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A repeated-ring kinetic equation for the velocity-autocorrelation function in a hard-sphere fluid is
presented. In this theory contributions from uncorrelated (Enskog) collisions, correlated (single-ring)
collisions, and multiple (repeated-ring) collisions are included. A quasihydrodynamic approximation is made
to describe the intermediate propagation between correlated collisions. We obtain an expression for the self-
diffusion coefficient D which suggests that its density dependence arises from a competition between the
shear and density fluctuations of the fluid. Using interpolation formulas to numerically evaluate the coupling
of the test-particle motion to the fluid fluctuations we have computed D, The variation of D with density is
found to be in good qualitative agreement with computer molecular-dynamics simulation, For low to
moderate density the coupling of the test-particle motion to the fluid shear (vortex) fluctuations leads to an
enhancement of D relative to its Enskog value. At high density the coupling to the fluid-density fluctuations
yields a sharp decrease in D.

I. INTRODUCTION

The self-diffusion coefficient D of a monatomic
hard-sphere fluid relative to the Enskog value D~
is known, from molecular dynamics simulation, '
first to grow larger than one and then to decrease
to less than one as the density increases from the
dilute gas to the liquid state. The enhancement of
D relative to D~ has been ascribed to the coupl. ing
of the shear modes of the fluid to the diffusing par-
ticle's motion. The reduction of D relative to D~
may be due to a molecular caging effect whereby
fluctuations in the fluid density can impede the dif-
fusing particle's motion. The competition between
these two effects can then, in principal, lead to
the observed behavior of D/Ds as a function of den-
sity.

In this paper, we study this self-diffusion prob-
lemby employing the repeated- ring kinetic theory of
test-particle motion that we have recently de-
rived. "' This description of the thermal motion
of a test particle of arbitrary size and mass was
obtained by using the techniques of fully renormal-
ized kinetic theory developed by Mazenko. ' By
systematic approximation to the exact equations of
motion for the test-particle phase-space density
correlation function, the dynamics were expressed
in terms of the Enskog binary-collision operator.
This collision operator incorporates the equilibrium
correlations of the fluid. In addition to the Enskog
(dynamically uncorrelated collisions), and ring (two
correlated collisions) events, we incorporated re-
peated-ring (three, four, . . . correlated collisions)
events in the kinetic theory. ' Y hese multiply corre-
lated recollisions play an important role in test-par-
ticle motion when the fluid mean free path l is small
relative to the test-particle diameter o since, in
this l.imit, the test pa, rticle can collide repeatedly

with a given set of neighbors.
For an arbitrary test particle, 0» l can always

be satisfied by choosing the particle to be suffic-
iently large. We first studied"' this large-particle
limit since here the solution of the repeated-ring
kinetic, equation is the simplest to effect. In par-
ticular; the coupling of test-particle motion to the
fluid is domina. ted by the fluid transverse (shear)
modes. Furthermore, the large test particle only
samples the hydrodynamic behavior of the fluid
motion. Thus, for a large test particle the anal-
ysis of the kinetic equation simplified considerably.
We were able to show that, in this simpler situ-
ation, the contribution to the dynamics from the
repeated rings could be expressed in terms of the
single- ring contribution. The resulting expression
for the test-particle velocity-autocorrelation func-
tion could then be resummed and led to a Stokes
Einstein —like relation for the diffusion coefficient.

Even in a monatomic fluid, multiply correlated
recollisions will be increasingly significant as the
density increases since the fluid mean free path
is considerably smaller than the particle diameter
at sufficiently high density (at the highest hard
sphere density l = 0.026cr). Thus a repeated-ring
theory is also required for a dense monatomic
fluid. Moreover, there will be significant coupling
of the test particle's motion to the fluid density
fluctuations and other fluid modes. In particular,
at high fluid density there is evidence' for the for-
mation of a molecular cage whereby a test parti-
cle spends many collision times interacting with
a set of nearby fluid particles. Thus, it is crucial
to the description of self-diffusion to use a repeat-
ed-ring kinetic theory and include at least the
coupling to fluid density fluctuations in addition to
the shear mode contribution.

