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In this paper a general formalism for the treatment of relativistic quantum plasmas is given. It is manifestly

covariant and rests on the use of a (covariant) relativistic Wigner. function. Here it is applied to the

particular case where spin effects are neglected (in most astrophysical applications this is a good

approximation): a relativistic quantum Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy is given.

The Vlasov approximation (Hartree approximation) is then considered and dispersion relations are obtained.

Limiting cases (relativistic nonquantum high-temperature plasma @nd relativistic degenerate zero-temperature

plasma) obtained previously by other authors are found anew. Finally, the formalism given appears to be

much simpler and physically more transparent than many-body techniques used elsewhere,

I. INTRODUCTION

Since the discovery of pulsars (1967) the study
of relativistic quantum electrodynamical plasmas
has been in highly desirable" demand, particular-
ly when dealing with descriptions of pulsar's mag-
netosphere. Indeed, the extreme conditions (large
magnetic fields and, more important, near the
crust of a rotating neutron star, large

electric

fields) prevailing in such objects give rise to
many quantum effects (particle production, plasma
instabilities due to the possible existence of a
positron beam, etc.) as witnessed by the well-
known model of Ruderman and Sutherland. ' This
physical framework constitutes the main reason
why we have undertaken a study of relativistic
quantum electrodynamical plasmas. Also, it is
clear that such a subject has an interest of its
Own.

At this point it should be specified that the ap-
plication to @ real problem —such as the one al-
luded to above —demands much effort from a the-
oretical point of view and needs, of course, many
further calculations. With this paper we have a
more modest aim; We desire to give some meth-
ods for dealing with relativistic quantum electro-
dynamical plasmas and also to investigate some
of their most elementary consequences.

Our paper is of course not the first one on the
subject. However, those papers' that have been
beyond the simpler considerations rest on rather
heavy, many-body techniques, which are generally
not extremely transparent, at least for the plasma
physicist. Here we use a manifestly eovariant
formalism which bears a strong resemblance with
the one used in the description of classical relativ-
istic plasmas. ' This formalism is based on the

use of a covariant Wigner function, although non-
manifestly-covariant for malisms have already
been considered„' It allows the use of methods
that are quite familiar to the plasma physicist.
.Among the various articles on relativistic plas-

mas we must first mention the paper by Tsytovich~
who studied the dispersion relations in detail. He
did not derive his equations from a Vlasov-like
equation itself derived from an appropriate hier-
archy as we do here. Instead he started from the
usual quantum electrodynamical expression of
the polarization tensor at order e' in which he in-
serted the zeroth-order (in e') Green's function
of the electrons.

Later, Melrose' used the same method, in an
explicitly covariant manner, to obtain the non-
linear response of the relativistic quantum plasma.
To this end he gave a general diagrammatic tech-
nique which he illustrated in various cases (Cher-
enkov effect, scattering of protons, photon split-
ting). In the present paper we shall not be con-
t:erned with the nonlinear response of the plasma:
it can be dealt with as in the nonrelativistic case.
This is an advantage of our methods.

Unlike Tsytovich or Melrose, Bezzerides and
Dubois' developed a general formalism based on
the use of the Green's function formulation of
nonequilibrium statistical mechanics. So far, this
work constitutes the most complete and far reach-
ing study in the field. However, their approach
is not always very simple. In particular the link
with the classical kinetic theory is not manifest
from the beginning. Moreover the mathematical
apparatus seems, in our opinion, to be more com-
plicated than necessary. We briefly come back
to the first point at the end of Sec. II.

After giving the basic formalism (Sec. II) we
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discuss the possible covariant quantum Vlasov
equations (Sec. III) which we use in the derivation
of dispersion relations (Sec IV). In Sec. V we
show how these dispersion relations reduce to
previous results in the limiting cases of (i) rela-
tivistic classical plasmas and (ii) relativistic ex-
treme degenerate plasmas. We also give the first
quantum corrections.

Notations and conventions

The metric tensor is endowed with signature
+ - - —.Four-vectors are designate either with
indices or without. For instance, x p -=x"p„
where the Einstein summation convention on re-
peated indices has been used. We have also used
the following notation:

ys4=q s4-(sv) 0,
where S is a partial derivative and (y, g) are ar-
bitrary functions. e"" is, as usual, the com-
pletely antisymmetrical pseudotensor. Finally,
except where otherwise stated, we use a system
of units such that the speed of light and Planck's
constant divided by 2~ are set equal to 1.

f"(x,p) =
(2,). d,R exp(-ip R)

= &g(x)y'g(x)&, (2.3)

which is just the average four-current" J"(x) of
the electron plasma. Similarly, one finds

x &P (x+ ,'R)—y"g(x —,R—)&, (2.1)

where P is the electron/positron field ((=g*ry'; *
.being the operation of complex conjugation; T
being the transposition) and where y ~ are usual
Dirac matrices. In Eq. (2.1) the brackets & & in-
dicate a quantum statistical average defined
through

&A.&
-=Tr/A}, (2 2)

A being an arbitrary operator, where p is the
density operator representing the statistical state
of the system; Tr is the trace.

