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In a Hamiltonian system of three degrees of freedom we have found a large stochastic region (the. "big
sea"), some other stochastic regions, apparently separated from the above ("sma11 seas"), and some ordered

regions. In the ordered regions the maximal Lyapunov characteristic number vanishes, while it has finite

values in the stochastic regions. However, these values are different in the big sea and the small seas. Three
formal integrals were constructed and they were truncated at orders 2,3,...,11. The numerical values of the
truncated integrals along several orbits were calculated. The variations of all three integrals decrease with

order in the ordered region, while they remain large in the big sea. In a small sea two integrals have large
relative variations, while one integral seems to be we'll conserved. This indicates that in the ordered region

there are two integrals, in the big sea none, and in the smal1 seas one integral beyond the energy.

I. WTRODUCTION

The results of some numerical computations
performed by Froesehle and by Froeschle and
Scheidecker' led those authors to put forward the
conjecture that in an autonomous Hamiltonian
system with N degrees of freedom the number of
isolating integrals apart from energy is either
N -1 or zero. We performed some numerical
computations on a particular model with N=3
degrees of freedom and found results which in-
dicate that intermediate situations may appear
in some cases.

Our model is described by the Hamiltonian
3

H = g —'
(q,'+p,')+q',q, +q',q, ,

where

co, =1, ~2=1.4142, ~~= 1.7321.

The escape energy E, , i.e. , the maximum
value of the energy for which the energy surface
has a compact component, is E„,=0.097.

Our calculations were made on the energy sur-
face E= 0.09. We found a large stochastic region,
which we call the "big sea." We found also other
stochastic regions, which apparently are separated
from the big sea and which we eall "small seas."
Finally, we also found some ordered regions.

The criterion discriminating between the stochas-
tic and ordered regions is based on the maximal
Lyapunov characteristic number, ' A, whose
value is computed as described in Sec. II. If in a
region X is a positive constant, we say that this
region is stochastic, while if X „vanishes we say
that this region is ordered.

The formal integrals behave as constants in the

ordered region. Namely, if we truncate the series
representing these integrals at a certain order
we find some variation of the values of the trun-
cated integrals along each orbit; if we truncate
the integrals at a higher order the variation is
smaller. By taking a sufficient number of terms
one can make the variation of the (truncated) in-
tegral very small. '

On the other hand, in the large stochastic re-
gion we find large variations of the truncated
integrals, and the situation is not improved by
including higher-order terms. So the present
calculations indicate that there is no integral of
motion besides the energy in the big sea: the
three formal integrals, calculated by the method
described in Sec. III, are not at all constant.

However, in a small sea it has been found that
one integral besides the energy is reasonably
conserved, i.e., the variations of the integral
truncated at successive orders are small.

H. MAXIMAL LYAPUNOV CHARACTERISTIC NUMBER

Given a system of differential equations

x, =f (x„.. . )x„),i = l, . . . , n,

and the corresponding variational system

(3)

' (x„.. . ,x„)g,, i=1, . . . , n,
A= Z ~&A

any set of initial'data x„.. . ,x„',g, . . . , $'„gives

g'„.. . , $~). It has been proven' that, if the system
(3) is defined on a compact manifold and preserves
a measure, as in our case, for almost aQ
x'„.. . ,x„'and for all $0, . . . , („the limit
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III. CONSTRUCTION OF THE INTEGRALS

If we have a Hamiltonian

H =H'2'(q, P)+H"'(q, P)+

where

(6)

exists, where II/(t)ll denotes the norm of
.],(f), . . . , („(f).The quantities x are called Lyapu-
nov characteristic numbers. Given x'„.. . , x„', A.

takes at most n different values, and the maximum
of them is denoted by A. ~'„.. . , x„).One can
show' that, if one chooses ('„.. . , )o at random,
with probability one, one obtains X . Moreover,
being an integral of motion, X does not depend
on the initial point x». . . ,x„onan ergodic corn-
ponent.

