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Fine structure of the field autocorrelation function of a laser in the threshold region

A. Giittner, H. Welling, K. H. Gericke, and W. Seifert

(Received 1 December 1977)

Autocorrelations due to natural phase and amplitude fluctuations of the laser field were investigated in the
threshold region of a 633-nm He-Ne single-mode laser by use of an' interferometric autodyne method. The
measured time-dependent autocorrelation function shows deviations from gn exponential decay that can be
described by a formal fine structure predicted by the theoretical Van der Pol laser model. As a consequence,
the natural laser spectrum is not exactly Lorentz shaped. The natural linewidth shows the expected general
reciprocal power dependence and an additional factor-of-2 narrowing above threshold, in full agreement with

the theory.

I. INTRODUCTION

According to theoretical treatments, ' ' a single-
mode laser near threshold behaves like a rotating-
wave Van der Pol oscillator, driven by Markovian
random forces, which represent the inherent quan-
tum fluctuations. Because of the cubic term in the
Langevin equation for the complex amplitude of the
electromagnetic fieM, the field correlation func-
tions of any order in the Qlauber representation do
not show a simple exponential decay. Rather, they
are expressed by sums of weighted exponential
terms. The individual relaxation rates and weight
factors are in general complex; they are real in
the special cases of pure intensity correlations
and vanishing detuning. '

The parameters have been computed in proper
normalization for the autocorrelation functions of
the complex-field amplitude and the intensity fluc-
tuations, also termed first-order field correlation
function and second-order intensity correlation
function, by Risken et al. ' and Hempstead and
Lax.' A comparison of these theoretical results
with corresponding experimental findings is well
suited to verify thy validity of the Van der Pol
laser model since the numerical values of the pa-
rameters reflect the special form of the important
nonlinear term in the Langevin equation.

Measurements of the intensity correlation func-
tion slightly above threshold by Chopra and Mandel'
show the predicted nonexponential behavior. Chop-
ra and Dudeja' present weight factors and relaxa-
tion rates of the two strongest exponential terms
computed from these data for twice the threshold
power. Corti et aE. used a refined technique,
utilizing distortions in an "imperfect" digital cor-
relator, to enhance the influence of the weaker
terms. They measured up to four relaxation rates
for different operating points in the threshold re-
gion. Owing to the distortions, they did not obtain
the weight parameters.

These measurements of second-order intensity
correlations as well as measurements of third-
order intensity correlationsby Chopra and Mandel"
and Corti and Degiorgio~ are in good accord with
the.Van der Pol model of the laser. A further ex-
cellent and by far more comprehensive corrobora-
tion results from measurements of the photocount
distribution for intermediate times and some of
its factorial moments by Meltzer et al. ' and Jake-
man et al." These quantities involve intensity
correlations of all orders. '

The above-mentioned experiments as well as
almost all additional experiments in the threshold
region are confined to the anlysis of intensity
fluctuations. Therefore, they have not yielded in-
formation about phase fluctuations and their cou-
pling with amplitude fluctuations owing to nonlinear
mechanisms. To our knowledge, the only excep-
tion to date has been Fourier spectroscopic mea-
surements of the natural linewidth by Gerhardt
et al." Because of the limited resolution of these
measurements, no attempt was made to show the
predicted small deviations from the exponential
decay of the autocorrelation function. An approxi-
mation by a single exponential for short delay

- times should, however, cause distortions of the
linewidth values as has been pointed out by Seybold
and Risken. ' The agreement of the measured with
the theoretical results above threshold therefore
indicates a certain discrepancy between experi-
ment and theory. '

To clarify this point and to enhance our under-
standing of the statistical properties of laser light,
we have performed highly accurate measurements
of the field autocorrelation function throughout the
threshold region, which became possible by de-
cisive methodic and appar@tive improvements.
The experimental results are fully compatible with
the Van der Pol laser model. Before describing
the measurements and their results in detail, we
shall give a short survey of the theoretical behav-
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ior of some autocorrelation-function parameters
and of experimental problems and solutions.

u=uMB, t =t/C

with

B =v'q/P, C =~qP.