This f~(x, p) can be used to calculate some aver-
age values. As an illustration, we have

d.pf "(x,p) = &C(x+ 'R)y'C-(» 'R)& -I.-.o

II. BASIC NOTATIONS OF RELATIVISTIC QUANTUM

STATISTICAL MECHANKS

Relativistic quantum statistical mechanics has
been discussed and used elsewhere"' so that in
this section we only give the minimum number of
definitions and properties necessary for a good
understanding of that which follows.

(i) The first notion we must define is that of a
covariant one particle Wjg-ner function'. two- or
three-, etc., particle Wigner functions are easy—
although some care is needed —generalizations'
of this one-particle function. We have to recall
that the Wigner function is a kind of quantum
distribution function (thus not necessarily pos-
sitive or even real) useful for calculating average
values of observables. We must add that there is
no unique definition' and that it may be regarded
as a mere intermediate in the calculations. How-
ever, its strong resemblance with a classical dis-
tribution function allows the use of standard meth-
ods of classical statistical mechanics and further-
more this suggests, for instance, approximations.

In the relativistic case, the Wigner distribution
is no more unique that it is in the classical (i.e.,
Newtonian) case and useful definitions other than
the one given below can also be considered. " Here
we shall use a modification of Carruther's and
Zachariasen's definition" valid for spin-& part-
icles (electrons. ..). A more general definition
is given in Ref. 2 and is used elsewhere.

We define the covariant Wigner distribution" by

d, pp"f"(x,p) = i&4(x) s "y "((x)&, (2A)

which represents the average momentum-energy
terisor'2 of the plasma.

At this point it shouldbe noted that in all the
above equations p" is not the four-momentum of
a particle but rather its repxesentati on" in Min-
kowski four-dimensional space: to each signer
distribution is associated a particular represen-
tation of operators by functions of x and p.

With f'(x, p) we can calculate the average value
of any observable A which does not depend on spin
variables (otherwise we should use a more gen-
eral quantum distribution' than the one given
above) through

&A.&~
= dZ„d, p A(x, p)f '(x,p), (2.5)

d Z, = (I/31 )e„,„p dx"~dx'~dx' . (2.6)

In fact, when dealing with specific physical prob-
lems, we are generally not interested in average
values of A at "time" Z but rather in the "current
of property A" such as those given. in Eqs. (2.3)

where A(x, p) is the function associated' with the
observable A. In Eq. (2.5) Z is an arbitrary space-
like hypersurface (i.e., the "time" at which the
average value of A is computed) which may or may
not be reduced to t= const; dZ„ is the usual dif-
ferential form "element of the three-surface em-
bedded in a four-dimensional space":
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and (2.4).
(ii) As to the physical interpretation of f '(x,p)

we just mention that it represents more or less
a one-charge distribution function rather than a
one-particle one. It should also be emphasized
that it contains vacuum contributions which will
have to be substracted via, e.g., a normal order-
ing of the Dirac fields involved in definition (2.1).
Such a new definition. leads to the vacuum polar-
ization.

(iii) The usual Dirac current operator

&'(x) = (i/2m)F(x) &'l(x) —&.(4(x)o""4(x)D, (2 8)

with

old)( 2(y(py & y)(y 4) (2.9)

In Eq. (2.8) the first term is the convective part of
the current, while the second term represents the
spin contribution.

In a completely similar manner f~(x,p) can also
be decomposed. Using Dirac's equations

~'(x) = 4(x)y "4(x), (2.7)

(thus including vacuum contributions, to be sub-
stracted elsewhere) can be broken into two parts
with the help of Gordon's decomposition:

b .[;&„-eA„(x)]-m] &(x)

y(x) fy" [ia„+eA„(x)]+m] =0,
it turns out that

(2.10a)

(2.10b)

q(x+-,'R)y'q(x --,'R)= q(x+-,'R) e'y(x --,'R) — S'(x—,R) y(x+-,'R) q(x ——,'R)

D„(x—,R) y(x +-,'R) u"'y(x ——,'R) — s„[y(x +-,'R) ~~'g(x ——,'R)], (2.11)

where we have used the notations

S (x, R) =--,'-[A. (x+ —,'R) +A (x ——,'R)],
D'(x, R)= —,'[A'(x+-,'R) -A'(x--,'R)],

(2.12)

(2.13)

A~(x) being the electromagnetic (quantized) field.
If we neglect the spin contributions, or rather

the magnetic-moment contributions to energy,
current, etc. , Eq. (2.11) reduces to

T()(x +-';R) y (I)(x —'R) =(i/2m—) (1)(x + ,'R) 8 P(x ——'R)—
—(e/m) S'(x,R)

x y(x+ ,'R) q(x ——,'R-). (2.14)

In fact, this approximation is rather good in most
astrophysical situations. We come back to this
point in Sec. V.