For the technical computation of A. , we in-
tegrated directly the system of equations (3) and
(4) as given above. This method constitutes a
technical improvement with respect to the one
considered in Ref. 2, where $, (t) was evaluated
as x,'(t) -x, (t), the difference between solutions
of the system (3) corresponding to two sets of
nearby initial data. We found that the present more
direct method allows us to use integration steps
much larger than the previous method. Moreover,
it eliminates the technical problem of choosing
a suitable initial distance between the nearby orbits.

integrals in the neighborhood of each resonance.
In order to check this program we made the

following comparisons with the results of some
earlier calculations in systems of two degrees of
freedom: (a) we compared the integrals given by
this program with those found by a different
method in some resonant cases'; (b) we compared
the integral and the normal form in the case (L)y

= +, with those found by still another method by
Gustavson'; (c) we compared the terms of fourth
degree of the normal form with the analytic ex-
pression of Contopoulos and Hadjidemetriou';
and (d) we used the integral to derive the periodic
orbits in some near-resonance cases studied by
Contopoulos. '

In all cases we found complete agreement. In
particular, in the last case we found much better
agreement with the empirical periodic orbits by
using higher-order terms of the integral.

The time needed to calculate the integrals and the
normal form up to the terms of seventh order,
in a system of two degrees of freedom, is 0.3
sec with the 7600 CDC computer of CERN. The
analogous calculation with the program of
Contopoulos' in the same computer needs 6.3 sec
execution time. Thus the improvement is obvious.

The time needed to reach the eighteenth order is
about 65 and 87 sec for the nonresonant and the reso-
nant cases, respectively. In the case of three
degrees of freedom the time needed to reach the
eleventh degree terms is about 40 sec.

and

H(2)(q P) —Q $ (q2+p2)
i=1

then we can construct n —r+ 1 formal independent
integrals of motion if there are r independent re-
sonance relations of the form

mx, + ~ ~ ~ +m„+„=0
where m, are integers not all vanishing; if x= 0
we can construct n formal integrals of the form

—y(2) + p(3) ~. . .
where

IV. THE "BIGSEA" AND THE "SMALL SEAS"

The initial conditions were defined by assigning
initial values to the harmonic energies with
vanishing values, for the coordinates q„q„q3,
i.e., q, = q, = q, = 0;p, = (2E;) '~'/(u; (i = 1, 2, 3),
with given values for E„E„E,. Nine typical initial
conditions are given in Table I.

All the orbits were computed by a central-

TABLE I. The various orbits (1, . . . , 9} considered in
this paper. E&, E2, E3 are the values of the initial har-
monic energies (with vanishing coordinates q, , q, , q,}.
The value of &max is also given.

Orbit

(10)

are the harmonic energies.
The computer program that calculates these

integrals is described in Ref. 5; it is based on a
new algorithm' that gives at the same time the
normal form of the Hamiltonian, and does not
involve any inversion like the Birkhoff method.
The program is also applicable in "near resonance"
cases, and gives the appropriate forms of the

1
2
3
4
5
6
7
8
9

0.0005
0.005
0.0085
0.009
0.025
0.020
0.09
0.01
0.03

0.0895
0.085
0.0815
0.081
0.065
0.070
0
0.01
0.03

0
0
0
0
0
0
0
0.07
0.03

0
0
2xlp 3

5x]0 3

3x]p 2

3x1Q 2

3x]0 2

3x1p 2

3 x10-2
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FIG. 1. Curves for y(t) = (1/t)ln[( t'(t)i( as a function of
t in log-log scale for orbits 1-5 of Table I. By defini-
tion, Xm~ = lim&. „x(t).

point third-order method with a time step 0.05.
Orbits 1-5 were computed up to time t =2x10',
and 6-9 up to t= 5x10'.

The results for X(t) = (I/t)ln(~$(t)(( as a function
of t in log-log scale are reported in Fig. 1 for
cases 1-5 and in Fig. 2 for cases 5-9. As one
sees from Fig. 1 the orbits 1 and 2 give pre-
sumably vanishing values for X,„=lim, „X(t),
while orbits 3-5 give positive, rather well-
stabilized values of A. , These positive values
are clearly different. On the other hand, in Fig. 2
all orbits give positive limiting values for A

which we consider to be the same as for orbit 5,
namely, A. ,„=0.03.

We interpret this situation as indicating that we
are in presence of (a) an ordered region with

= 0 (orbits I, 2); (b) a large stochastic region
with A. =0.03 (the big sea; orbits 5-9); and
(c) stochastic regions probably disjoint from the
big sea (the small seas; orbits 3,. 4 with A. ,„

= 0.002 and 0.005, respectively).

FIG. 3. Check of the stability of the results for A,

= lim& y (t) with respect to changes in the integration
step. The initial conditions are those of orbit 4, and
the integration steps are from 0.005 to 0.1. For com-
parison's sake, the tail of the curve for orbit 5 is also
reported.

