
PH YSICAL REVIE% A VOLUME 18, NUMBER 3 SEPTEMBER 1978
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The pressure of a classical simple fluid, assumed to be represented by a Lennard-Jones 6-12 potential
function, is computed as a function of density at a temperature approximately midway between the triple-
and critical-point temperatures. The method employs a parametric integral equation to compute radial
distribution functions for a reference potential and these functions are then used in a first-order perturbation
equation to obtain the Helmholtz function for the system, and consequently the pressure. The Lennard-Jones
potential function is separated into the sum of two parts, a reference potential and a perturbing potential
which includes a parameter which varies. the "strength" of the perturbation. In this paper we are particularly
interested in how the final results depend upon the perturbation parameter: that is, upon how the potential
function is separated. We find that there is some dependence of the final answer upon how the potential is
separated, but that there is a range of the parameter for which the results are reasonably constant and show
good agreement with "exact" calculations.

I. INTRODUCTION

II. COMPUTATIONAL METHOD

We assume that we have a simple classical sys-
tem of particles interacting pairwise according to
the pair-potential function.

g(r) =4m[(a/r)" (o/r)'j

where Q is the pair potential, r is the separation
distance of the particles, and 0 and & are param-
eters adjusted to fit the type of fluid being des-
cribed. It is usual to work with the dimensionless
quantities

X =r/a, (2}

In this paper I present the results of a study of
integral equation and perturbation techniques' for
the calculation of the pressure of a simple classi-
cal liquid. More specifically, I separate the pair-
potential function into the sum of a reference part
and perturbing part, and study the effect of sep-
arating the potential in different ways. I examine
the Lennard- Jones potential because it approxi-
mately represents real fluids and because many
theoretical methods have been applied to it and
these provide a basis for evaluating new results.

This integral equation has proven to be very
good for repulsive potentials and for potentials
with attractive wells at high temperatures, but
very poor in the liquid region. By combining the
integral equation with first-order perturbation
theory it now appears that the usefulness of the
integral equation can be extended over the com-
plete temperature and density range of the simple
classical fluj.d.

n~ =ng3

T+ =kT/e, (4)

Similar to Chandler and Weeks' we separate the
potential into a reference part (Q„) and a perturbing
part (Q~} in the following way:

4'= 4.+4~,
Py„=(4/r*)(X "-X ')+{a/T*), X&2'~',

Pg, =(1 —o,)(4/T*)(X ' —X ) X)2'~

py, = (n/T*} -X& 2' '

Py (4g/g g)(X 12 X 8) X &~ 21~6

(6)

(7)

(9)

(1o)

where a is a parameter which can be varied to
change the "strength" of the perturbation. Note
that when + =G, there is no perturbation and the
reference potential becomes just the Lennard-
Jones potential.

We use the parametric integral equation'

g(r) =1 + c(r) +n Jt [g(s) —1]c( ~
s —r

~ ) ds,

c =g-1 —a ' in[agexp(PQ)-a+1], (12)

to calculate the radial distribution function g cor-
responding to the reference potential. In the above
equations r and s are position vectors, & is called
the direct correlation function, and + is a param-
eter. Previous calculations' have shown that the

where n is the number of particles (N) divided by
the volume (V}, k is Boltzmann's constant, and T
is the absolute temperature. The potential function
now becomes

Pe = e/» =(4/&*}(X"-X-').
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FIG. 1. The Mayer f functions tf =exp(- pp) -1] are
plotted for the reference potential at T ~ =1.0, e =0;8
(Tz =5.0), and for the Lennard-Jones potential at T *
= 5.0.

FIG. 3. The pressure (P*), for the Lennard-Jones
Quid at T *=1.0, is plotted as a function of n *. The
lines border the values obtained with integral equation-
peiturbation theory for values of II+* ranging from 2.74
to 20.0 ~ The points are the molecular s imulation results
obtained by Verlet and Levesque and by McDonald and
Singer.

integral equation works well when applied to purely
repulsive potentials and to potentials with wells at
high temperatures. In the case of the Lennard-
Jones potential the integral equation works quite
well for temperatures above & * = 2.0, but for tem-
p~eratures around the critical temperature (T*
=1.35) and below, the approximate integral equa-
tion gives poor results at high densities. By sep-
arating the potential as previously discussed, for
proper choices of n the reference potential has a
sh al 1ow we ll and one would expe ct the integral
equation to be accurate. Note that small values of

deepen the reference potential well and make the
integral equation less reliable. If we let

n =1 —(T+/T„+),

then pQ„(T*) has the same minimum value as
P}t}(&~*)and furthermore, . the two Mayer f func-
tions are similar in shape (see Fig. 1). This result
is useful in determining the parameter &, for we

then select + to fit the Lennard- Jones result for
as determined by previous calculations .'