(4)

The saturation parameter P and the diffusion pa-
rameter q are laser constants that appear in the
unnormalized Langevin equation. ' ' In the follow-
ing we are mainly concerned with normalized
quantitiqs because these are easier to obtain and
also show the relevant properties. The scaling
factors may be deduced from experimental data.

The calculation of correlation functions of the
field is strongly complicated by the nonlinear term
in Eq. (1). It is possible by use of a Fokker-Planck
equation technique based on the numerical solution
of an associated eigenvalue problem. ' " From
the computed stationary joint distribution function

H. THEORETICAL RESULTS

The purpose of this chapter is the presentation'
of quantities needed for later considerations; a
complete review of theoretical methods and results
is not intended. ,

Under the usual assumptions, ' the statistical
properties of the laser field near threshold are
fully described by the followi:ng classical Langevin
equation of the Van der Pol type (in a, rotating
frame)'

A(t) [a -u*(t)u(t)]u(t) =F(t) .
It is derived for the undetuned case, which shall
be assumed throughout this paper. In Eq. (1)

u(t) = [r+p(t}]e'~"'
is the slowly varying complex amplitude of the ra-
pidly. oscillating electric field

E(t) =u(t)e "o'+u*(t)e'"0'.

Both the amplitude Q(t) =r+ p(t) (with r = (8(t))) and
the phase Q(t) fluctuate under the influence of the
Markovian random force F(t). The pump parame-
ter a determines the operating point of the laser.
It is proportional to the inversion and therefore
related to the pump rate. The laser is at threshold
for a=0, below for a&0, and above for c&0. For
practical reasons, we shall characterize the oper-
ating point by the relative laser power p =P/Pt~„„„~,
which is rigorously connected with the pump pa-
rameter. '

All quantities in Eqs. (1)-(4) are normalized by
proper scaling for numerical purposes. The un-
normalized amplitude and time, marked by over
bars, are given by

W, (u, u', r) all correlation functions are available
by simple integration .

Our present interest concentrates on the field
autocor re%ation function

G(p, r) = ( *(t+ r)u(t)&

u*u' W, (u, u', r) d u d'u',

especially the normalized form

g(p, r) = G(p, r)/&(p, o),
which shows the multiexponential structure men-
tioned above"'

g{p,r)=g v (e)e' "" r 0-
All weight factors V and relaxation rates & are
real and positive. From the autocorrelation func-
tion the normalized spectral profile s (p, ur) is ob-
tained as usual by a Fourier transform. There-
fore, the spectrum shows an analogous fine struc-
ture. It is represented by a series of weighted Lo-
rentz lines with the common center frequency +p
and the linewidths &„(half width at half power):

((o —u), 't
s (p, &u) = I'„1+

p i & ~ )

The weight factors Y are related to V and X

y eff

m mp & m&

ff is the effe ctive linewidth of the non- Lorentzian
spectrum; it does not differ significantly from Xp

because V, and Y, are always greater than 0.97 or
0.997, respectively.

In Fig. 1 we have summarized some of the nu-
merical results concerning first-order correla, -
tions, in order to give an impression of the opera-
tion point dependence of the parameters and their
interrelations. The linewidth of the dominating
term Ao shows essentially the 1/p dependence
known from the Schawlow-Townes formula for the
natural linewidth. The deviation from a pure 1/P
slope is characterized by the varia, tion of the line-
width factor p in the threshold region. np and the
analogous quantity a,«, related to the effective
linewidth, are defined by

o.,= 2pz, /vm, o.„,= 2pz„,/Wv.

