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Current-fluctuation spectra of liquid rubidium
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The mode-coupling theory has been worked out to calculate the longitudinal and transverse current-
fluctuation spectra, the dynamical structure factor, and the dynamical as well as the static transport
coeAicients of liquid rubidium. The results are compared with experimental data. A detailed comparison of
the excitation spectra of liquid rubidium with those of liquid argon is presented.

I. INTRODUCTION and

The density-fluctuation spectrum of liquid rubid-
ium has recently been studied by inelastic neutron
scattering"' and by molecular-dynamics (MD) sim-
ulations. "' The most interesting feature predicted
by the MD calculations and observed in the neu-
tron scattering experiments is the persistence of
propagating density fluctuations up to wave num-
bers of 1.2 A '. The wavelength of these density
oscillations in rubidium is only slightly larger
than the average interparticle distance, whereas
experiments for liquid argon displayed propagating
density fluctuations only with wavelengths larger
than six times the interparticle spacing. ' There
have been a number of theoretical attempts to re-
produce the behavior of the Van Hove function of
liquid Rb (Refs. 5 and 6) and to explain the appear-
ance of short-wavelength density excitations"7 in
the past. ' In this paper, we report the results of
an application of the mode-coupling theory of sim-
ple classical liquids to liquid rubidium. This the-
ory, which has already been used to analyze the
dynamics of liquid argon, will be demonstrated to
represent an adequate framework to explain also
the liquid-rubidium dynamics as well as to obtain
satisfactory numerical results for the correlation
functions.

The input data for our numerical calculations,
number density n= 1.06 X 1022 cm ', particle mass
no=141.9X 10 "g, and temperature T=319'K, de-
fine the thermodynamic state which Hahman' sim-
ulated in his MD experiment. We also use the ef-
fective pair potential for the ionic motion derived
by Price et al. with the well depth &=402.7k& 'K
and the hard-core extension = 4.4 A. The theory
requires as further input the pair distribution-func-
tion g(r) which is for convenience taken from Rah-
man's work together with the structure factor
S(q) "

The normalized correlation function of trans-
verse current fluctuations is written

q'D (q, z) = -0'(q)l [ +zM (q, z) ],
q'DI, (q, z) = -th'(q)l[z +Mt(q, z)], (4)

with 4'(q) = Asz(q) —Qo(q). The second frequency
moments Q~ r(q) (Ref. 12) of the current excita-
tion spectra are determined by the second deriva-
tives of the potential and g(r)

The absorptive parts Mf r(q, ta) of the relaxation
kernels are given by the Fourier transform of the
correlation function of the fluctuating forces. This
spectrum Mt', r(q, u&) is approximated within the
mode-coupling theory' by the decay spectrum of
the mode into two others. There are two different
decay channels: one into a longitudinal and a
transverse mode and another into two longitudinal
modes. These contributions to Mz r(q, tc) have a
typical golden-rule form with the decay probability
given by a vertex and by the density of final states
allowed by energy and momentum conservation.
Longitudinal and transverse modes are coupled via
these decay processes. For details see Ref. 9.

In the zero wave number limit, D~ r(q, z) re-
duces to the dynamical transport coefficients
D~ r(z} whose absorptive parts D~» r(td) are the
fluctuation spectra of the stress tensor. Van
Hove's neutron scattering function is related to
y,"(q, ~) by

4t(q z} s fls( ) sD (2)

i

denotes the longitudinal counterpart. The charac-
teristic frequency Q,(q}= v,„q/[S(q) ]'t ' measures
the restoring force against static compressions of
wave number q. Its long wavelength behavior is
determined by the isothermal sound velocity c„„„
= v,„l[S(q-0)]'t' with v,'„=hnTlm. The generalized
transport coefficients D~ r(q, z) are represented in
terms of relaxation kernels M~ r(q, z),

)
—1

z+ q'Dr j(q, z) '
Q2 2

S(q &) &-t thq
y e(q td) (5)
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II ~ RESULTS