In Sec. II of this paper we show that the repeated-
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ring contributions arising from couplings other
than to the fluid shear motion can also be expres-
sed in terms of single-ring quantities. To do so
we employ the quasihydrodynamic approximation
used previously to analyze single-ring theories'
and the repeated-ring theory. " In this approxi-
mation the propagation between correlated colli-
sions is expressed in terms of the conserved
variable correlation functions with the remaining
contributions approximated by a single relaxa-
tion-time term. An interesting and important as-
ymmetry arises among the different possible
fluid couplings to the test-particle motion which
shows that the repeated-ring series cannot be
summed in the same form as was done for solely
the shear mode contributions. "' Nevertheless, by
suitable rearrangement, the series can be sum-
med. If we keep the dominant couplings [cf. Eq.
(2.20)] we obtain the simple and remarkably sug-
gestive expression

D/Dz= (1+R„)/(1 -R„).
The quantity R, is a function of the coupling of the
fluid shear motion to the test-particle motion and

R„plays the same role for the fluid density fluc-
tuations. We shall show the R, is a positive in-
creasing. function of density while R„ is a negative
decreasing function of density. Thus, in principal,
D/DE can exhibit the known variation with density.

For a molecular test particle the coupling to the
fluid motion as in R, and R„ is not solely control-
led by hydrodynamics. The proper short-time
and small-distance behavior must also be incor-
porated as well as the nonconserved variable con-
tributions. This substantially complicates the an-
alysis. In Sec. III we use formulas devised by
Resibois' and Furtado et al. ' to approximate the
conserved variab&. e correlation functions required

to evaluate R, and R„. These expressions are used
to evaluate D/Dz and the results compared with
the molecular-dynamics simulation. ' In Sec. IV
we summarize our results and discuss the approxi-
mations that they rely upon.

II. REPEATED-RING KINETIC THEORY

In the repeated-ring kinetic theory, "' the I.a-
place transform of the test-particle velocity-
autocorr elation function

g„(z)= —i dt e"'(v(t) ' v(0)), (2.1)

satisfies the kinetic equation

[z -A(z) -R(z)])(l)„(z)=(v'(0)), . (2.2)

where the Enskog collision frequency

7zz = 4ng(o)o'(zzkBT/m)'~' (2.4)

In Eq. (2.4), n is the fluid number density, T is
the temperature, o is the hard-sphere diameter,
m is the mass of a particle, g(o) is the radial dis-
tribution function at contact, and k~ is Boltzmann's
constant.

The repeated-ring memory function R(z) contains
the contributions to the dynamics from multiply
correlated collisions. It can be written in the
form"'

In Eqs. (2.1) and (2.2) v(t) is the test-particle
velocity at time t. The quantities l& and R in Eq.
(2.2) are the Enskog and repeated-ring memory
functions, respectively.

For a fluid of hard spheres, the Enskog memory
function, which incorporates the contributions to
the dynamics from uncorrelated collisions, is
frequency independent. It is

(2.3)

(((z)= -e'ii' f d(d2 (mk 7)'~'p r(1.)))

x [Gz)(33; 44)+ Go(33; 55)T(55; 66)Gz)(66; 44)+ GD(33; 55)T(55; 66)Gz)(66; 77)

x T(77; 88)Go(88; 44)+ ]rr(44; 2)(mezz T) '~'P„. (2.5)

In Eq. (2.5), &z is the volume of the system. The
notation 1= (r„p,) denotes the field point phases
and p„ the laboratory z component of the momen-
tum p, . We use the notation that unbarred integers
(1, 2, . . . ) represent the field points associated
with the test particle while barred integers
(1,2, . . . ) represent the field points associated
with bath particles. Note that in Eq. (2.5), integra-
tion over repeated field points is implied. The op-
erators 7', T, and 7~ represent binary collisions
between the test particle and bath particles. They

can be expressed in terms of the hard-sphere
Enskog collision operator'o Tz(33), where

T (8))=-(g(rr))l " "")e(p;, r;,)

x 5(ir;,
i

o)[b,, 1]. — (2.6a)

In Eq. ('2. 6a) the unit vector joining the centers of
the spheres at contact is r;, =(r-, -r, )/o=r,-,/o,
the precollision relative momentum is p33 p$
-p„and the heaviside step function is 8(x) = 1 for
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x) 0 and 8(x)=0 for x&0. The operator I)»
changes the precollision momenta of the two par-
ticles to their postcollision values; i.e.,

b»f(j„p-,)=f(p,*,p,*) where

p*=p +& (rs 'p- }

P+=P &s (& 'P

The propagator Gr) in Eq. (2.5) is

(2.6b)

G~(33; 44) = i-dt e'"C, (34, t)C $34, t),
0

(2.V)

where C, is the phase-space test-particle cor-
relation function and C~ the phase-space density
correlation function, both evaluated in the Enskog
approximation.

