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Velocity-autocorrelation spectrum of simple classical liquids

J. Bosse, %. Gotze, and Annette Zippelius
Max-Planck-Institpt fiir Physik und Astrophysik, D-8000 Miinchen, Germany

and Physik-Department der Technischen Universita't Miinchen, 8046 Garching, Germany
(Received 3 March 1978)

The velocity-autocorrelation function of a tagged particle moving in a classical liquid is expressed in terms
of a characteristic oscillator frequency and a frequency-dependent relaxation kernel. The relaxation spectrum
is approximated by calculating the interaction of the tagged particle with current excitations of the liquid.
The interaction with the longitudinal modes is shown to be responsible for the observed peak structure of the
correlation function. The results of the present theory, in particular the values for the diffusion constant,
agree well with the molecular-dynamics experiments on argon and rubidium.

I. INTRODUCTION

The velocity-autocorrelation function P(t) of
classical liquids has been the subject of extensive
theoretical studies in the past. ' On the one hand,
g(t) is the simplest quantity describing the dy-
namics of a liquid. On the other hand, numerous
computer simulations' ' provide us with detailed
experimental information on g(t). As a function
of time p(t) shows a rapid initial decay, then it
changes sign and approaches zero in a more or
less oscillatory manner. The corresponding fre-
quency spectrum, i.e. , the Fourier transform
tt" (&u), exhibits a pronounced peak at nonzero fre-
quency.

For the theory it remains to explain the position,
height, and width of the resonance in g"(&u) and to
calculate the zero-frequency limit g"(0), which
defines the self-diffusion constant D. A further
point of interest has been the anomalous Long-time
behavior of g(t). A tail proportional to t 't' has
been verified for a fluid of hard spheres' as mell
as for soft repulsive potentials, ' while no long-
time tails could be detected in the molecular dy-
namics data of liquid argon and liquid rubidium. ' 4

Since it is known that the slow decay of hydrody-
namic modes is responsible for these long-time
singularities, "any theory should incorporate the
coupling betmeen the tagged particle and the co-
herent modes of the liquid in an appropriate way.

Some of the early theoretical approaches' "
tried to explain the velocity-autocorrelation func-
tion of liquids in close analogy to g(t) of solids.
The itinerant oscillator model, e.g. , proposed
originally by Sears, "emphasized the oscillatory
component of the particle's motion. By introducing
several fit parameters the improved version" of
the model was able to reproduce the data on
liquid argon quite mell. Another line of approach
is based on generalized Langevin equations for
g(t). Several authors" have tried phenomeno-

logical approximations for the relaxation kernels
fixing the parameters with the aid of sum rules
and the diffusion constant. It was even possi:ble
within this frame to estimate the diffusion con-
stant. " However, these calculations lead in a
systematic fashion to resonances which are too
narrow and have peak positions about twice as big

,as those in the experiments on liquid argon. This
indicates that the resonance of |t"(v) cannot be
explained on the basis of high-frequency asymp-
totics alone. A microscopic explanation going
beyond sum rule arguments is required to fully
understand P(t). In another line of approach the
tagged particle's current is identified mith the
coherent liquid excitations, ' which are taken from
experiment or from hydrodynamic models, there-
by introducing several fit parameters. In this way
long-time tails may be included and the results
agree qualitatively mith experiment.

Mode-coupling theories have been worked out
for the hard-core liquids" to yield ttt(t) in terms
of decay integrals over the excitation spectra of
the coherent liquid modes. The latter quantities
were obtained by interpolation between the hydro-
dynamic and free gas limit, thereby introducing
several phenomenological fit parameters.

In this paper the mode-coupling theory invented
previously to study the coherent excitations of
liquids" will be used to calculate the spectrum of
the velocity-autocorrelation function. It will be
argued that the coupling of the self-motion to
the collective longitudinal and transverse excita-
tions is responsible for the observed features of
g"(u). Satisfactory quantitative agreement be-
tween our results and the experiments on liquid
argon and liquid rubidium including the value of
the diffusion constant D will be demonstrated.

The paper is organized as follows. First (Sec.
II) a closed microscopic expression will be derived
for the relaxation kernel entering the generalized
Langevin equation making use of the formalism of
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Zwanzig and Mori. "'~ In Sec. III the relaxation
kernel is expressed in terms of two-mode decay
integrals. The numerical results of argon and
rubidium are presented in Sec. IV, and finally
(Sec. V) some features of the present theory are
discussed.