The peak structure of the relaxation kernels
Mg r(q, ur) shown for three representative wave
numbers in Fig. 1 is a consequence of the mode
decay kinematics: the contribution to M~ r(q, &o)

from the decay channel into one longitudinal and
one transverse mode is a slowly decreasing func-
tion of frequency. But the contribution from two
longitudinal modes increases with (d since the
phase space for these decay products increases,
and it exhibits a maximum around the Einstein
frequency A~. The relative importance of the two
decay channels contributing to M~ r(q, &u) also de-
pends on wave number q. While, for q& qp 1 5
A ', both contributions have comparable fre-
quency- maximum values, the longitudinal-
transverse channel becomes less important for q
&qp. However, for very small q and ~ the latter
contribution determines the values of the transport
coefficients according to Eqs. (74)-(76) of Ref. 9,
while the longitudinal contribution vanishes in this
limit.

The longitudinal relaxation spectrum Mg(q, v) is
larger than Mr'(q, ~), a fact which is related to the
different size of the longitudinal and transverse
decay vertices [c.f. Eqs. (48c) and (53) of Ref.
9]. The longitudinal (transverse) functions are
dominated by the longitudinal (transverse) part of
the tensor of second derivatives of the potential.

The longitudinal part of this tensor being, on the
average, larger than its transverse part explains
the difference.

The generalized transport coefficients D~ r(q, u&)

[Eqs. (3) and (4)] exhibit a two-peak structure.
There is a rather broad side peak roughly defined
by the average value of M (q, &u) and a narrow low-
frequency peak due to the dip of M"(q, u&) for &u —0.
This frequency behavior of Dg r(q, &u) again reflects
the basic mode-coupling dynamics which suppres-
ses the decay of low-frequency modes into two
longitudinal excita*'sns and enhances the decay at
intermediate frequencies (c.f. Fig. 1). The above-
described features of D'r', r(q, u&} are most clearly
seen for the case q= 0 shown in Fig. 2. The static
transport coefficients are obtained as

q = nmD$(0, 0) = 7.8 x 10 ' P,
1 z = nmDf (0, 0) = 17.6 x 10 ' P .

These numbers were calculated from Eqs. (74)-
(76) of Ref. 9 using cr = [Ar(q)/q], ,= 857 m sec ',
c~ = [Ar(q}/q], ,= 1602 m sec ', and c„„„=[Q,(q)/
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FIG. l. Helaxation spectra I"(q, ~~}«r the transverse
and longitudinal current fluctuations. The dashed curves
represent the free-gas contribution.
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FIG. 2. Dynamical-transport coefficients as functions
of frequency.
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q],~= 1137 m sec '. The velocities cr ~ were de-
termined according to Eqs. (16) and (41) of Ref. 9
using Rahman's pair-distribution function g(r).
Unfortunately, there are no molecular-dynamics
results available at present for the viscosities to
compare with.

Substitution of Eq. (3) into Ec(. (1) yields the typi-
cal response function for an oscillator with a re-
storing force measured by Az, (q) and with a damp-
ing function Mr(q, z},

'o 1.25
O
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( )
z+Mr(q, z)

z' —02r(q) + zMr(q, z) '
1.0 2.0 3.0 q(A ') 4.0

[(o' —A'r(q) + u)Mr(q, (o) ]'+ [(AM)(q, &u) ]'

(7)

FIG. 4. Frequency of shear modes (dashed curve) com-
pared to 0 z,(q) (fu11 curve). Within the shaded area, the
transverse current excitation spectrum drops to half
maximum value.

2.0-

6.0-

4.0-
q = 0.60A

2.0

i

6.Q - o
1q=0.90A

4.0-

'
1 q=0.30A

4.0-
q = 1.75A

q = 2.00A

q=2.50A

Note that Mr'(q, e} is for most frequencies of the
order of Qr(q} and thus resonances are not defined
by zeros in the real part of the denominator of Eq.
(6) but rather by the minimum of the denominator
of EZ. (7). The resonance height is determined by
the inverse minimal size of the denominaior. The
increase of the latter as a function of q explains
the decrease in peak height of the spectrum of
transverse current fluctuations shown in Fig. 3.
The monotonically increasing resonance width is
due to the peak structure of Mr'(q, v) becoming
broader: this behavior implies directly and via
the real part Mr'(q, &o) that the minimum of the de-
nominator in Eq. (7) becomes broader. This effect
causes the resonance of $$(q, ur) to vanish for large
q. For small wave numbers, where the damping
M~ is much larger than the restoring force Q~, the
current fluctuations exhibit hydrodynamic behav-
ior, i.e. , gg(q, &o) has a narrow central diffusion
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FIG. 3. Spectrum of transverse current fluctuations.