The interpretation of R(z) is straightforward.
Initially the test particle with momentum p, under-
goes a collision [v (44; 2)] with a typical bath par-
ticle selected from a Boltzmann distribution of
particles. The postcollision coordinates of the
test particle and its collision partner are 4

=(r4, p~) and 4=(r;, p;), respectively. Each term
in the square brackets of Eq. (2.5) represents
contributions from different dynamical processes
which can now occur. The first term (the ring
term) represents the process in which the test
particle and its collision partner undergo Enskog
propagation but independently of one another
[GD(33;44)]. The initial correlation is communica-
ted to the test particle when it undergoes a col-
lision [v(1;33)] with its initial collision partner (or
one dynamically related to it) at the precollision
field point 3 and 3, respectively. The test particle
then recoils with momentum p, . The second term
(the first repeated-ring term) in the square brack-
ets of Eq. (2.5) represents the process in which,
following the initial collision [7 (44; 2}], the inter-
mediate propagation [Gr)(55;44)] leads to a col-
lision [T(66;55)] at 5, 5 in which the test particle
and bath particle recoil with field points 6 and 6,

respectively. The two particles now undergo in-
dependent Enskog propagation [GD(33; 66)] until
the final collision at 3, 3 [v(1;33)] where the test
particle recoils with momentum p, . In this fash-
ion, by treating each of the terms in Eq. (2.5) in
succession, one includes the contribution to the
test-particle velocity-autocor relation function
from processes in which the test particle under-
goes any number of correlated collisions with a
bath particle. Note that the intermediate field
points, 44, 55, etc. , are all averaged (integrated)
over and in the final step the initial and final mo-
menta, p, an p„respectively, are also averaged
over.

The full momentum dependence in the correla-
tion functions GD, as well as in the collision terms
~„ t ~, and 7.", leads to some difficulty in the eval-
uation of R(z). The techniques employed to ap-
proximate the intermediate propagation G~ in the
repeated-ring memory function R(z) were pre-
sented elsewhere in detail' and will simply be
sketched here. First one introduces the spatial
Fourier transform of the correlation functions
G~ this introduces intermediate wave vectors
q, q', . . . . The laboratory z components of p, and

p, are expressed in the appropriate wave-vector
reference frame. The momentum dependent cor-
relation functions C, (q, p„p,;t) and C (-rq, p;, p&, t}
are then expanded in a complete momentum rep-
resentation. . The first five basis functions are
&;(p)=1, &;(p)=k„, &l( p)=h„, &;( )p=f„, and

85(p) = p$' —3) where $, = (mtr~T)'r 'p„ is thes com-
ponent of the dimensionless momentum in the q
reference frame. " Finally one makes the quasi-
hydrodynamic Approximation' to the product of
C. (q, p„p,;t) and Cz( —q, p~, p;;t). In this approxi-
mation the projections onto the conserved variable
momentum states are treated exactly while the
projections onto the nonconserved variables are
approximated in a simple manner, [cf. Eq. (2.11)].
In the quasihydrodynamic approximation, the re-
peated-ring memory function is

dq ex&xr(rt}&rr(q, ~)~ A~r(e)

(2.8)
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TABLE I. Factors BEI(q). '

22= 33

44

41

4g jq(qcr)/qo

42[jp (qa') —2 j& (qa)/qo']

4&m j)(qadi)

(-'7r)']' jp (qo)

~Factors BzI(q) are listed here in units of (2n7z) '.
The function j~ is the spherical Bessel function of order
k.

x Hn~(P;) Ts(44)iVnr(P, ), (2.9)

where f,(P,) is the Maxwellian momentum distri-
bution function. Due to the simple structure of
T~, these matrix elements can be evaluated'4 and
those that are nonzero are listed in Table I. The
TJI. factors are also matrix elements of the hard-
sphere Enskog collision operator

Tzl. (q+ q') = (nQ) ' d4d4 e'"+""«
xf.(t,)f.(P;)H' (p )T (44)Hl (p;) .