With the approximation (2.14), f~(x,p) can be
written as

f'(x, p)= f(x, p) ——fd9 2(xp')f(,x,'9 9'), , -

where

(2.15)

f(x,p) = —, d,R exp( —iP R)

x (7()(x + —,
' R) p(x ——,'R)) .. (2.16)

In Eq. (2.15), S(x,p) is the Fourier transform of
S(x,R); x being fixed.

A simple consequence of Eq. (2.15), which we use
in the following, is that the current is given by

d'(x) =e f d,pf'(x, p)

p).
=e d4P x P

dip d4p S Xpp Xpp p e 2e17

A'(x) =-,'Z„'x", (2.18)

in the Lorentz gauge], then Eq. (2.17) reduces to

Zx(x)=e fdp , f(x,p), (2.19)

i.e., to the usual nonquantum expression. '
(iv) From Pirac's equations (2.10a) and (2.10b)

one can easily find an equation satisfied by f~(x,p);
it reads

.exf (x,P )=2(e fd 9'f (x,P')Dx(x, P'9'). (220)-
Qf course this equation alone is not sufficient to
determine the four quantities f"(x,p). A true one-
particle equation' not only involves f (x,p) and

f(x, P) but also more general functions. How-
ever, when magnetic-moment effects (for
brevity we shall say, when spin effects) are ne-
glected, Eq. (2.20) reduces to

When the electromagnetic field A~(x) is an exienral
constant electromagnetic field [i.e., when
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8d(~)) , - J&—.) '&)8.&'(~,) ')If)~,) )-).'s'(~) ,)B',f)*),-) '))

2

dgPP D) x pP P xpP dgP dgP 8 g P x P P Dg x P P

i.e., Eq. (2.20) reduces to only one equation for the
only unknown function f (x,p). This equation is very
similar to the one obtained in the nonrelativistic
(but quantum) case."

WhenA~(x) leads to an external constant field
[Eq. (2.18)], then Eq. (2.21) becomes
P' —eA'(x)

( )

F"'—[p~ eA~—(x)] & f (x,p), (2.22)

i.e., the usual one-particle relativistic Liouville
equation. ' However, it should be noted that this
equation (2.22) is still a quantum equation: f (x,p)
is not positive definite.

(v) Let us now briefly compare the above treat-
ment and parts of the results of Bezzerides and
Dubois. First our Wigner function f(x, p) is es-
sentially a Fourier transform of the trace (on
spinor indices) of their g' [Ref. 6, Eq. (2.25a)].
This object is introduced here from the very be-
gining and is linked with the neglect of spin effects.
In Ref. 6 a similar approximation is performed
when an averaging operation is perforined [Ref. 6,
Eq. (3.16c)]. Our Valsov equation (2.21) is very
similar to analogous nonrelativistic and quantum
equations obtained by other authors"; moreover
no ansatz other than the usual Valsov one has been
used in its derivation. Furthermore, a slowly-
varying-field approximation of our Eq. (2.21) leads
to the more conventional Eq. (2.22) [Ref. 6, Eq.
(3.24)].

III. RELATIVISTIC QUANTUM VLASOV EQUATION

Before deriving the relativistic and quantum form
of the usual Vlasov equation let us first specify our

basic dynamics more precisely. It should be clear
that —in order to deal with a relativistic quantum
electron plasma —we must work within the frame of
quantum electrodynamics of which bvo equations
[Eqs. (2.10a} and (2.10b)] have already been written.
To these equations we must add the equation satis-
fied by the electromagnetic field A "(x},

0 A"(x) = 4)) e7)(x) y" y(x), (3.1)

(A'(x)) = ju, pp'f(x, p)

4m '
d d p' s x p' p-p'

(3 2)

obtaining thereby what might be called a phenom-
enological Vlasov equation.

(ii) Secondly, we can use a covariant BBGKY
hierarchy ' and then perform a truncation by
neglecting correlations. The generating equations
of such a hierarchy are simply constituted of Eq.
(3.1) and also Eq. (2.21) where the average oper-
ation ( ) kas not been taken; i.e., they read

which have to be supplemented by a gauge condition.
At this point we neglect the spin, i.e., we use the
approximation (2.15) for f~(x,p).