FIG. 5. Peak positions of the longitudinal-current-
fluctuation spectra (dashed curve) in comparison with
~1.(q) and 00(q). Within the shaded area the current
spectra drop to half maximum values. Circles denote
neutron scattering results (Ref. 2).
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peak produced by a well-defined minimum of the
denominator of Eq. (7) at zero frequency.

The dispersion law of the strongly damped shear
modes is plotted in Fig. 4 as a function of wave
number in comparison with Qr(q). Since the real
part of the relaxation kernel Mr(q, &a) displays
normal dispersion in the frequency range of inter-
est, the resonance of pg(q, ~) is pushed below

Qr(q). This is a level repulsion effect between the
ba.re transverse mode of frequency Qr(q) and the
spectrum of coupled density and transverse shear
excitations in Mr'(q, &o) which is peaked around A~.
The strong level repulsion —in the wave number
range between 0.5 and 2 A ' the actual oscilla-
tion frequency is only half as big as A~—can also
be interpreted with pictures used in the theory of
quantum liquids": The absorptive part Mr'(q, u&) is
due to excitations of pairs of modes and the real
part Mr(q, &o) describes the effect of the backflow
produced by pair excitations on the mode. The
backflow yields an increase of inertia and hence a
decrease of the resonance frequency. In this pic-
ture, the transition of the propagating shear mode
to an overdamped or diffusive one is caused by the
backflow drag becoming too strong compared with
the restoring force A~.

The structure of the longitudinal current-fluctua-
tion spectrum is quite different from the trans-
verse one. Mathematically, this is caused by
q'Dz, (q, z) entering Eq. (2) at a place where in the
transverse case [Eq. (6)] the kernel Mr(q, z) en-
ters
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The well-known physical reason for this more-
complicated structure of the longitudinal current-
correlation function is discussed in Ref. 9. Since
D~(q, v), in contrast to Mr'(q, &u), is peaked at zero
frequency, D~(q, &o} is for small frequencies nega-
tive, decreasing with ~. For large frequencies it
approaches zero. Hence, the first bracket in the
denominator of Eq. (8) has a zero above A, (q) re-
flecting the repulsion of the bare resonance A, (q)
to a higher frequency due to the low-frequency
resonance of Df(q, ur). Thus, the peak position of
the spectrum P~(q, ~) as shown in Fig. 6 is some-
what above A,(q) for small q. The repulsion effect
is still enhanced due to the factor v' in the num-
erator of, Eq. (8). As q is increased this ~' factor
is responsible for Pf (q, &o} continuing to show a
peak structure, even though the denominator in-
creases monotonically as a function of +. For
large q, the peak position in Pg(q, &u) is expected

1Q 20 1.0 2.0
u) (10 sec )

FIG. 6. Longitudinal-current-Quctuation spectra of
the present theory (full curves) compared with neutron-
scattering results of Copley and Rowe (Ref. 2) (dashed
curves). Dash-dotted curves represent our theoretic al
result with Rahman's S(q) (Ref. 4) replaced by $(q)
obtained from neutron scattering (Ref. 5).

at &2v,„q, while Qz, (q)-&Sv,„q and Q,(q) - u, „q
(ideal gas behavior). The resonance positions are
in satisfactory agreement with the neutron scatter-
ing data. '

Figure 6 shows the longitudinal-current-fluctua-
tion spectra in comparison with neutron scattering
results. ' For wave numbers between 1.25 and
2.5 A ' there is satisfactory agreement with ex-
periment. Since Hahman's structure factor differs
from the one obtained by neutron scattering, we
show also (dash-dotted lines in Fig. 6) the results
of our theory for Pz",(q, e) with Bahman's S(q) re-
placed by the experimental S(q).' In Fig. V, the
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FIG. 7. Dynamical structure factor S(q, ) of bquid
rubidium. The meaning of the different curves is the
same as in Fig. 6.
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FIG. 8. .Zero-frequency limit of the dynamical struc-
ture factor (full curve) in comparison with MD results
(dashed curve) and neutron scattering data (circles).