(2.10)

Following the techniques used to calculate the
fsr, (q) factors, the T~;(qadi') factors are found
to be given by spherical Bessel functions with
argument ~qaqd . The quantities 4&~(q, z), which

In Eq. (2.8), the summations over E, I, and K' as
well as the factors e~, E~, and &~, arise from ex-
pressing the laboratory z components of p, and p,
in the q (or q') reference frame. Note that e,
= sin8, cosQ„e,= sin8, sing„and &, = cos8, where
8„(t„and (t, are the Euler angles" of the q ref-
erence frame relative to the laboratory reference
frame. The B~z(q) factors are matrix elements
of the hard-sphere Enskog collision operator,

.,(.( f«;.f=«.«; "'"f.(p.v-.(p, (

describe the intermediate propagation between
correlated collisions, are

a,~(q, z) = i-dt e'"
0
x [C, (q, t)Csl~( q, t—)

(2.11)

where the momentum contracted correlation func-
tions are

C zz(- tp)=m' f dp;dppn'r(p;)

x C (-q, p;, p;;t)H'(p;). (2.12)

Hence C, and C,0 are the self parts of the van
1L 11

Hove correlation function in the Enskog and free-
particle limits, respectively. Similarly, C~„ is
the density correlation function, C~„ is the trans-
verse current correlation function, C~ is the

44
longitudinal current correlation function, etc.
The quantities X, and X are nonconserved variable
relaxation times for the single-particle and bath
fluctuations, respectively. The form of Eq. (2.11)
is a consequence of the quasihydrodynamic approxi-
mation for' the intermediate propagation.

The wave-vector integrations fdq Jdq' in
Eq. (2.8) for the repeated-ring memory function
appear difficult due to the coupling introduced by
the matrix elements T~r (q+ q'). Noting that these
matrix elements are proportional to spherical
Bessel functions of argument q+q'~, we utilize
"addition theorems"" to decouple the wave-vector
integrations. We have previously demonstrated
how this decoupling procedure is carried out for
the contribution from the transverse momentum
fluctuations in the bath. In Appendix A we demon-
strate that this procedure also allows us to de-
couple the wave-vectors integrations from contri-
butions coming from the bath density and longi-
tudinal current fluctuations, contributions which
are important in the self-diffusion process. The
central result is

dq, dq. " dqn~rg&. ..(q, )&&...(q„z)T&,i,(q, + q2)+r z (qn ~)Tz,,t (q.+ q, ) ' ' '

x Tz g (q n+ q. ,)&&„,&„,(q. „«)T.„„„(q, q)&j J (q ~)+K —7 (q )eQ„

dq1~E' ~K Bg I a1 +I J 01 z BII," J 01

q2~I J' BI I ~. ~I J' Q2yz BJ' J' ~2 ~g

qn-X I„& I„ t„(qn-t In-g&„q(qn-Z p J' J' (qn-X)( 8
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to the fluid longitudinal current correlations as

1 is
R,', (z) =n —

i
djz,&„(q)&„(q,z)z,&„(q),2' j

(2.14b)

and to the fluid density correlations as

1 i3
R„'(z) =n —

I dq z~&%%di(q)+n(q z)~%%dB%%dx(q)2' j
(2.14c)

The factor of 2 in Eq. (2.14a) reflects the equiva-
lence of the transverse current correlation func-
tions &»= 4,-,.

Implementing the wave -vector decoupling scheme
summarized in Eq. (2.13) and utilizing the defini-
tions (2.14), the repeated-ring memory function
given by Eq. (2.8) becomes"

R(%%d)= [R'(z)+R,', (2)+R„(z)]

+ [R,'(z)+ R,', (z)+R„'(z)](-iX,)-'[R,'(z)+R'(z)]

+ [R,'(z)+R,', (z)+R„'(z)](—iX ) '[Ri(z)+R'„(z)]

x (-iA. ) '[R,'(z)+R,', (z)]+ ' ' ' . (2.15)

This equality shows that Eq. (2.8) can be written
in terms of single-ring quantities. To this end we
introduce the coupling of the test particle's mo-
tion in the ring approximation [first term in Eq.
(2.8)] to the fluid transverse current correlations
as

( 1'll'
R,'(z) = 2n

i
—

) dq ~g»(q)~»(q, z)z+»(q),

(2.14a)

lim P„(t)- —,'(kz 7'/mn) [4m(Dz+ v z)t] 'i',
g~ ce

(2.18)

as predicted via other kinetic theories. "
The self-diffusion coefficient can be expressed

in terms of P„(z) as

Z g Z g
x (v'(0)) . (2.17)

To compute the full time dependence of the ve-
locity autocorrelation from Eq. (2.17) is a form-
idable task. First, one must calculate the ring
contributions R,'(z), R,', (z), and R'„(z). To do so
one must compute the various correlation func-
tions Cz (-q, t), Cz (-q, t), etc. , which appear in
Eqs. (2.14) and then perform the time and wave-
vector integrations numerically. Finally, the re-
sults for the ring contributions are tobe substituted
into Eq. (2.17) for („(z)and the Laplace transform nu-
nierically inverted to obtain the full time depen-
dence of t/r„(t). As a first test of our repeated-
ring kinetic theory description of self-diffusion,
we choose not to perform these lengthy procedures
required to compute P„(t) from (2.17), but instead
focus on two more readily accessible quantities:
the long time behavior of g„(t), and the self-dif-
fusion coefficient.