Unlike Ap, higher-order linewidth parameters are
possessing minima near threshold. For rising
index m, the values of A,„increase monotonously,
whereas the weight factors V and Y decrease in
general, Y by far faster than V . The contriQu-
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tions of the higher- order terms reach maxima
slightly above threshold, but they remain very
small also in this region. Their influence on cer-
tain quantities, e.g., the slope of the autocorrela-
tion function for 7.-0, may be considerable,
nevertheless, even far from threshold. '

HI. SELECTION AND DISCUSSION

OF THE EXPERIMENTAL METHOD

Following the theoretical results cited above,
the natural laser spectrum in general consists of
a high, narrow line and a weak background com-
posed of flat, broad lines. An experimental proof
of this fine structure is by no means a trivial
spectroscopic problem, for various reasons:

(i) The natural line is too narrow-one has to ex-
pect linewidth values in the range -102--104 Hz-to
be resolvable by standard spectroscopic methods.

(ii) Deviations from a pure Lorentzian can only
be detected if the laser line is measured precisely
at least three orders of magnitude below its maxi-
mum.

(iii) Fluctuations and disturbances not caused by
quantum noise, so-called technical noise, 22 result
in an additional Gaussian broadening of the laser
line, which may exceed the natural one by far.

(iv) The technical noise is in general nonstation-
ary, so that the technical linewidth is subject to
temporal variations.

Therefore, a careful selection of the method of
investigation is necessary.

Doubtless, the strong resolution requirements
can be best fulfilled by heterodyne methods be-
cause the high spectral resolving power is fur-
nished by electronic means. Siegman et al. de-
scribed in a, fundamental paper" three different
ways to analyze the beat signal, which have all
been successfully employed in the meantime to
investigate the natural linewidth of lasers above
threshold. The two methods used in most
cases are based exclusively on the analysis of
phase fluctuations, especially of the spectral power
density of the instantaneous laser frequency Q and
of the averaged quadratic phase jitter (&P'(r)).
Amplitude fluctuations are not interpreted correct-
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ly; therefore these methods fail near and below
threshold where the amplitude is not stabilized.

Not restricted, in principle, with respect to the
laser operating point, are methods which consider
the spectral power density or (not discussed in
Ref. 18} the autocorrelation function of the ac com-.
ponent of the detector signal, respectively. 2~

There are, however, practical reasons that. affect
the suitability of these methods for the present
problem. In addition to the beat signal, the detect-
or signal comprises contributions owing to intensi-
ty fluctuations (of both the signal and the reference
laser}, shot noise, dark current noise, and noise
in the electronic system. All these noise sources
give rise to additive terms, which have to be mea-
sured separately for the purpose of corrections.
Because the spectra of the interfering noise con-
tributions are broad in general, it may be very
difficult to resolve the natural fine structure,
especially by means of the spectral method.

Although the knowledge of the power spectrum is
equivale'nt to that of the autocorrelation function
from a theoretical point of view, Fourier spectro-
scopic methods offer some experimental advan-
tages in our case. As shown in Fig. 1, weight
factors are shifted in favor of weaker terms and
technical noise suppresion is made easier. The
vital information of the wings of the spectrum is
transformed mainly into the maximum of the auto-
correlation function and thus into the range best
accessible by experiments.

This feature of the autocorrelation function is of
special importance with respect to methods based
on the autodyne principle, because in this case the
resolution is limited by the attainable interferome-
ter path differences.

Fourier spectrometers measuring the normalized
field autocorrelation function" y(v) [in contrast to

g(~), y(r) includes the influence of the additional
technical fluctuations] are restricted to path dif-
ferences of several meters owing to the extreme
precision requirements. The attainable resolving
power does not suffice to analyze the small laser
lines, by far.

The requirements are strongly reduced, ' if in-
stead of the oscillating interferogram y(r) its
slowly varying envelope ~y(v)~ is measured, which
is closely related to the visibility. By use of mul-
tiply folded rays, path lengths of some kilometers
corresponding to delay times of some microsec-
onds are attainable under laboratory conditions.
The lack of information about the phase of the
autocorrelation function does not affect the recon-
struction of the spectrum in the case of syrnmetri-
cal spectra as considered throughout this paper.