Once the radial distribution function for Q„has
been obtained, the corresponding pressure &„can
be computed from the equation'

I'„V 2m' t

"
dQ„

ver -' --3ynr J'
0

$6 egg
I./8

T* J g(X ' —2X ")dX

A
F~ = Jl g(r)&p~ (r)4n r' dr,

(14)

First-order perturbation theory' gives for the
Helmholtz function (+)

p%

i O.a-

5.0—

20
)0

.74

or for th is particular problem

4gpZ g~ 2
u'6

Ep * ——
~~~

--
~ gX2dX

0

16M*n
+ Jt g(X "-X ')dX.

3 * /

0.0-
0.2

t

O.a
I

0.6
I

n+

The pressure for the Lennard- Jones system is then
given by

(18)

FIG . 2. The pressure (P„*)for the reference system
is plotted as a function of density g ~) for T*=1.0. The
numbers labeling the curves are values of T~~.

To summarize the computation process: (i) The
desired density {n*), temperature (1'*), and separ
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TABLE I. The pressure (P*j for a Lennard- Jones fluid for a temperature (T*) of 1.0. The
first five columns of pressure are the results obtained in this work by changing the value of
TP. For comparison the final column lists the molecular simulation results of Verlet and
Levesque and of McDonald and Singer.

T$ = 2.74
g = 0.12

TP = 3.0
g =0.15

TP= 5.0
g = 0.248

Tg = 10.0
g = 0.28

TP = 20,0
a =0.32

Molecular
simulation

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

0.78
0.58
0.38
0.19
0.00

-0.17
-0.32
-0.45
-0.55
-0.60
-0.58
-0.49
-0.29

0.04
0.53
1.20
2.10
3.29

0.79
0.58
0.38
0.19
0.00

-0.17
-0.33
-0.46
-0.56
-0.61
-0.60
-0.50
-0.30

0.03
0.52
1.21
2.13
3.33

0;80
0.60
0.40
0.19
0.00

-0.19
-0.36
-0.51
-0.62
-0.68
-0.66
-0.56
-0.35
-0.01

0 ~ 51
1.24
2.21
3.47

0.81
0.61
0.40
0.20

-0.01
-0.21
-0.39
-0.54
-0.66
-0.73
-0.72
-0.62
-0.41
—0.06

0.46
1.19
2 ~ 18
3.47

0.81
0.62
0.41
0.20

-0.01
-0.21
-0.40
-0.56
-0.68
-0.74
-0.73
-0.63
-0.42
-0.05

0.49
1.24
2.26
3.58

-0,25

0.58; 0.48

2.27; 2.23
~3.50

ation parameter (o.) were chosen. (ii) && was com-
puted from Eq. (13) and the parameter a was sel-
ected on the basis of previous calculations' for a
high-temperature Lennard- Jones gas. (iii) The
integral equation, Eqs. (11) and (12), was solved
for the g corresponding to Q„. (iv) The pressure
(PP) was obtained using Eq. (14). (v) The Helm-
holtz energy (&$) was obtained using Eq. (17).
(vi) The pressure (P*) was obtained using Eq. (18),

III. DISCUSSION OF RESULTS

We chose to work with the value of &*=1.0 since
this puts us into the liquid region and this particu-
lar isotherm has been extensively studied by other
theories. Figure 2 shows I'P as a function of n*
for different values of &~. Figure 3 shows the en-
velope of curves of P* as a function of n* along
with "exact" results. Table I lists I'* as a function
of n* for different values of &0 and for comparison
the molecular simulation results' of deerlet and
Levesque and of McDonald and Singer.

If the integra1. 'equation were exact and if we did

not limit our calculations to only the first term in
the perturbation series, then the final pressures
should not depend upon &+. From Fig. 3 and Table
I we see that there are differences. A small value
of && decreases the reliability of the integral equa-
tion and a large value increases the "strength" of
the perturbation and presumably the contribution of
higher-order perturbation terms. If we are in-
terested in the liquid region, we are interested in

densities greater than n* =0.V and we see that for
&z equal to or greater than 5, the differences in
pressure are quite small and further are in good
agreement with the "exact" results. These results
suggest that the thermodynamic equations of state
of a Lennard-Jones liquid can be calculated with
reasonable accuracy using this technique with a
value of ~H = 5.0 and a = 0.248.
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