As is well known"'" the long time behavior of
g„(t) is dominated by the coupling of the test-par-
ticle's motion to the fluid transverse fluctuations
R,'(z). For long times R',(z) is determined by the
hydrodynamic (long-time) forms of the correla-
tion functions C, (q, t) and Cz (-q, t). These are
e~2Dzt and e~2PEt "respectively, where DE ls the
Enskog self-diffusion coefficient [cf. Eq. (2.21)]
and v~ is the Enskog kinematic viscosity. One
finds

Note that contributions from the fluid transverse
and longitudinal current correlations, R,'(z) and

R,', (z), appear in a symmetric manner whereas the
contributions from the density correlations in the
fluid, R„'(z), appear inanasymmetric manner. Add-

ing the Enskog and repeated-ring memory func-
tions and summing the resulting series yields

D= lim ig„(z).

Taking this limit in Eq. (2.17) yields

+ [R'„(i0')+R,', (i0')]/iXz
1 -R'„(io+)/iX,

where the Enskog diffusion coefficient is

(2.19)

(2.20)

&(z)+R(z)
= -i~, [1+R„'(z)/(-iX,)]

x (1+ [R,'(z)+ R,', (z)]/(-iXz)

+[R,'(z)+R,', (z)]2/(-i~, )2+ "}
= -iz, [1 -R„'(z)/iz, ](1+ [R,'(z)+R,', (z)]/iX,}-'.

(2.16)

Substituting Eq. (2.16) into Eq. (2.2) we find that
the test-particle velocity autocorrelation function
1s

D, =(v2,(0)),/~, . (2.21)

The expression (2.20) for the self-diffusion coef-
ficient is a central result of our analysis. The
numerator is a positive increasing function of den-
sity since the transverse mode coupling, which
dominates the longitudinal current coupling, is
inherently positive. It is this term that leads to
enhancement of the self-diffusion coefficient rela-
tive to D~ at moderate densities. The denominator
is also inherently positive since the coupling to
the fluid density fluctuations, 8„, is negative. As
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The overall agreement is encouraging. As was in-
ferred from Eq. (2.20), the dependence of D/D~
on density arises from the competition between the
coupling of the test particle's motion to the fluid
transverse modes which enhance D/D~, and the
coupling to the fluid density fluctuations (the cage
effect) which reduces D/D~. The quantitative
resolution of this competition, which relies on the
numerical work presented in this section, shows
that the inclusion of multiple recollisions and the
coupling of the test particle's motion to both the
shear and density fluctuations of the fluid are
crucial to the description of self-diffusion at
high density.

IV. DISCUSSION

We have presented ananalysis of the velocity-
autocorrelation function in a hard-sphere fluid in
which the effects of multiply correlated collisions
have been included. These multiple recollisions
are increasingly important as the fluid density in-
creases and, as shown herei, must be incorpor-
ated in a theory of self-motion in dense fluids.
To simplify the Enskog propagation between cor-
related collisions we used the quasihydrodynamic
approximation whereby the conserved variable
fluctuations are treated exactly and the noncon-
served variable fluctuations are expressed in
terms of a single relaxation time approximation.
Our central results are the expressions for the
velocity-autocorrelation function and self -diffusion
coefficient of Eqs. (2.17) and (2.20), respectively.
With the ust. of interpolation formulas to describe
the conserved variable correlation functions, the
self-diffusion coeffieient was computed as a func-
tion of fluid density. As presented in Fig. 2,
our calculation of the self-diffusion coefficient
exhibits thy essential behavior seen in the mo-
lecular dynamics simulation.

What can account for the lack of agreement
between the simulation and our numerical:results?
There are several approximations that may lead
to this lack of precise agreement: those employed
jn the derivation of the kinetic equation itself,
the quasihydrodynamic approximation, the model-
ing of the resultant correlation functions describ-
ing the intermediate propagation, and the choice
of the relaxation frequencies A,, and X.