FIG. 10. Dynamical structure factor for small wave
numbers in comparison with neutron scattering results
(Ref. 1) (dashed curves).
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theoretical density-fluctuation spectrum is com-
pared with the experimental one for intermediate
wave numbers. The zero-frequency intensity of
density fluctuations is shown in Fig. 8. The agree-
ment between theory and experiment in Figs. 7 and
8 is satisfactory, but these plots are not a very
sensitive test for a theory.

Since the longitudinal-current-fluctuation spec-
tra exhibit very sharp resonances for q & 1 A ',
Van Hove's correlation function S(q, &o) shows well-
defined resonance peaks representing propagating
density fluctuations. The dispersion law for these
modes and their relative contribution to the total
spectrum S(q, ur) of density excitations are shown
in Fig. 9.

As shown in Fig. 10 in more detail, the present
theory yields excitation energies for the collective
density modes being somewhat below the experi-
mental data' with resonance widths sharper than
the experimental ones. We suspect the neglect of
coupling to energy fluctuations to be responsible
for this.

III. ARGON VERSUS RUBIDIUM

The mode-coupling theory brings out some typi-
cal differences between the excitation spectra of
liquid rubidium and liquid argon even though there
is some correspondence between their states.
After scaling energies with the Einstein frequency
(Qs"' = 0.74 x 10" sec ' Qz" = 0.61 x 10" sec ' and

wave vectors with the peak position q, of S(q) (q,"'
= 2 A ', q,"b =1.5 A ') the structure factor and the
characteristic frequencies Q~ r(q) are quite simi-
lar in both liquids. The most conspicuous differ-
ence in static behavior and also the most influen-
tial one upon the dynamics is the different com-
pressibility manifesting itself in smaller long
wavelength values of S(q} in rubidium. The much
larger stiffness of rubidium for q& &q, implies
Q,(q) to be considerably larger in rubidium than in

argon and, by the same token, 6'(q) =Q~z(q) Q', (q)
to be smaller by a factor of 2 to 3 compared to

1
argon in the wave number range up to ~q, . For
q =q„however, static restoring forces Q,(q) are
similar in both liquids. Consequently, rubidium
shows a steeper ascent of Q,(q) for q 6 2q, and a
more oscillatory behavior between q= 0 and q, .

The resonance &u~(q) of longitudinal current fluc-
tuations is located between Q~(q) and Q,(q), and,
thus, ~z, (q)/Qs of rubidium is not only larger and

steeper for q~ 2q„but exhibits also a more-pro-
nounced oscillation than in argon. These features
imply a smaller density of longitudinal states in

rubidium. Since the density of final states for de-
cay modes crucially enters in our theory for the
fluctuating-force spectrum N"(q, &o) [see Ref. 9,

Eqs. i45)-(51}], one expects this basic quantity of
the theory to be smaller in rubidium than in argon.
Our numerical results for ¹~r(q, &o} in argon are
indeed almost twice as big as in rubidium for q
& pq, . The enhancement of the relaxation mechan-
ism ¹~(q,&u) in argon explains why the transverse
low-frequency transport coefficient

and hence the shear viscosity of argon is smaller
than that of rubidium.

For the longitudinal low-frequency transport co-
eff ic ient

D~((o) = (c~ —c'„„„)'/[N~(q, (o)/q'], ~,
both numerator and denominator are larger in ar-
gon than in rubidium. However, the much strong-
er effect of

overcompensates the difference between the spec-
tra ¹g(q,e) of rubidium and argon. And so the

longitudinal low-frequency transport coefficient,
i.e. , the sound damping is larger in argon.
¹'(q,&o) shows a peak essentially due to the peak

in the longitudinal density of states. The energy
&oz(~q, ) of the longitudinal modes with zero group
velocity being larger in rubidium than in argon
(1.2 Qs vs 0.8 Qz) implies (i) that the former peak
is shifted to higher energies in rubidium and (ii}
that ¹'(q,&u) extends to higher frequencies in ru-
bidium than in argon.