II. GENERALIZED LANGEVIN EQUATION

Let us consider a system of N classical par-
ticles of mass es in a volume V at temperature T.
Position and velocity of the nth particle are de-
noted by r„and v„. Let us imagine the presence
of a, further tagged particle of mass fop with posi-
tion ro(t) and velocity v, (t}. The velocity-auto-
correlation function is defined by

projector onto the "force'* ~&vo) and 2 is re
placed by Q2Q:

t

K(t) = — d~M(t ~)—K(r),
0

K(t = 0) = Q~ =m, (v gZ' [v,") .
The relaxation kernel M(t) is given by

t(t(+(( t(()'+ f dv«(r)ip(( —v)=0,
0

(5)

M(t) =m, (QZ'v,'~ e "o o o~
~(tI& v,")/At((&. (4b)

Combination of Eqs. (Sa} and (4a) results in the
exact equation of motion',

or, equivalently, in the spectrum of the velocity
autoc or relation;

(1~(t) = 3 (v,(t' + t) ~ v, (t'))

T (v x
~
e -t tc

~

x)

(«( )
1 dt, ~t(t(t)

~OOwith ( ) denoting the thermal average. The latter
expression in Eq. (1) results from the introduction
of a scalar product in the space of dynamical
variables according to (A~B) = (5A*5B)/T, with
5A =A —(A) and of the Hermitian Liouville opera-
tor Z describing time evolution A(t) = e" A; ex-
plicit use has also been made of the invariance of
the system in space rotations and time transla-
tions. "

Calculations of correlation functions are best
performed by starting from exact equations of
motion and then approximating the relaxation
kernels appearing in these equations. To gener-
ate such an equation of motion for (t((t) the iden-
tity"

Qeo M "(((t)
[(v' —02eo+ (v M'((v) ]'+ [cu M "(co)]'

(6a)

Here M" ((v) and M'(&u) are, respectively, the
absorptive and the dispersive part of the relaxa-
tion spectrum;

+"
M "(((t) = — dte" M(t),2

(6b)
PP '" M "(e)M' ((t =-

7T

For the spectrum K"((t() of the memory function
(Sb) one has from (4a)

+ Oo

K "((tt) =- dt e""K(t)
2—txqe i™

t

e itc tg-(P -it& d g7q
- e(t tr) Qsoqg(-Pe irg-dt'

for any projector (p and its complement q= 1 —(p

will be used. If denotes the projector onto the
vector ~v",), differentiation of Eq. (1) will result
in the generalized Langevin equation

t
q(t) = dYK(t ~)q(~), —

0

(t((t = 0}= T /m, = T (v ",
~
v *,},

with the memory function

K(t) =m, (Zv,"(e ""'~zv,') .

(Sa)

This is easily verified using the fact (v,"~Z~v*,) =0,
which is a consequence of the above-mentioned
stationarity property (v*,vo) =0. For the memory
function K(t) a similar equation of motion will
result with the aid of Eq. (2), if (P' denotes the

M" ((u)
e' [(g+M'((o)]'+ [M"((u)]' (6c)

In view of Eq. (5) the spectral function (6a) can be
interpreted' a,s the response function of a damped
harmonic oscillator. M "((v) is the generalized
friction coefficient; it describes the decay of
oscillation with frequency Q~, into the incoherent
many-particle excitations. The frequency variation
of M" (e) leads to a nontrivial renormalization
+M'(&u) of the oscillator frequency.

The mathematical framework formulated above
is very general and has been used extensively in
the preceding literature. The results of Berne
et a)."on the velocity-autocorrelationfunction,
e.g. , are obtained by setting M "(&u} constant and
determining this constant from the self-diffusion

.coefficient D according to the relation
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D = dt g(t) =Tg, "( =0) =—, (7)
nt Q»

The motion of the tagged particle is determined by
Newton's equations;

r',"(t) = v,"(t), o. = x, y,

mediately arrives at

Kj'kZ'v,"= Q, u, (k)k "k~[p,(—k)18(k)
mo 8

271

-i o(-k)p(k)]

N

v,"=—— u, r, —r„
Flip BQ pn=l

with the potential u, (r) between the fluid particles
and the tagged one. Introducing Fourier trans-
forms of the potential and the particle densities
and the particle current densities,