The kinetic equation, Eq. (2.2), previously de-
rived"' and analyzed here for self-diffusion is an
approximation to a many-body problem. Where
rigorous results are available, our kinetic theory
will reproduce them, but once away from the
Boltzmann-Enskog regime or the asymptotic
time regime at low density, the only test of the
theory is comparison with experiment or simula-

tion. Unfortunately, this test of the kinetic theory
also relies on further approximations which must
be made to solve the kinetic equation.

To describe the intermediate propagation be-
tween correlated collisions, the quasihydrody-
namic approximation is used [cf. Eq. (2.8)J. In
this scheme the momentum dependence of the
Enskog phase-space correlation functions is ex-
panded in a momentum basis. The projections
onto conserved variables are then exactly account-
ed for while the remaining momentum dependence
is approximated via a single relaxation-time
term. Further improvements here may require the
use of abetter basis set involving the wave-vector-
dependent eigenfunctions of the Enskogpropagator.

The conserved variable correlation functions
appearing in Eq. (2.11) are approximated by the
interpolation formulas presented in Appendix B.
They will be accurate, by construction, at short
and long times. For the transition regime, it is
hoped that they provide an adequate description
of the conserved variable correlation functions.
More-accurate correlation functions could be
constructed through the use of kinetic modeling"
at the expense of a greater computational effort.
The choice of the single relaxation frequencies
X, and X in Eq. (2.11) is another approximation.
We have repeated our calculations using X = 5

rather than X = I/vz (cf. Appendix B) and found the
variation of D/D~ with respect to density remains
the same. The computed values are, however,
slightly reduced in the density range 2& V/V, & 5
relative to those using X = I/vx; the low- and
high-density results are insensitive to the choice
of X. By contrast, the single-ring quantities R,',
R'j, and R„' are somewhat dependent on the choice
of X and this leads to a single-ring theory for
D/D~ which reflects this dependence.

To summarize, a more extensive basis set
along with a more accurate evaluation of
the resulting expansion coefficients may well lead
to better agreement with the molecular-dynamics
simulation data. However, to go beyond the pro-
cedures adopted here, a much larger numerical
effort will be required.

In our theory the correlated collisions between
test and fluid particles are expressed in terms of
the Enskog binary collision operator and the inter-
mediate propagation between these correlated col-
lisions in terms of Enskog propagators. Thus,
what is required as input here are the properties
of the Enskog fluid. This is an exceedingly useful
result in that the Enskog fluid, where there are no
dynamical correlations, is much easier to des-
cribe theoretically than is the actual fluid.

Throughout this work we have stressed that to
treat a dense fluid properly, multiply correlated
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collisions must be incorporated in the theory. For
a large test particle, the intermediate propagation
between correlated collisions is dominated by the
coupling to the shear motion of the fluid. This
leads to a diffusion coefficient of the Stokes-
Einstein form. '&' In a monatomic fluid, the
coupling to the fluid density. fluctuations al.so
becomes crucial. The numerical results
(cf. Fig. 2) show that the effect of these density
fluctuations grows dramatically at high density.
This is in accord with the physical conception of
a molecular cage. Hence, we feel that the kinetic
theory expression of a molecular cage effect is
realized through a repeated-ring theory including
the coupling to the fluid density fluctuations.

In this and preceding papers we have considered
the large-test-particle limit and the monatomic
fluid. The treatment of the thermal fluctuations
of a test particle of arbitrary size and mass can
be carried out in the same spirit as presented here.
The contributions to D/'D~ arising from the den-
sity, shear, and other fluctuations will be modu-
lated by the mass- and size-dependent 8 factors
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APPENDIX A

In this Appendix we investigate the angular in-

tegrations over the matrix elements Tz, , (q+q')
which appears in Eq. (2.8). Following techniques
analogous to those employed to calculate the
matrix elements'4 B„~one finds that

T~, (q+, q )= '-(i/2m)(n're) 'K», (q+q'),

where

(Al)

as well as the different motional time scale of the
test-particle intermediate propagator. Thus, we
anticipate that the interesting-phenomena that have
been elucidated by molecular-dynamics simula-
tions"' on test particles of differing size and
mass can be interpreted within the general form-
alism that we have developed.

if I'= j.

(A2)

f d()H~())e "~'~" i(Z=(.