As usual in plasma physics we are mainly inter-
ested in the collective behavior of the plasma and
hence we discuss briefly the ways a Vlasov equation
can be derived.

(i) Firstly, we can couple the covariant quantum
one-particle Liouville equation (2.21) with the
average value of Eq. (3.1), i.e., with

4me2&')~) = j~) ) 'f )x,) ) &) &) 'S'(~) ')-f(~,) )'), -

) 'S.i («.) ) j~,) ')~,&'(,) ')i(*-,) )') S'(*,) ') ~,f),) -)'))- (3.3a)

=2ie d,p'p' D~ g, p -p' g, p' —2e' d,p'd4p" S x,p" D~ x,p-p' x,p'-p

where we have used the notation

1f (x,p) =
(2 ), d,R exp(-ip R) TI)(x + —R) g(x - —,'R);

(3 4)

f (x,p) is still an operator and, by construction,

f(.,p) =&f(.,p)&. (3.5)

In Eqs. (3.3a) and (3.3b) the symbols S~f or D"f
must be understood with the following sense:
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S (or D )f=A (x+ ,'R)—f+fA~(x——,'R), A, „(xf)(x',p'), etc. (3.S)

A&(x) =A&„(x) +4~ey(x) y" y(x) *D(x), (3.7)

where A,".„(x) is a solution of the homogeeeozis wave
equation which accounts either for a free radiation
field and/or an external electromagnetic field;
D(x) is an appropriate Green's function which, in
our case, has to be a retarded photon propagator;
the symbol * here means the usual convolution
product. Inserting Eq. (3.7) into Eq. (3.3b) we
obtain (see Ref. 2) a rather involved generating
equation for the relativistic quantum BBGKY
hierarchy that nocto explicitly contains products
like

f (x,P)f (x',P') and f(x,P)f (x',P')f(x",P") . (3 8)

This generating equation is of course equivalent
to Eq. (3.3b) and also involves products like

since the operators A. " and f do not commute.
Equations (3.3a) and (3.3b) are the relativistic

quantum analog of the Klimontovich'4 set of equa-
tions generating the BBGKY hierarchy. As usual,
taking the average value of both sides of these equa-
tions yields an equation connecting f (x,p) and
higher-order terms like (f(x,p)A~(x')), etc. These
higher-order terms are themselves linked to terms-
Iike (f(x,p)f(x', p')A~(x")&, etc.

The Vlasov equations (2.21) and (3.2) are then
recovered under the assumption that correlations
are negligibly small and therefore that terms like

(f (x,p)A ~(x')& factorize:

(f (x,p) A ~ (x') & =f (x,p) (A "(x') & . (3.6)

However, although the two sets of equations are
formally identical, they differ on one point; the
mass involved in the second set of Vlasov equations
(i.e., the one arising from the hierarchy) is the
bare mass of the electron. A similar situation also
arises in the classical case' and after a renormali-
zation of the nonquantum relativistic BBGKY hier-
archy the two Vlasov equation become identical.
Here the renormalization process is much more
complex.

At this point it should be remarked that in either
case exchange terms are not considered; we dealt
only with the Hartree approximation. This is due
to the ansatz (3.6) used to truncate the hierarchy.
However, if we want to consider exchange forces
at this approximation (Hartree-Fock approxima-
tion) we must (i) neglect correlations due to inter-
actions and (ii) keep correlations due to Fermi-
Dirac statistics. This has apparently not been con-
sidered by previous authors. " To do this we can
use a,method employed elsewhere' that consists of
formally solving Eq. (3.1) for A~(x). Doing so, we
obtain

These terms account for radiation emission or
absorption. " The average value of those terms
like (3.8) gives rise to many-particle distribution
functions like f,(x,p; x',p'),f,(x,p; x',p'; x",p"), . . .
and more complex functions' similar to those in-
troduced in the nonquantum but relativistic case. '
The splitting of f2 and f, into correlated and un-
correlated parts (in a dynamical sense only, there-
fore taking account of exchange correlations) is
now possible, "and a new r.elativistic quantum
Vlasov equation is obtained (see Ref. 2 for a simi-
lar case).

Another point deserves a brief discussion. Radi-
ative corrections are not taken into account in the
previous approaches. In order to deal with such
corrections a semiphenomenologicaL treatment
consists in coupling Dirac's equations with radi-
ative corrections (due to Schwinger' ) with Eq.
(3.1). In fact we have to realize that besides the
usual plasma parameter —giving rise at the lowest
order to the Vlasov equation —there also exists the
fi.ne-structure constant; this latter constant —Bn

- independent dimensionless parameter —is respon-
sible for radiative terms.