/

Finally, Eq. (11) may be used in the definition
equation (4a) to express 0», which is related to
the second frequency moment of the velocity auto-
correlation spectrum, as

p, (k) =e '"'"0, p(k)=Q e ' (9a)

j,(k) = v,e '" '~, j(k) = Q v„e ' (gb)
1 1 X d'r g, (r)au, (r),

mp
(12)

Eq. (8a) may be rewritten as the continuity
equation for the tagged particle

Zpo(k) = -k jo(k),

while Eq. (Bb) becomes

(1Oa)

where go(r) N/V = (+„5(r—r, + r„)) is the pair-cor-
relation function. ' Q» will be the frequency of
the tagged particle treated in harmonic approxi-
mation, if all the other particles' positions are
fixed in space.

III. MODE-COUPLING APPROXIMATION
61'k

gv = — —u (k)k "p (—k)p(k). (10b)
m, (2n)'

Applying p to this latter equation and using the
continuity equations for p(k) and po(k) one im-,

Within the mode-coupling theory" one approxi-
mates the matrix element Eq. (4b) by inserting
the simplest product states and factorizing their
correlations. Thus we write for M(t)

M(t) =,' Q (0&'vol po(k)i (-k)){(i"(-k)lj

(-k)»'(po(k)lpga(k)6

'
Q~p k, ~x, 8

x(p. (k, t)l p.(k))&(j "(-k, t)l j '(-k))((i'(-k)l j '(-k))&(p. (k)l po(k)H '

x(p. (k) j'(-k)IQ&'v,") (13)

In writing Eq. (13) all intermediate states but

p, (k) j "(—k) were neglected and the motion of those
pair modes was assumed to be independent. One
of the intermediate modes in Eq. (13) is given by
the density autocorrelation function

y, (k, t) Z(p. (k=, t')
I p, (k) )

+ oo
dc' e

«QQ 7T

k kx —, yg (k; u))

=(exp[ —zk (r,(t)-r, )]&. (14)

The second'intermediate mode is the current
propagator, which will be represented in terms
of the coherent longitudinal and transverse cur-
rent-excitation spectra pz' z(k, &o);

k k8
z kq co (15)

The vertex entering in Eq. (13) can be worked o«
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with the aid of Eq. (11). Introducing the dimen-
sionless function V R(k) according to

sions (14)-(16) in Eq. (13) leads to

M (t) = 2 M (t) +M (t), (17a)

Q 00

d'r e ' 'g, (r)V V~~ (~),

(16)

one finds that these quantities approach 1 as k- 0
according to Eq. (12). Substituting the expres-

where Vr(k) = V„„(k) and V~(k) = V„(k) if the z axis
points in k direction. According to Eq. (6b) we get
for the transverse and longitudinal contributions
to the relaxation spectrum

0 1
ao + Oo

M,",(~) = —' ',—', dk O'V', ,(k) —y,"(k, «)y$, (k, & —«) .
m

(17c)

For the incoherent density correlation Q, (k, t) we

exploit the Gauss approximation, which yields
(t(0(k, t) in terms of g(t);

(kt) = e,xe ,(-k' de(e —e)((e)) .
0

(16)

This approximation is known to be exact in the free
ga.s as well as in the hydrodynamic regime. For
intermediate times it deviates up to 20% from the
exact result. "

The coherent current fluctuation spectra are
taken from our preceding work, "'"~' which pro-
vided a microscopic theory for Q'r' I, (k, u&).

In the approximation of the relaxation kernel
one might consider other decay processes,
namely, the decay into a coherent density and the
tagged particle's current, which according to.
Eq. (11) has a nonzero overlap with the fluctuating
force QZ'v", . The corresponding vertex function
would involve higher-order static correlations;
i.e., the triplet correlation function g, (r; r'). In
the present work we restricted, however, to the
simplest decays discussed above.

IV. RESULTS FOR LIQUID ARGON

AND LIQUID RUBIDIUM

The preceding theory has been worked out nu-
merically for'liquid argon and liquid rubidium.
The input parameters were chosen to agree with
those used in Rahman's molecular dynamics
work. "Argon is considered for T = 85'K at a
density n=2. 14x10"cm (m=66.3x10 ' g);
rubidium is considered for T =319'K at a density
n=1.06x10" cm ' (m=141.9x10 ' g). The tag-
ged particle is chosen to be identical with the
system's particles, hence rn, =m in the preceding
formulas, while u, (r) =v(r) and g, (r) =g(r) are
the system's pair potential and pair-correlation
function, respectively. The latter are taken from
Hahman's work' for liquid Rb and from the mea-
surements of Wentzel, Yarnell, and Katz" for
liquid Ar. These data determine the Einstein fre-
quency [Eq. (12)]; As=0. VBx10" sec ' in the case
of argon; Qz = 0.61 x 10 sec ' for rubidium.