In Eq. (A2), y -=q(), y' =-q'o, and p is a, unit vec-
tor. Note also that we have not included the
coupling to the energy states J = 5 or I' = 5. From
Eq. (2.8), it is clear that in the first repeated-
ring contribution [that is, the second term in
Eq. (2.8)] we must. evaluate angular integrals of
the form

I.et us now turn our attention to K,444. Since
H,'(p) =p, =p ~ y/y, we can write

A

'K«(q+q') = ——,dp e (~"""
eg 8$

(A5)

where

dQ, = d, d, d8 sin8 ~ ~ ~ A4

where j, is the spherical Bessel function of order
zero. We can decouple the q and q' integrations by
employing an addition theorem for spherical
Bessel functions" to write

is an integration over the Euler angles. There are
twelve nonzero K«I, ~ factors and, due to the
rotational symmetry of the fluid, some of them
are interrelated. They are K„„=K„„=K„„

3333p K224$ 3344 p 4422 K4433 p f444 y K4$22 KQ $33 y

and K4 y44 e

In Appendix C of Ref. 1 we have demonstrated
that for the coupling to the transverse current
fluctuations

S

x Q y,"'"(8„4,)Y",~ (&...g,.),
OlS= S

(A7)

where j, is the spherical Bessel function of order
s and F, s the spherical harmonic of order s, rn, .
Consequently we can write
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QO

2n' 1r

(q+q')= (n'v ) '(4w)'p(-1)' ', ' —g d(,J d9, sin6, 1,(9, $)l', (8, ()
S~ ms=-s 0 0

21l' 1r

dg& d6& sin8, , Y', ~(6&, tt, ) &*(tI,, g, )

),(4,)sj,(y') aj, (y) 4v
27t Qp Q3)

(AS)

Note that the infinite sum over spherical Bessel
functions of increasing order, when the angular
wave-vector integrations are performed, collapses
to just the s =1 term as it did for the transverse
current contribution. Using the definition of 8,4(q)
given in Table I and the definition of X~ given in
Eq. (2.2), one can write

~4ggg(4+4') = (3 v) 844(q)( t~z) 84'(q') (A9)

In an analogous fashion, one can show that for
the general term one has

~r Jl r (4+4') = Fv)'~„(q)(-t~~) '~1 g (q') (Alo)

Note that there is an inherent asymmetry in this
term. The summation indices K and K' can take

. on the values 2, 3, and 4, while the summation
indices J and I' can take on the values 1, 2, 3,
'and 4. However, when I' = 1, ~~~, , ~, = 0, which
is not generally the case for J=1. This asym-
metry is reflected in the coupling to the fluid, den-
sity fluctuations.

Following the procedures outlined above, one
can show that performing the angular integrations
in a term containing (n —1) T matrix elements
leads to the result, s

&&(-tx,)-'8, , (q,) "8, , (-z~ ) 'e, , (q„),

(A11)

Note that once again there is an asymmetry with
respect to the index J, and the indices I„ I3 I„.
If any of the indices I„ I„.. . , I„are set equal
to one, then the whole term vanishes; however,
this is not the case for J,=1. The asymmetry
in the coupling to the fluid density fluctuatio'ns is
manifest in each of the repeated-ring contributions
in Eg. (2.8).

the risk of some redundancy, we present the ex-
pressions that we have used in our numerical de-
termination of the hard-sphere diffusion coeffic-
ient.

The free-particle correlation functions are

C, (q, t) =C (—q, t) =C (—q, t)
11

- (» &)2t'2

APPENDIX B

The &»(q, z) defined in Eq. (2.11) describe the
intermediate propagation of the test particle and
bath particles between correlated collisions. Ap-
proximations for some of the &z~(q, t) have ap-
peared in Furtado et al. ' and some in Resibois,
but with several typographical errors and with
notational differences from our work. Thus, at

and

( q t ) =[] (yt g )2Je ~" ~~ »
o44

In Eqs. (81), the dimensionless wave vector is
X =90', the dimensionless mean free path is ~

=[4Wmo'g(o)J ', and the dimensionless time is
g =t/rs.