The transverse relaxation spectra at their max-
ima Mr/Qs =N$/(QrQz) are more or less of equal
height in both liquids because the difference in
magnitude of Nr'(q, &o) is roughly compensated by
the different size of Q~. Their shape however dif-
fers deci.sively: not only is the peak position of
M$(q, ur) in rubidium shifted to slightly a higher
frequency but, more important, its half width is
well above the width 20~ of the argon spectrum as
mentioned before. So the two-mode spectrum
M$(q, &o) of argon shows better-defined excitation
peaks than that of rubidium. Together with the
deeper minimum of Mr(q, &u) implied by the steeper
decrease of the peak in Mr'(q, e), this leads in the
spectrum Dri'(q, &o) of argon to a stronger hybridiza-
tion on the high-frequency side (a&& Qs) with the
two mode levels peaked at v =Q~. Thus, the high- .

frequency shoulder in Dr(q, ur) is more pronounced
in argon than in rubidium. The larger high-fre-
quency damping DIr'(q, x) in argon finally leads to
resonances in Pr(q, &o) which are on the high-fre-
quency side broader in argon than in rubidium.

With regard to the high-frequency shoulder in
the longitudinal dynamical-transport coeff ic ient
Dg (q, &o), one finds the opposite situation to the
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transverse case discussed above: Dz(q, ~) exhibits
a better-defined high-frequency shoulder (or peak)
in rubidium. The ultimate reason for this is the
much-smaller rubidium value of 4' which domi-
nates in

Mz(q, u))IQs=¹~(q, u))l(6'Qs)

so much that it overcompensates considerably the
smaller rubidium ¹z,'(q, u&}. The much-larger two-
mode spectrum Mz(q, e) in rubidium —although being
broader than in argon —entails a lower minimum of

Mz(q, &u) at the high-frequency falloff inMz(q, ~).
Both effects lead, as explained above, to a stronger
high-frequency hybridization with the two mode
levels of Mz(q, &o), i.e., the high-frequency
shoulder in Dz(q, e) around 2Qz is more pro-
nounced in rubidium. It would be interesting
to check the predictions of the present the-
ory concerning the different high-frequency-shoul-
der structures in the generalized dynamical-trans-
port coefficients Dzl r(q, &o) against MD experi-
ments.

As explained above, Mz(q, &o)/Qz is considerably
larger in rubidium than in argon. This together
with &'(q) being smaller in rubidium implies that
Dzl'(q, &u) is smaller in rubidium. And so, accord-
ing to Eq. (2}, the longitudinal resonance of rubid-
ium is close to Q,(q) for q & q„ i.e. , the situation
corresponds to the fast-relaxation or motional-

narrowing regime [Mz(q, ~) large]. With increas-
ing q, the resonance width increases, and there is
a monotonic transition to ihe slow-relaxation re-
gime: for q exceeding q„Mz(q, ~) becomes small
enough in rubidium that the longitudinal resonance
in Fig. 5 shifts close to Qz(q).

Argon, on the other hand, displays the slow re-
laxation [ez, (q) approching Qz(q)] not only for
large q& q, but also for wave numbers around 2q, .
For q ~ 4qp and for q-q„however, the longitudinal
resonance frequency &oz(q) of argon is clo'ser to
Q,(q). Thus, the mode damping is nonmonotonic
as a function of q. A further consequence of these
differences is that the relative lifetime of longi-
tudinal modes, i.e. , the resonance frequency di-
vided by the resonance width, is larger in rubidi-
um than in argon. As a result, the rubidium reso-
nances show up in S(q, u&) for q as large as 1.2 A '.

In summary, one can say that the smaller com-
pressibility of rubidium causes the dynamical
behavior of liquid rubidium to be more solidlike
than that of liquid argon.
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