The normalized vertex functions V~(k) and Vr(k)
[Eq. (16)]were calculated from the above data and
are plotted in Fig. 1.
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FIG. 1. Normalized ver-
tex functions Vl(k) and
V & (k) according to Eq.
(16).
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The nonlinear mode-coupling equations of Sec.
III can be solved by iteration as discussed in our
earlier work. "'" The calculated relaxation
spectra are presented in Fig. 2. Quite similar
to the relaxation spectra of the coherent func-
tions"' M "(uy) exhibits a, maximum around the
characteristic frequency Qz; it drops off rather
steeply for frequencies around 2Qz, and it shows
a, pronounced minimum for small m.

In Fig. 3 the generalized friction spectrum
K "(v) [Fq. (6c)] is presented. Similar to the
dynamical transport coefficients worked out pre-
viously for the coherent current-correlation
functions it consists of a narrow low-frequency
peak situated on a plateau. The experimental
curve for K "(x) shown in the figure is obtained
from Rahman's g(t) data by inverting Eq. (&a).
The dotted curve is the I~orentzian obtained from
(6c), when replacing M" (~) by a constant chosen
to fit the experimental diffusion constant D

[Eq (7)j.
Figure 4 shows the final result for the velo-

city-autocorrelation spectrum of a tagged par-
ticle P"(~) in comparison with Rahman's data."
Also shown is the semiphenomenological curve of
Berne et ui."for liquid argon', their approxima-
tion has also been evaluated for liquid rubidium
and included in Fig. 4. Tge numerical values for
the diffusion constants of the present theory [Eq.
(7)j are D=. ,22X10 ' cm' sec ' for Ar and D=2.1

x 10 ' cm' sec ' for Rb in comparison with the
experimental values D,„,t = 1.9 x 10 ' cm' sec ' for
Ar, ' and D.,pt

= 2.4 x 10 ' cm' sec ' for Hb. '
The experimental spectrum exhibits a peak at

about ~Qz for Ar and at about gz for Rb; this peak
poisition is reproduced by the present theory.
However, the theoretical peak is somewhat nar-
rower than the experimental one, and the theory
yields shoulders in the spectrum at about 2Qz
which are not present in the experiment.
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FIG. 3. Friction spec-
tra K"(co)/Q~z of the pre-
sent theory (full curve)
compared to the spectra
derived from Rahman's
data (Refs. 2 and 3)
(dashed curve). The dotted
line shows the single re-
laxation approximation
(Ref. 23) with the experi-
mental value for D.

I
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FIG. 4. Velocity auto-
correlation spectrum g "((d)
of the present theory (full
curves) in comparison with
Rahman's molecular dy-
namics data (Refs. 2 and
3) (dashed curve} and the
single relaxation approxi-
mation (Ref. 12) (dotted
curve).
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V. DISCUSSION

A. Relaxation and mode decay

The absorptive part of the relaxation kernel is
given by the golden-rule type of expression (17).
The coherent state of the tagged particle changes
due to emission and absorption of excitations of
the liquid. In leading order only single current
modes of momentum k are considered, transfer-
ring the recoil-k to the particle. The coupling of
the tagged particle to the liquid is given by the
vertex functions V„q(k); according to Eq. (16)
this quantity can be viewed as the averaged dy-
namical matrix of the system. Convergence of
the decay integrals (17c) is ensured by the de-
crease of the vertex V(k) with increasing mo-
mentum. As usual in systems with regular inter-
actions the coupling will become ineffective, if
the momenta are too large. It is plausible, and it
is obvious from Eq. (16) or Fig. 1 that the coupling
V~ to longitudinal modes is more effective for
large momenta than the coupling V~ to transverse
modes, i.e. , the coupling to shear excitatioris.