In such a way we confirm a phenomenon already
observed" for the case of five particles on a line
with nearest-neighbor Lennard- Jones interaction.

It is of interest to check the stability of the
results with respect to changes in the integration
step. To this end let us consider a particularly
critical case, i.e. , that of asmall sea, for example,
orbit 4. In Fig. 3 four curves for X(t) are re-
ported corresponding to four different steps and to
the same initial conditions as orbit 4; the steps
are 0.005, 0.025, 0.05 (orbit 4), O. l, and the cor-
responding orbits were computed up to times
10', 10', 2x10', 4x 10', respectively. The curve
corresponding to the big sea (orbit 5) is also
reported for comparison's sake. As one sees, up
to times 10' the agreement is quite good, namely,
all curves appear to tend roughly to a unique value.

A particular discussion is required for the orbit
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FIG. 2. The same as in Fig. 1 for orbits 5-9 of

Table I. Orbits 6-9 have been computed for a much
shorter time than orbit 5, but the tendency to a unique
limit is clear by comparison with Fig. 1.

FIG. 4. Projections of the points of phase space on
the plane (q2, p2) at times multiple of 5000 for orbit 4
with time step 0.1. Dots from 0 to 1.2 &&10~, stars frown

1.2 &&10~ to 1.7 ~10, triangles from 1.7 x10~ to 4 &&10~.
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with time step O. l. Up to time 1..2&10' the agree-
ment with the curve with time step 0.05 is quite

good, while a striking feature appears after that

time, namely, y(t) tends rather abruptly to the

va)ue of X for the big sea. In order to under-
stand this fact it is of interest to have a picture
of how the point moves with time in phase space.
To this end the easiest thing to do is to plot at
successive times the projections of such a point
on the planes (q „p,), (q„p,), and (q„p,). In Fig. 4

the projections at any time multiple of 5000 on the

plane (q„P,) are reported. From time 0 to time
1.2x10' they are marked by dots, from 1.2 x10'

1.7 x 10'by stars, and from 1.'g x )0'to 4 x 10'by
triangles. One sees that the harmonic energy of the
second mode —,~,(P22+q,') is Cell conserved up to
t = 1.2x 10', while after that time such a quantity is
no more conserved. This clearly means that the
point moves after time 1.2x10' in a region which

is quite different from the region where it moved
previously. As will be shown in Sec. V, the big
sea is just characterized by nonconservation of
the harmonic energy of the second mode. Analogous
situations of changes of behavior were observed
by us in the small sea in a few other cases; the
phenomenon always disappeared by increasing the
precision in the integration, i.e. , the higher-
precision calculations did not show a transition
of the motion from the small sea to the big sea.

These are the facts. For what concerns the
interpretation two possibilities are open: (i) the
small seas are not djsjoint from the'big sea,
but they communicate through small straits;
(ii) the small seas and the big sea are disjoint and
numerical errors cause the point to jump from a
small sea into the big sea when the point happens
to come sufficj. ently near the border.

V. BF+AVIOR OF THE FORMAL INTFGRALS

Now we pass to. discuss the formal integrals

P, (i = I, 2, 3) which were computed from order 2

to order 11.
Let us first show the behavior in the big sea and

in a small sea, . This is shown in Figs. 5 and 6

which refer to orbits 5 (big sea) and 4 (a small
sea), respectively. In these figures we give the
instantaneous values of the integrals Q„Q„P,as
functions of time for t multiple of 500 from 0
to 5000; the orders reported are 2 and 8 for the

big sea arid 2, 8, and 11 for the small sea. As
the scale has been chosen to be logarithmic for
the ordinates, small values for the integrals are
particularly emphasized in our figures. More-
over, at orders greater than 2, negative values of
the integrals are possible, which obviously could
not be represented.

The three formal integrals have a very similar
behavior in the big sea; they have large fluctua-
tions, and no improvement appears if we go from
the second-order, integrals to the eighth-order in-
tegrals. In the small sea Q, and Q, have a be-
havior similar to that of the big sea. However, a
different situation occurs for Q, . In fact Q, has
rather small fluctuations which decrease from
order 2 to order 8, and remain more or less of
the same orQer of magnitude at order 11. For
comparison'. s sake the fluctuations of the total
energy in the latter computation, due to inaccuracies
in the calculations, are from 8.9962x10 ' to
9.0001x10, j.e., not visible in our scale.