IV. BASIC DISPERSION RELATIONS

In order to obtain a deeper understanding of the
various effects arising in the relativistic quantum
mechanical case, and in order to obtain the non-
quantum limit, we discuss the simplest case con-
sidered in Sec. III. By addi. ng more complicated
effects such as spin, exchange effects, radiative
corrections, pair creation or annihilation, extern-
al electromagnetic fields, etc. , more sophisticated
dispersion relations can be obtained.

Consequently, let us start with the semipheno-
menological relativistic quantum Vlasov system
(3.2) and (2.21) which we linearize around an
equilibrium state (to be specified later)

f(x, P) =fm(p)+f '"(»,P),
(A" (x)) = O+A" ('&(x)

%e obtain

fl) (x)() d p pky (1)( p)
4we

(4.1)

2

d, P d, P'8""' x,p' p —p',

and
(4.2)

9"',f'"(~, D) —2)~J &,D'D"~'"( 9-P')f.,(P')«=0,

(4.3)
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which is much simpler than the original nonlinear
kinetic equation. In Eq. (4.3), D)("(x,p -p') is de-
fined as D„(x,p -p') IEq. (2.13)] except that
A„'"(x) is involved instead of A), (x). Still denoting
Fourier transforms in x space by a caret, Eqs.
(4.2) and (4.3) provide

ik~k f"'( k k)= 2(kf 4 )1' dk'k' D~(k —k', k -)1')

&.kf.,(k))&"."(k)

d, P k p. [f.,(P+-'k)
m

-f.,(p ——.'k)]A„"'(k),

(4.12)

x 5(4)(k')f (p') (4 4)
(4.13)

where we have used the Lorentz gauge condition

k„A"('&(k) = 0,
-k, k"A'"'(k)= f d, kk'f"'(k, k)

4ee'
d, pd, p'd, k'S "(k -k', p')

x 5"'(k')f.,(P -P') (4 ~)

f.,(k, P) = 5'"(k)f.,(P).
Notice that, more explicitly, we also have

(4.6).

where we have taken account of the invariance
under space-time translations of the equilibrium
distribution

'

Det([Q~ —k„k"]g"+(o~K"}=0,
k„A""'(k)= 0

(4.14)

((o~ being the usual plasma frequency, i.e., (o~2

=4ve'n /m) and where

valid for the average field (i.e., for a nonquantum
field) considered in Eq. (4.1).

As usual the homogeneous equation (4.12) has
nonvanishing solutions only when its determinant
is zero and when taking the gauge condition (4.13)
into account. This provides the dispersion rela-
tions

D (k, P) = —[A„'"(k)5" (P ——'k)-A"'(k)5"'(P+ -'k)],

(4.7)

&,(k, P) =-.'[A"'(k)5 "&(P ——.'k)+A'"(k)5 "&(P+ —.'k)].

Q2 d p p {4.16)

From Eq. (4.4) and (4.5) it follows that

f '"(k,P) =. .4'„"(k)f 4.k'k'"f„(k')

is the relativistic quantum Plasma frequency and
where we have set

Z"= d, p „[f„(P+.'k)—f„(P——.'-k)],
n, ' k p"

-k„k"A+("(k)=

x [5 "(p p' —,'k)

-5"'(P -P'+ lk)]k (4.8)

d.PP"f '"{k,P)

2 2

d pd pIgX(j) y p pr

x [5(4&(p' —-'k)

0 f,i'f.,(k), (4.17)

(4.16)

n being the equilibrium invariant numerical den-
sity of particles.

Note that Q~ is related to the usual (squared)
plasma, frequency through

+ 5"'(p'+ —,'k)] . (4 9)

In Eq. (4.8) we implicitly used the Landau's pre-
scription for the calculation of (p„k") '; i.e.,

„=—5 (p„k")= lim
p„u" ",, p„u" + ~

(4.10)

D„{x)=-5(x' —(x()/)x( . (4.11)

Now inserting f "~(k,p) from Eq. (4.8) into Eq.
(4.9) we get

Similarly, the calculation of (k„k") ' implicitly
contains a small imaginary part so, that it repre-
sents nothing but the Fourier transform of the re-
tarded photon propagator, "

(4.18)II,'/(o,' = r"„/mn„,
T"„being the trace of the equilibrium momentum
energy tensor.