The present theory ignores all but the simplest
decay processes. From the theory of the auto-
correlation function in lattices the decay into more
phonon states is known to give smooth contributions
to g" (&u) which may be important for large fre-
quencies. So we must expect the present theory to
underestimate M "(sp) for ~ &20+. Thus, to the
same extent the sharp high-frequency cutoff in
M~(+) (see Fig. 2) seems to be an artifact of the
present theory. This sharp cutoff, however, via
Eq. (6b) produces a large M'(~) which in turn
leads to the high-frequency bump in K"(&o) and the
shoulders in g"(&u) via Eqs. (6c) and (6a), re-
spectively. Even though one might question the

reliability of the experimental data for g" (v) or
K"(~) in the frequency range &u&20', the dis-
crepancy between experiment and theory in this
regime is presumably due to our neglect of more
complicated decay channels.

B. Longitudinal versus transverse decay

Since the excitation spectrum of longitudinal
modes in liquids is quite different from the ex-
citation spectrum of transverse modes, it is ob-
vious that the contribution M'r'(ur) differs con-
siderably from the contribution M~(&u). Introducing
a generalized damping function D'r(k, &o),

26 the
transverse spectrum becomes

T& 9 I (~ + k2D t )2+ (k2D&t)2 (19a)

where D~ is connected to D~ via a Kramers-Kronig
dispersion relation similar to Eq. (6b).

In the hydrodynamic limit (q, &o) -0, D'r-q/(nm),
and D~-0. The longitudinal spectrum, on the
other handy reads"

2k2DII

(~' —c'k'+ k'D')'+( k'D")' '

with c denoting the k-dependent sound velocity
and D~(k, ~) abbreviating a generalized sound-
damping function; in the hydrodynamic limit D~—I, D~ 0.

One can split the k integral for M'r'(v) in Eq.
(17c) into three regimes. First let k/k, &0.75,
where k, denotes the peak position of the liquid
structure factor S(k); k0-2.0 A ' for Ar, ko
-1.5 A ' for Rb. Then P'r'(k, &o), essentially, is
a structureless k-independent function deer easing
with increasing ~."" Hence the corresponding
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contribution to M'„'(&u) is a smoothly decreasing
function; this part is explicitly visible in Fig. 2

for v &-..'-, B~. Second, for 0.15&k/k, &0.'t5, $'r'(k, e)
shows a shear-mode resonance at a frequency
&ur(k) which increases with momentum k."" With
increasing &o, p„"(k,~) picks up larger and larger
k vaLues, so that the increasing phase space for
shear modes yields an increasing contribution to
M'r(&u); this increase is responsible for the max-
imum of M'r'(&u) in Fig. 2. Third, for still smaller
wave numbers k/k„& 0.15, a well-defined shear
mode ceases to exist and the transverse cor-
r elation shows hydrodynamic diffusive behavior.
The diffusion propagator is a decreasing function
of fr'equency and hence it yieMs a decreasing con-
tribution for!1I~(+) for small e and this explains
the low-frequency minimum of Mr" (~) visible in
Fig. 2 for Ar. Actually, the diffusion propagator.
yields a singular function proportional to -v &u.

This singulari. y at small frequencies is respons-
ible for the well-known long-time tail" of g(t)
= (T/12mn)[vt(D+Dr)]' ', which is correctly in-
chided in the present approximation.

The longitudinal propagator [Eq. (19b)] vanishes
for cu-0 i.ndependent of the value of k; this is due
to the conservation of particle number. Thus
hi~(&u) should be zero for +-0, if g,"(k, e) were
a 5(c) function. This is not the case, however,
since the wave-absorption process has inelastic
components. Therefore M~(v-0) w0, and accord-
ing to Fig. 2 the zero-frequency contribution of the
longitudinal channel is even larger than the one
of the transverse channel.

The prominent feature of the longitudinal part of
M" (tu) is, however, its strong increase with in-
cr easing co. This is not solely due to the ~' factor
in Eq. (19b). For larger values of e and k, Q~ (k,
~) behaves like a normalized broadened-resonance
function exhibiting a peak at u& =&@~(q). The long-
itudinal dispersion law e~(q) shows the typical
maximum-minimum behavior" "of liquid spectra,
and so a large phase space is picked up in the
decay integral (17c) around &o

- GE. Hence, the
maximum and the deep low-frequency hole of
M~(~) are a consequence of the kinematics ruling
the tagged particle's density-wave emission and
absorption.