Without any a priori information about the spec-
trum, the smallest resolvable linewidth &v of a

where I and I „are the maximum and minimum
averaged intensities, respectively, measured at
one observation point for two suitable values of the
interferometer phase. In the special case of equal
identities I, and I, of the interfering beams, the
modules ~y(v)

~

of the normalized field autocorre-
lation function is identical with V(v). In general,
the relation

I»+I2
l~(~}l =2(II ) x/2 V(~}

12

is valid. In the case of symmetrical lines con-
sidered here ~y(v)

~

coincides with y(7.) There-.
fore, the signs for the modules are omitted in the
following.

For optical fields showing nonstationary phase
fluctuations it is more reasonable from a simple
error analysis to use only one of the extreme val-
ues I and I „(which are fluctua. ting quantities in
this case) for computing y(7). The measurements
we made were based on the formulas

y(v) = (I, +I -I „)/2(I I )'~2 (14)

He-Ne laser computed for a maximum path differ-
ence M of 2000 m is 75 kHz, a value by far
greater than the linewidths to be measured. How-
ever, the effective resolution is enhanced consid-
erably by reasonable assumptions about the line-
shape, so that measurements in the kilohertz range
are possible. None of the methods considered
above are free from shortcomings of a principal or
practical nature. The analysis of the fine struc-
ture via the visibility is preferred for the following
reasons:

(a) Noise contributions (shot noise, amplifier
noise, intensity fluctuations) cause fluctuations
around the mean value, which can be made as
small as necessary by means of a sufficiently high
time constant.

(b) The resolution is the greater the closer the
normalized field autocorrelation function ap-
proaches the value 1 (see below). In a certain
sense it is fitted automatically to the actual accu-
racy requirements.

(c) Problems connected with the additional ref-
erence laser and the difference frequency stabiliz-
ation are avoided.

The autodyne method to be described is not new
in its basic concept ' and needs not be repeated
here. We shall therefore restrict ourselves to
some specific aspects connected with the present
measuring problem.

The visibility V(v) of an interference figure is
defined by

V(r) = (I I,)/(I +-I „),
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(15)

which are used under different experimental condi-
tions. Obviously, measurements according to Eq.
(15) instead of Eq. (12) are only of advantage, if
the essentially stable expressionII +I,/is . de-
termined directly, i.e., without measuring the
fluctuating individual terms. Details of the experi-
mental realization are given in Sec. IV.

The effective-field spectrum of the laser light
has to be considered as a, convolution of the natur-
al spectrum and the Gaussian spectrum owing to
technical disturbances of the laser and the inter-
ferometer. The observed autocorrelation function
y(P, r) is therefore the product of the Fourier
transforms of both spectra:

~(p, ~) =m(p, ~)@(p). (16)

r(y) = — 2+, ~', (I,)+8r)(I,)

g(P, v) and h(v) are the individual normalized auto-
correlation functions connected with the natural
and the technical fluctuations, respectively. The
additional factor c (0&e & 1) takes into account the
systematic error in the analysis of the interfer-
ence figure owing to a finite measurement area.
As can be shown, e does not depend on the visibili-
ty and hence on the operating point p and the delay
time v. Assuming a well-designed operating-point
stabilization system, the function h(v) is indepen-
dent of P as well. Consequently, the elimination of
the inconvenient factors e and Itt(7) in Eq. (16) is
simply achieved by a double measurement tech-
nique. The desired quantity is given by

g(p, ~) =g(p„, 7)[r(p, 7)/r(p„, ~)l,
where P„ is a.relative reference power different
from P. The problem is thus shifted to the deter-
mination of g(P„, 7) =g„. For P„»P, 1, the assump-
tion g„=1 is justified because of the 1/p dependence
of the natural linewidth; in general, however,
more exact values of g„are required. A reason-
able first step is the approximation of g„by the
theoretical value given by Eq. (8). If necessary,
improvements by interative means can be made.

In addition to technical disturbances, the light
intensities to be mea. sured are affected by shot
noise and natural intensity fluctuations resulting
in an upper limit of the obtainable resolutior,
which depends on the experimental situation.