In a frame of reference where the equilibrium
four-velocity of the plasma reduces to (1,0, 0, 0)
and for waves propagating along the third axis,
i.e., for k -=((o, 0, 0, k, ), Eqs. (4.14) become

Qp Cgpj.—, , +, —,z =0
(0 —k 40 —K

{4.19)

and that the integral appearing in the above rela-
tion is not the plasma density. For instance when
f„(p) is chosen to be a relativistic Fermi-Dirac
distribution function, then a glance at Eq. (A13)
shows that
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(transverse modes);

0' 2

sical limit —in the low-frequency and long-wave-
length approximation. In other words, in Eq.
(4.16) we must take

(longitudinal modes). Moreover, from Eq. (4.18)
one can easily see that the polarization tensor
II""(k), defined through

J ""'(k)= II""(k)A,"'(k), (4.21)

is given by

4vll'"(k) = -(~;K""i II,'g "").
As usual the Lorentz gauge condition and the

charge conservation equation lead to

(4.22)

k„II""(k)= 0, (4.23)

2mf.,(P) = (2„).
d P' 6"'(P P'}
IP,' I exp[p(u "P„' —&t)]+ I

6(4) (P +PI )
~WIP(~ -& P'")1+ & ) '

(4.24)

(seetheAppendix) where p=—(k&) ', Ez being the
Fermi energy. In Eq. (4.24) the second term cor-
responds to the positions present in the plasma.
In f„(P}we have eliminated an irrelevant vacuum
contribution.

V. RESULTS AND DISCUSSION

Let us now apply the results of the preceding
sections to several important cases: (i) nonquan-
tum approximation, (ii) first quantum correction,
(iii) degenerate plasma.

(i) Let us begin with the nonquantum limit and
first consider the dispersion relation (4.19) for
transverse modes. For a nondegenerate plasma
f„(P) reduces to the usual Jiittner-Synge distri-
bution" and therefore the relativistic quantum
plasma frequency A~2 reduces to the one obtained
elsewhere, ' i.e., to

0& ——&A+2;(mP)/K3(mP), (5 1)

the E, 's being the Kelvin's functions". which are
connected to the usual modified Bessel's functions.
As to the other term involved in Eq. (4.19), it con-
tains X" which should be considered —in the clas-

which is satisfied by Eq. (4.22).
Although f„(P) has not been specified in this sec-

tion (in fact, any homogeneous and uniform invar-
iant distribution function satisfying usual mathe-
matical requirements such as integrability, etc. ,
can be chosen), most of the applications require
the use of the relativistic Fermi-Dirac distribu-
tion function. In our case the corresponding co-
variant Wigner function is given by

f.,(P+-2k) =f (P)+5k', P,f.,(P). (5.2)

f.,(P+'2k)=f.,(P)+
2 sP~f (P)

k'k 1 s'f„(P)
4 2t ep'ap~ '

however, it is simpler to keep the full expression.
We could perfectly well consider a diluted quantum

plasma; in other words, we could neglect the ef-
fect of the Pauli exclusion principle, while keeping
the finite momentum transfer effects. The last
quantum correction to be included deals with
positrons possibly present in a high temperature
(kT -mc') plasma. Strictly speaking, positron
creation is a quantum effect by itself, arising
even in a classical relativistic plasma. They
can be taken into account by simply adding one
more component in the classical relativistic plas-
ma, and thus this is not a purely quantum correc-
tion, at least at low frequencies In fact th.e posi-
trons play —at very high frequencies (5 &a~ =mc') —.
a very important role in the damping of plasma
waves. We come back to this point elsewhere in
connection with the problem of vacuum polariza-

Doing so and integrating by parts the resulting in-
tegral, we are left with the dispersion equation
found elsewhere' (neglecting of course the radia-
tion-reaction terms).

The longitudinal modes provided by Eq. (4.20}
can similarly be treated and the nonquantum limit'
is also obtained. However it is simpler to cheek
thai' Eqs. (4.14) joined to Eqs. (5.1) and (5.2) lead
to the classical results. '

(ii) Let us now give the first quantum correction.
Here we have to specify more precisely what is
meant by "quantum correction. " It is of course
clear that a necessary quantum correction arises
from the effect of the Pauli principle. Such a cor-
rection is provided by the expansion of the relativ-
istic Fermi-Dirac distribution function, i.e., by

f1+exp[P(p, u" —ct)0-'

=exp[- P(P,u' —&~)g1 —exp[- P(p, u" —&~)]j .

(5.3)

As usual this expansion comes from a comparison
of the thermal de Broglie wavelength and of the .
interparticle distance. " Besides this, there also
exists another quantum correction connected with
the consideration of moderately high wavelengths
and frequencies as compared to the thermal de
Broglie wavelength. For instance, we could take
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n a A(2P)
A(P) "Aa(P) ' (5.6)

tion.
These three kinds of quantum corrections re-

flect the fact that we have basically three inde-
pendent parameters in the problem constructed
from E&, kT, mc, arid Soap.