Exact expressions for the Enskog correlation
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functions C, (q, t) and Cz (-q, t }are not avail-
able. One can employ the techniques of kinetic
modeling" to evaluate these correlation functions
numerically over a wide range of wave vectors.
Instead, we follow Resibois' and Furtado et al. '
to approximate these correlation functions via
analytic interpolation formulas. In this scheme,
the basic ingredients used to represent a correlation
function C(q, t) are its short-time form C"(q, t),
and its generalized hydrodynamic (long-time) form
C" (q, t ). These forms are connected via the inter-
polation formula

C(q, t)=C" (q, t)e "' +C" (q, t)[l —e "' ].
(p2)

The parameter a in Eq. (82) has been set equal to
3 as it was in the work of Resibois and Furtado

It is hoped that by interpolating between the
correct short- and long-time behaviors, an ade-
quate approximation is made for the correlation
function.

The short-time behavior of the correlation func-
tions is determined by a sum-rule analysis. Fol-
lowing Furtado et al. these short-time forms of
the correlation functions of interest are

C," (q, t) =exp[- ~(yl &)'],
ll

Cs (- q, t ) =S (y) exP [—(y«)'/2S (y)],

and

C" (-q t ) =cos[c, (y)yl 7]exp[—(yl )'I' (y)w]
I

(a4)

» Eq. (&4), Ds =2 is the dimensionless self-dif-
fusion coefficient; S(y), c,(y), I's(y), Ks(y),
C& (y}, and &s(y) are the dimensionless y-depend-
ent static structure factor, adiabatic sound speed,
coefficient of sound attenuation, thermal conducti-
vity, specific heat at constant pressure, and kine-
matic viscosity, respectively; and r(y) =3Cp(y).
The S-dependent quantities introduced above are

X(y) = s c,' (y)+- 1+ f, l,
15 l

)
5 ~f

&l f,

s
(

Wsj, )' j, s (Wwf),

y'f' Ks(y) (2 1
ssoo( ' s (s &i(s) ) '

c', (y) =[1 —)rC(y)] r(y),

3 (1 +v & f„/6l )'
2 1-rrC(y)

15 ' 2 15l' j .

C (-q t ) =[1—(yl T)'X(y)]

Tf, 7'X y
&& exp —(yl )' ' +5)2

The y-dependent functions S(y), X(y), and fr (y)
are defined below. The generalizt:d hydrodynamic
forms of the correlation functions have also been
determined by Furtado et al. They are

(B5)

In Eq. (85), C(y) is the hard-sphere direct corre-
lation function. In our numerical analysi s we used
its Percus-Yevick form. ". The f; (y) functions are

3
f, (y) =—,(siny -y cosy),

30 10
f, (y) =—, (y cosy —siny}+—,,

C,' (q, t ) =exp[ (yl }2Drs7], -
11 f, (y) =—,(3 siny —3y cosy —y'siny),15

C" (-q, t ) =S(y) cos[c (y)yl T] f, (y) =3,——,[(y' —2) sirD +2y cosy],
10 10

(a6)

"exp[—(yl }'I' (y)&) f, (y) =—,(y —siny),
6

f, (y ) =, [ (4 y' —9)sirD + (9y -y') cosy]
15

(-q, ) =exp[- (yl )'vs(y)v], Note that these functions are all defined such that
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lim, ,f, (y) =1.
Equations (B2)-(B6)completely specify the

correlation functions ~,~, t-"&, C&, and C~22' 44
used in the numerical determination of the self-
diffusion coefficient for a hard-sphere fluid.

The only quantities that remain to be specified
are the nonconserved variable relaxation fre-
quencies ~, and ~ for the test-particle and fluid
fluctuations, respectively. In the spirit of the
quasihydrodynamic approximation, ~, and ~ are
to be set equal to the smallest nonconserved vari-
able single-particle and fluid relaxation frequen-
cies, respectively. For single-particle motion,
the appropriate relaxation frequency is the smal-
lest nonconserved variable matrix element of the
test-particle Enskog memory function"

=A@ —3v@ -D@ T~ .

In an analogous fashion we can relate ~ to the
smallest nonconserved variable matrix element

In analogy with Eq. (BV) one would expect that a
better approximation to ~ would be to relate it to
the fluid kinematic viscosity as

A. = P~'(y =0)rs' . (B9)

This is the value ~ used to obtain Figs. l and 2.
In this Appendix we have specified the forms of

the quantities appearing in Eq. (2.11) for &q~(Q, &).
Substituting these expressions into Eq. (2.11)we

find that the Laplace transform can be computed
analytically. The resultant expressions for &I&

are substituted into Eq.. (2.14), and the 0 integra-
tion performed numerically to determine Rj', Rj[,
and R„'. Substituting these results into Eq. (2.20)
we obtain D/Ds

of the fluid Enskog memory function. " One finds
that
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