Thus it appears that, in some sense, in the
small sea we have one conserved integral besides
the energy, notwithstanding the stochasticity of
the system as proved by the positiveness of A. ,„.

This is indeed the main thesis of the present
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0 FIG. 5. Instantaneous

values of the integrals $~,
$2, and $3 geft to right)
truncated after the terms
of order 2(e) and 8(o), at
times multiple of 500 up to
time 5000, for orbit 5

(big sea).
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FIG. 6. Same as Fig. 5
for orbit 4 (small sea),
plus the integrals trun-
cated after the terms of
order 11(g).
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work. So now we want to illustrate it in a some-
what different way, by showing the density of the
probability distributions of the formal integrals
at various orders. More precisely, we consider
an interval (Q ",Q

'") in which the (truncated)

functions Q, can fluctuate, subdivide it into N

equal. subintervals, and count how many times a
given function P; (at a certain order) takes values
in any subinterval up to a fixed time; the per-
centage is then plotted in a histogram.
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FIG. 7. Densities of
probability distributions
of tgmj&, p2, ttt3 (left to right)
at orders 2, 4, 6, 7 (from
top) for orbit 4 (small sea).
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FIG. 8. Same as Fig. 7
for orbit 9 (big sea).
Notice the change of scale
for ordinates.
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The histograms corresponding to the small sea
(orbit 4) are reported in Fig. 7; here P "=-0.02,
&f&

'"=O.l, «=60, and 500 points were considered
at equal intervals of time up to t =5000. The
columns from left to right correspond to @»P»
Q,„respectively, while the various rows cor-
respond to orders 2, 4, 6, 7, from the top, res-
pectively. The rather good "convergence" of
the second integral p, with respect to Q, and Q,
is evident.

For comparison's sake we report the analogous
histograms for the big sea (orbit 9) in Fig. 8.

The only difference with respect to Fig. 7 is
in the scale of ordinates. As expected no indication
of convergence is given. However, it is of in-
terest to emphasize that these histograms confirm
that the system is not ergodic on the energy sur-
face considered. Indeed the three functions are
not equally distributed; thus, for example, the
average values at second order are 0.029; 0.039,
and 0.026, respectively, and in general the his-
tograms for Q, are particularly different from
what one would expect in an ergodic case, as
shown in Ref. 10.
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FIG. 9. Same as Fig. 7
for orbit 1 (ordered mo-
tion). The distributions
are given only for p& for
orders 2, 4, and 7 (from
left). Notice the change
of scale for ordinates and
abscis sas.
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FIG. 10. Mean square deviations of tt5 f $2 tfl3 as
functions of the order 2, ~ ~ ~, 11 for orbit 1 (ordered
motion). For comparison's sake, the mean-square
deviation of the total energy, due to computational
errors, in also given (straight line).

Finally, let us consider the case of an ordered
motion, i.e., a case when y(t) appears to go to
zero, so that one expects that the three integrals
are well conserved. For example, we take orbit
1. Figure 9 gives histograms analogous to those
of Figs. 7 and 8 for Q, at orders 2, 4, and 7 (from
left). Here the scales of the ordinates and of the
abscissas are changed; &P = 0.0, &P = 0.005.
The convergence is striking and the same happens

for Q, and Q„the histograms of which are not
reported here.

It is of interest to compare the fluctuations of
these formal integrals at various orders with the
fluctuation of the total energy 8 due to errors in
computation, which are about 7.4x 10 ' in the
case of orbit 1 up to time 10000. The comparison
for orbit 1 is shown in Fig. 10, where the mean-
square deviations of the integrals Q„P„Q„com-
puted over a time from 0 to 10000, as functions.
of the order 0=2, . . . , 11 are given. The mean-
square deviation of energy is also indicated by a
straight line. As one sees, the curves give an
excellent indication of convergence up to the
threshold afforded by the energy conservation.

VI. CONCLUSION

As a conclusion we may consider our numerical
computations as suggesting that the number of
well-conserved integrals is, apart from total
energy, 2 in the ordered region, 0 in the big sea,
and possibly 1 in the small seas. Actually, in the
case of the small seas, we can only say that the
region which defines them in phase space can be
rather- well described in terms of such formal
integrals. However, the problem of whether
these regions are really disjoint from the big
sea has to be considered as open.
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