Since the nonquantum dispersion relations [Refs.
3(b) and 3(c)] have the same form as the quantum
ones [Eqs. (4.19) and (4.20)] except that the
K~" does not have the same value, it is sufficient
to calculate the first quantum corrections to this
last tensor. In order to compare the quantum case
with the classical results, we also have to neglect
the contributions of the positrons. These contri-
butions are in fact trivial and would have to be
compared with the classical results in which pos-
itrons would have been included.

First we have to normalize the approximate dis-
tribution function (5.3) via the use of Eq. (A12).
We find

maIf, (mP) . maIf, (2mP)2sinh az 'a~ —2sinh2 &~ 2' a~ =n„,

(5.5)

where n is the invariant charge density of the
plasma. Had we neglected the contribution of
positrons, we would have found exp(peI) instead
of sinhPc&. Note that the small parameter (in ord-
er to obtain the first correction due to the Pauli's
exclusion principle) is exp(pe&). Thus, neglecting
the positrons in Eq. (5.5) we obtain

In this equation the tensors I'(P) and I"(P) are
given by the integrals

(5.9)

(5.10)

where 6f„($ ) is the Jiittner-Synge equilibrium dis-
tribution

&.,(5')=28(e)5($ $.—1)
4

- exp( P~-. $~)

(5.11)

These integrals have been studied in details in
Refs. 3(b) and 3(c). Now, using Eq. (5.6), the first
quantum correction 6X"' to K, y

is found to be

—[O'I'(2P) + O'I "(2P) + k'k, I"(2P)]. (5.12)

(iii) Let us now consider the completely degen-
erate case, i.e., T = 0 K. We should like to find
anew results already obtained by Jancovici, "who
used many-body techniques. Here we content our-
selves to rederive his results in the approximation
where the frequencies are much smaller than the
Fermi energy and where the wavelengths are much
smaller than the Fermi momentum of the plasma:

where we have (0« f and k« f= (c' —m')' '- (5.13)

A(P) =m'Z, (mP)/v'P .

In Eq. (5.6) the first term of the right-hand side
is the classical term (arising in the Jiittner-Synge
distribution") .

Let us now come back to the tensor K'" of Eqs.
(4.19) and (4.20). Inserting Eqs. (5.3), (5.4), and
(5.6) into Eq. (4.16), we get

(5 6)

X"= ~, '( [k"I (P)+O'I"(P)+k'k, I'"(P)]r'n

—(similar terms with P - 2P} .

Inserting the zero-temperature relativistic Fermi-
Dirac distribution

x 6(p" —ma) 8(ez —p,') (5.14)

(where 8 is the Heaviside step function and where
the positron part is not present at T =O'K} in the
expression of Z" [see Eq. (4.16)] occurring in
the dispersion equation (4.19), we obtain

~(En+a( a a~) —k ' p—8(&~ —Ea-ai a)

Ep-a/a

1

w(E~&+-', w) —a p),', (5.15)

1 1 2 co/2E~

&d (Ea a (a 7 a (d) —k ' p (de —k ' p

which, once introduced into Eq. (5.15), provides

(5.16)

where Ea = (Pa+ ma)'~a. —

Taking account of the approximations (5.13), we
can write

~1

mEp —k p
8(e~-Ea} (u

Ep Ep

lC" = 4, f d, P

k P 8 8(e~ —Ea)
E QE E (5.17)
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after taking the first-order terms in the expansion
integrations in this last equation gives

of the remaining factors. Performing the angular

(s.18)

where we have set

A = (dE&/kP . (5.19)

8
8(t~ —Ep) =-s(ey —Ep) . (s.20)

The remaining P integration is straightforward and
the final result yields the dispersion relation

2e' f' ~a~ (d'e2,

v((d' —k') ez 2kf k'f'

(ding+

kf
(de& —kf k f,2 (5.21)

The real part of the transverse dielectric constant
is then given by

2ef (dE (d~2
Re@r((d, k) = 1—, ~. 1—

«d2&& 2k k' '
(d6&+kf (d &&

(d ez —kf k'f '

(5.22)

This expression does not look like Jancovici's Eq.
(66}"because he used a different definition for the
dielectric constant. His definition is related to
our's (taken from standard plasma physics")
through

=(k —(d 6) (/k-'(d )~ (5.23)

(see the footnote on p. 438 of Ref. 19).
Once Eq. (5.22) is inserted into Eq. (5.23) Jan-

covici's result is recovered. Similarly, the imag-
inary part is found to be

Notice that the derivatives in Eqs. (5.1V) and (5.18)
are to be taken in the sense of distribution theory,
l.e.,

sheds some light on Jancovici's (renormalized) re-
sults. They are valid (as are our's) ohly when
there is no pair creation (which would damp those
plasma waves for which k(d & mc2); there is an im-
plicit assumption that only those frequencies such
that

Rr «rnc' (5.25)

are considered. Another remark is that it might
be surprising that our results are identical to those
obtained by Jancovici since we neglected spin ef-
fects, whereas they are fully taken into account in
Ref. 19. This is, in fact, due to our approximation
(5.13); a dimensional analysis of the supplementary
term introduced by spin effects shows that this
term is small when Eq. (5.13) is satisfied.

p=Z 'exp( Pu„P"-+Pe~@},

with

(A2)

(A3)Z =-Z(P, eq) = Tr[exp( —Pu„P'+ PtqQ)].