Assuming I, =I2 = —,'I, the relative uncerta. inty
of the measured value p(p, 7) is given by

is the standard deviation of a quantity x. The sub-
scripts s and i indicate the contributions of shot
noise and natural intensity fluctuations, respec-
tively.

It is evident from Eq. (18b) that the signal-to-
noise ratio is the larger, the closer y approxi-
mates the value 1. This is importa, nt because the
decay of the autocorrelation function is not very
pronounced in our experiments owing to the small
delay times and linewidths.

It should be mentioned that this favorable behav-
ior is not characteristic for the visibility method
in general. Measurements according to the formu-
1a

result in a signal-to-noise ratio that is by a factor
)(20/[1 —y])'I' lower for y-1, i.e., by several
orders of magnitude. Equation (19) is very similar
to Eq. (14) and is obtained in an equivalent manner.

The values r, (I,) and r, (I,) in Eq. (18) are found
by considering the relative noise power in the fre-
quency range 0 (f ~ (4T) ' determined by the aver-
age time constant T:

hvZ"(' =~up[0. 5n(~)It""'I,„p] '

r'„(p)
area. „(p)

(2o)

(21)

TABLE I. Theoretical signal-to-noise ratio owing to
shot noise and natural intensity fluctuations for different
laser operating points and optical path lengths.

In Eq. (20) q is the quantum efficiency of the photo-
cathode and I' the shot-noise enhancement factor
of the photomultiplier. R""' allows for the intensi-
ty loss due to the multiple reflections in the delay
line [8 is the reflection coefficient and n(7') the
number of reflections] and k(7) allows for all
losses between laser and detector by other rea-
sons. The values of A,«(P), the normalized effec-
tive width of the spectrum of the natural intensity
fluctuations, and r'„(p) —= (p'(t))/r'in Eq. (21) can
be drawn from Ref. V. C is the scaling factor de-
fined in Eq. (5).

To give a realistic impression of the theoretical
resolution, we present in Table I the calculated
signal-to-noise:ratios for different operating points
and path differences under the conditions of our

(18a)

(18b)
('.g . ~)' 1/-2

~.(I,), 1 r«1. -
2 j

x(x) represents the expression rr(x)/x, where o(x)

80
500

2000

0.2

1 x104
2x 103
4x10~

3 x104
8 x103
3 x 10~

20

1 x 105 3 x 105
3 x1O4 1x1O'
1 x103 3 x 103
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experiments. The influence of the technical noise
and the finite measurement area is taken into ac-
count using Eq. (16), whereby the values of E and

h(7) were deduced from the experimental data.

IV. MEASURING EQUIPMENT

For the practical realization of the experimental
concept outlined in the preceding sections, two
aspects are essential. First the measuring equip-
ment has to be suited for measurements near the
theoretical resolution limit, a problem mainly
concerning the electro'nic system, and further,
the multiple external disturbances have to be elim-
inated or at least diminished by a highly stable
optical system, by effective shieldings and, last
not least, by use of a laser with anomalously
strong natural fluctuations reducing the disturbing
influence of the remaining technical noise.

Figure 2 shows a schematic diagram of the mea-
suring system. Essentially, it consists of the sig-
nal source, a 633-nm single-mode He-Ne laser,
and the field correlator being composed of a Mach-
Zehnder interferometer with an internal optical
delay line, a photomultiplier and the electronic
system.

The laser has been developed especially in re-
gard to our experiments. Compared with com-
mercial single-mode He-Ne lasers, it offers a
threshold at least the threefold natural linewidth

and approximately the twofold output power. Noise
problems concerning the visibility measurement,
the threshold determination and the operating-point
stabilization are effectively reduced. In Table II
we present some data and parameters of the laser
that may be of interest; it was, however, not the
aim of this work to determine their values with
maximum accuracy.

