolinear vectors a and b des-
cribed in Fig. 2. I.et k be given by k = 2vk, k*+
2gk,b~, where a~ and b* are the primitive recip-
rocal-lattice vectors: (d)

FIG. 3. Structures of lowest energy. The molecules
are seen from a direction perpendicular to the smectic
layer. The dots are the lattice sites, the lines are the
short Molecular axes. (a) k= (0, 0) with ~&= 3A; (b) k
= (0, 0)5 ~f =3A; (c) k= (0, 2), A(=-A-48; (d) k= (0, 2),
~ f

= -A + 4&. In cases (a) and (c) the angle between the
short inolecular axis and the x axis is+45', incases (b)
and (d) it is 0 or 90 . lThe structures for k= (&, 0) and

(2, 2) can be obtained by + 60 rotation of k= (0, 2) and
have the same eigenvalues. ]
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Substituting Eq. (14a-c) into Eq. (11)we obtain

(Ay&(k) —2Bys(k) By, (k)
V~p 7

Byc(k) Ay„(k)+2Bys(k))

where

y„(k)=cos(2@k,)+ cos(2mk~)+ cos2w(k, —k,),

(15)

ys(k) = cos(2wk, ) ——', cos(2mk, )—2 cos2m(k, —k,),
(16)

yc(k) =vY[cos2m(k, —k,) —cos2mk, ] .
The diagonalization of e',J„willbe completed by
diagonalizing (15).

The eigenvalues of (15) are

X,(k) =Ay„—)B ( y, A (k) =Ay„y )B ) y, (17)

where

y, = (4y', + y',)'". (18)

It is the lower eigenvalue ~, that is of interest.
The corresponding eigenvector is

f sing)

I, cosry j
where

By, 2By, —IBly
2By )Bly By

(19)

(20)

(sin2&;j:.= ',q,') = sin@exp(-fk r, ),
(cos2$&) = (q2~) = cosy exp(-ik r, ) . (21)

The ordered state of the system is described by
the eigenvector that corresponds to the lowest
eigenvalue which in turn depends on the values
of the interaction parameters A and B.

III. CONCLUSIONS

For given values of A and B, one method of
proceeding would be to cover the first Brillouin
zone with. a suitably close-spaced grid (e.g., k, =
n, /2000, k~ =n, /2000, where n, and n, are integers
ranging from 0 to 1999), and perform a computer
search for the minimum eigenvalue. This is in
some respects equivalent to assuming the ordered

when y~ vanishes the expression that is not inde-
terminate should be used. The structure below the
phase transition is determined by this eigenvector:

FIG. 4. Diagram of the boundaries between the lowest
energy structures. A and & are the interaction parame-
ters.

phase forms a periodic array up to a certain max-
imum periodicity and checking the obvious cases;
however, the difference is that we have checked
4 &&10' cases and can easily verify that no more
complicated array need be considered, since the
y's and X, are smooth functions of k. Thus the
method has significant generality.

We have made a search through k space and have
found the minimum eigenvalue as a function of A
and B. The corresponding structures and their
boundaries are shown in Figs. 3 and 4, respective-
ly. It is to be noted that the structure does not
change abruptly as B changes sign but in fact there
is a continuous change in k from structure 3c to
structure 3d between the lines B=0.2A and
B=-0.2A, when A is positive.

Taking the estimated values of Vo RIll V~ for
TBBA from Meyer's work, "we obtain: A =0.67 x
10 "erg and B=1.0 && 10 "erg (for the definition
of Vo and V, see Meyer's paper'). The minimum
eigenvalue for this choice of A and B is A., = -(A
+ 4B), which occurs for k, = 0 and k, = ~. This cor-
responds to the herringbone structure 3c, and is
the structure which has been observed experimen-
tally. ~
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