In Eq. (A3) P" is the momentum-energy operator

(A4)P" = T""~„= ~p
' y "~" ' dZ„,

(Z being an arbitrary spacelike three-surface) and

Q the total charge operator

APPENDIX: THE EQUILIBRIUM WIGNER FUNCTION

Let us briefly sketch the derivation of the equili-
brium Wigner function with no interaction. Es-
sentia. lly we have to calculate

( q(++ 2R)q(+ 2ft) ) Tr[p $( +22II)q(x 2ft) ]

(Al)
where the density operator p is given by

e2f 3 (d2$2
Ima (a), ).)=, / —1), (5.24) (As)

in the case where (d &fk/e& and Ime r = 0 otherwise.
Using once more Eq. (5.23) Jancovici's result is
recovered.

Similarly, the longitudinal modes are those ob-
tained by Jancovici.

Let us now briefly discuss this dispersion rela-
tioh. First let us make f tend to zero (equivalently,
c&-m or n„-0). Then the dielectric constant
tends to 1 as it should be. Moreover this shows
that there is no extra contribution coming from the
vacuum; our phenomenological Vlasov equation is,
in a sense, renormalized. Furthermore, this

In Eqs. (A1), (A4), and (A5) we have introduced
a normal ordering of the various operators in-
volved in order to eliminate irrelevant vacuum
contributions. " With more conventional (trans-
parent) notations the exponential in Eq. (A2) can
be written as"

exp — &p- cy bt p b, p
D g"-l, 2

+ (&, + ~i)&.'(A4(o))), (A6)

in the frame of reference where, u"=—(1, 0, 0, 0). In
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(t(&)= (2„) ( f '(P( ) Z () (A7)

Eq. (A6) and in all subsequent equations we use the
notations of Ref. 12. For instance the b, bt (the
d, d ) are the electron (positron) annihilation and
creation operators.

From

with

f }=b, (p)ui'(p) exp(-ip x)+ dt(p)v'(p) exp(-ip x)

(As)

(see Ref. 12, pp. 224-225) and a similar relation for
P(x), we get

:P(x+ —,'R)q(x —,'R): =
~ s, s

x (N), (p')v, (p) exp[ip' ' (x+ sR) +ip ' (x —sR)]bt(p')dt(p)

+ v, (p')au, (p) exp[-ip' (x+ —,'R) -ip (x ——,'R)]d, (p')b, (p)

+ v)(p')co, (p)exp[ip' (x+ —,'R) —ip (x--,'A)]bt(p')b, (p)

-v, (p')v, (p) exp[-ip' ( x+'R)+ip (x —-',R)]dt(p')d, (p)}.

Taking account of the orthogonality relations be-
tween the free spinors v and co (Ref. 12, p. 87)
the cross terms (db and btdt) in Eq. (A9) vanishes
in the process of averaging while the other terms
lead to one-particle wave functions to be weighted

by a factor

[exp(PE~ —Pe&) + 1] ' (A10)

for the electrons and a factor

[exp(-PE~ —Pe&)+ 1] ' (E~ &0) (A11)

for the positrons. 'This is due, as usual when there
is no interaction, to the fact that we consider only
an average value of a one-particle operator. 'Tak-

ing now the Fourier transform of the average va-
lue of Eq. (A9) the final result (4.24) is obtained.

Although the form (4.24) for f, (p) is not the
usual one, let us show that it actually leads to con-
ventional expressions on the example of the four-
current and of the momentum-energy tensor. They
are given by

yQv

d,P-, P

1 d~p „1
4v' Eq exp[p(Eq ey)] + 1

1
exp[()(z, + a~)]+ () '

(A12)

d, p f„(p)

exp[p(E~ sz)]+ 1

1'
exp[P(Ep+ sg)]+1

(A13)

'They are completely identical to the conventional
expressions" except that they also contain the
correct contributions of the positrons.

Finally it should be emphasized that this f„(p)
is normalized —as it should be —to the total charge
of the plasma (which is a constant of the motion)
and not to the total number of particles (which is
essentially variable).
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