The control of the laser operating point is
achieved by shifting the cavity frequency within the
gain profile. The required detuning is always
small enough to be neglected. Other possible
methods are connected with more aggravating
problems as greater changes of the parameters P
and q and variations of the discharge noise, which
exclude the elimination procedure discussed in
Sec. III. The resonator detuning is accomplished
as usual by a piezoceramic translator (PC1) shift-
ing one of the resonator mirrors. A servo system
stabilizes the operating point during the measure-
ment.

The exact knowledge of the operating point fol-
lows from measurements of the spectral-power
density of the intensity fluctuations near zero fre-
tluency, S«(0). This quantity shows a clear oper-
ating-point dependence as can be seen in Fig. 3,
which also explains the identification of the thresh-
old.

With the available mirrors ~radius of curvature
2 m, reflection coefficient 99.4/p) the folded optical

TABLE II. Data and parameters of the He-Ne laser.

Discharge tube
Inner diameter
Active length
Gas pressure
He-Ne ratio
Isotope structure
Discharge current

Resonator
Mirror spacing
Radii of curvature
Transmissivity, output mirror
Roundtrip loss
Cavity linewidth

Laser parameters
Diffusion parameter
Saturation parameter
Number of noise photons

Threshold data
Output power
Photon number
Natural linewidth

Maximum output power
Single-mode operation
Multimode operation (2% transmissivity}

0.6 mm
104 mm
4.6 Torr
8.2:1
Natural mixtures
4.0 mA

153 mm
147 mm
(5.8 +0.8)%
(9 +1)%
(1.45 +0.2)10' Hz

(9+1)107 sec ~

(2.3+0.3) sec ~

2.0 + 0.5

(1.3 ~0.1)1O-' W
{7.o ~0.7)1o'
{7.5+0.2)103 Hz

50 pW
650 pW
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delay line inserted into the interferometer allows
light paths up to 2000 m. A Mach-Zehnder inter-
ferometer is used, because backscatter to the
laser, which may produce severe phase instabili-
ties, must be avoided by all means. The output
signal of the interferometer is measured by the
photomultiplier PM behind a pinhole. To enable a
quick controlled setting of the interferometer op-
erating point, the phase difference between the
partial beams can be shifted by means of a piezo-
electric translator (PC2). For light paths shorter
than 500 m, as long as the overall stability is suf-
ficient, the operating point is kept constant by an
intensity stabilization at an edge of the comple-
mentary interference figure.

The electronic system is designed to measure
the normalized field autocorrelation function with
high accuracy and signal-to-noise ratio, especially
in the range ys l. According to Eq. (15),
(I +I,g has to be measured directly. This is
achieved by modulating the interferometer phase

vrith a square function of the swing &w by means of
PC2. By choice of the correct interferometer op-
eration point, a. lock-in amplifier measures the
values (I +I,g, which is stabilized to 1 V by an
automatic-gain-control-cir cuit. A second lock-in
amplifier, using the same controlled ac preampli-
fier but a different reference signal, measures
always 2I „and hence 1-y(7). In connection with
the automatic control of the interferometer operat-
ing point, a continuous measurement of y(v) is
accompli. shed. For path differences above 500 m
the stability of the long light beam does not suffice
to use the method described above. In this case
the intensity of the two arms and I „are mea-
sured successively and y(v) is computed according
to Eq. (14).

V. MEASUREMENT RESULTS

Measurements of the normalized field auto cor-
relation function g(p, 7) were made for seven delay
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times corresponding to path differences in the
range between 8G and 2068 m and 14 laser operat-
ing points in the whole threshold region between

p = 0.2 and p = 20. A representative choice of the
experimental results is given in this section.

ln Fig. 4 the measured values of g(P, r) are
shown as a function of the normalized laser output
power P for three delay times 7 ~ The technical
influence has been eliminated according to E(l. (16),
the approximate values of g(p„, r) for p„= 100 were
obtained by extrapolating the theoretical results
derived for the region close to the threshold. Each
point in Fig. 4 is the mean value of five independent
values, the bars indicate its mean statistical er-
ror. The observed experimental scatter is clearly
caused by nonstationary technical disturbances,
i.e., by real changes of the visibility. Neverthe-
less, the statistical accuracy achieved is quite
pronounced. For example, for a path length of
190 m and p ) 6, the relative errors are less than

0.025'%%uo.