M~(&o) dominates the relaxation spectrum M" (e).
The interesting small low-frequency peak of
Mr(~) is compensated in its effect by the strong
increase of M~(&u) for cu &0.05 x 10" sec '. The
increase of M" (&u) with increasing ro due to opening
of the longitudinal decay channel leads to the
pr onounced non-Lorentzian form of the friction
spectrum K"(v). This frequency spectrum is
responsible for the shift of the peak in g"(&u) from
the value Gz down to lower values (Fig. 4).

From the preceding discussion one concludes
that the observed peak position of P"(m) can be
understood as a result of the nonwhite relaxation
spectrum M" (&u). The structure of M" (&u) is due
to the tagged particle emitting and absorbing den-
sity fluctuations. The tagged particle's friction,
i.e. , its coupling to the liquid shear motion, is
relevant for getting the correct numerical value
for the diffusion constant.

Finally, one might try to improve the approxi-
mation of Berne et al. by using a repiesentation
for the relaxation kernel M"{~)which is analogous
to Eq. (6c),

and then replacing N" (&u) by a constant. Using
Rahman's value' for the fourth moment of g" (v)
we evaluated the corresponding frequency spectrum
of argon. The resulting $"(&u) shows no serious
improvement over the approximation of Berne
et al."demonstrating that high-frequency asym-
ptotics cannot provide an explanation of the ob-
served peak structure. The value of M(t= 0) cal-
culated in the mode-coupling approximation de-
viates by about 30% from Rahman's data.

C. Liquid argon versus liquid rubidium

There are three striking differences between
the relaxation kernels of argon and rubidium
(Fig. 2). First, the zero-frequency value of M"/
OE in Ar is more than twice the corresponding
value in Rb, Second, the maximum of M" (v) is
somewhat higher and much broader in argon than
in rubidium. Third, while M" (~) has its peak at
about QE in argon it is located at about 1.5 AE in
rubidium. These differences together imply the
minimum of M" (&u) for &u &Qz to be more pro-
nounced in Rb than in Ar. Since the vertices
(Fig. 1) for argon are only slightly bigger and
slightly more extended in k space (after scaling
with k, ) tlian in rubidium the mentioned differences
have to be traced back to the differences in the
structure of the coherent excitations of the two
liquids.

In general the longitudinal dispersion curve &o~(q)
is steeper in Rb than in Ar; in particular, the
sound velocity is higher in Rb than in Ar. Hence
the low-frequency density of states is smaller in
Rb than in Ar. This explains why M~(v) is smaller
and flatter for & «QE in Rb than in Ar. As a re-
sult the properly scaled diffusion constant Dk2O/Qz

is smaller in Rb than in Ar. Consequently the
properly scaled P,"(k, &u) is sharper in Rb than in
Ar and this leads to a further decrease of M~ (v
-0) in Rb relative to Ar. The difference of Dk', /
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Q explains also why Mr(&u) is smaller in Rb than
in Ar. So the larger stiffness constant of Rb is
responsible for a reduced value of M"(0)/Qs, this
effect being enhanced in a consistent way by a
small value of the effect;ive diffusion constant in
liquid Rb.

Since the dispersion curve &o~(q), in particular
in the maxon-roton regime q

- —,'k, and q -k„""
is considerably flatter in Ar than in Rb the den-
sity of longitudinal states for 0-QE is larger in
Ar than in Rb. Since Dk', is bigger in argon than
in Rb the. density of states 1g~(k, &u) dk is smeared
out much more due to the convolution, Eq. (17c).
The longitudinal frequencies &o~(q)/Qs are large~
in Rb than in Ar for q --,'k, and for q &k, and this
explains why M~(&u), in particular its maximum
is located at higher frequencies in Rb than in Ar.
So the different density of longitudinal states for
both liquids yields the differences in peak position
and height of M" (&u).

The peak of g"(v), Fig. 4, is due to level repul-
sion between the coherent oscillator with resonance
Q~ and the pair excitations whose resonance is re-
presented by the maximum of M" (v). The level
repulsion is less effective in Rb than in Ar, since
M" (~) is smaller and since the resonance position
is higher in Rb than in Ar. This level repulsion
thus explains the shift of the resonance of Ar down
to 2O~ while the resonance in Rb is shifted only
slightly below Q~. The most remarkable feature
of g" (&u), i.e. , the appearance of a, resonance at
about —,'Q~, thus is explained by the present theory
due to hybridization of the coherent oscillator
motion with the pair excitations of the liquid.
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