Figure 4 gives an immediate first qualitative in-
dication of the nonexponential decay of the field
autocorrelation function. For a pure exponential,
the values corresponding to different delay times
should emerge by parallel displacement in the
selected nonlinear representation, independent of
the special operating point dependence. This is
surely not true for P ) 1~ The slope of roughly -1

fixed by the individual measuring point families
refers to the general 1/p dependence of the natural
li newidth.

The full curves in Fig. 4 are the complete theo-
retical solutions fitted to the experimental values
by proper choice of the scaling factors C defined
in Sec. I, wherea s the broken curves are valid for
pure Lorentz spectra of the width y, (p). The dash-
dotted straight lines extrapolate the behavior below
threshold; they would be valid, if the laser light
would not change its statistical character in the
threshold region.

The measured values of g(p, r) as shown in Fig.
4 were used to compute improved values with re-
duced statistical errors by means of a smoothing
procedure after a suitable transformation. Minor
differences of the individual scaling factors C,.
were corrected by modifying all values according
to the transformation C&- (( ), thus allowing a
meaningful combination of the values correspond-
ing to different delay times. A systematic 7. de-
pendence excluding this procedure is not evident.
The scatter of the scaling factors is explained by
cle anings and adjustments of the resonator mir-
rors between the individual series of measure-
ments causing small variations of the laser param-
eters P. and q.

Figure 5 shows the time dependence of the ex-
perimental values of g(p, r) for three operating
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points in the most interesting region above thresh-
old together with the theoretical curves 1 and their
asymptotes for v-0 and' v-~, curves 2 and 3.
Pure Lorentz lines of the widths ~0 would result in
the curves 4. The.experimental points are in rea-
sonable agreement with curve 1, supporting the
theoretical solution derived from the Van der Pol
laser model. The integral contributions of the
higher-order terms are indicated as differences
between the curves 1 and 3. For P =15 these terms
are nearly relaxed at the maximum delay time of
7 /J. sec.

The existence of terms higher than first order
can reliably be detected, as can be seen by com-
paring curve 5, representing the sum of the two
1owest-order contributions for p = 4, with curve 1.

The clear proof of the nonexponential decay of
the normalized field autocorrelation function

g(p, r), becoming visible by the nonlinear behavior
in the half-logarithmic presentation in Fig. 5, was
a challenge to isolate single exponential terms and

to determine their parameters. The applied ap-
proximation scheme" delivers relaxation rates
without initial arguments, the weight factors are
obtained by the least-squares method. However,
points with equidistant 7. coordinates are required,
which had to be determined by an interpolation
procedure. In Fig. 6 the computed parameter val-
ues are compared with the theoretical solutions.
The Xo values confirm excellently the 1/P depen-
dence of the natural linewidth below and above

threshold and the linewidth factor transition from
2 to 1 in the threshold region. The parameters of
the higher-order terms, as far as they were ob-
tained, show a satisfying agreement, too.

In addition to the normalized relaxation rates,
the corresponding unnormalized linewidths (full
widths at half power) in Hz are given in Fig. 6.
The natural linewidth varies in the investigated
power range between 200 and 40000 Hz; at thresh-
old it is 7475 Hz. Thus, the maximum spectral
resolution achieved in this experiments is 2.3
&& 10". The width of the technical Gaussian line
was found to be about 10000 Hz and hence a factor
.of 50 higher than the natural linewidth at P =20.

VI. DISCUSSION

The results of our measurements demonstrate
the physical reality of the fine structure of the
field autocorrelation function predicted by the Van
der Pol laser mode'. It would be of interest to
know the mechanisms responsible for the individ-
ual terms. From the numerical computer solu-
tions for the threshold region this information can
got be deduced; nonetheless some simple conclu-
sions are possible sufficiently far above threshold.

Essentially, the behavior of the field autocorre-
lation function g(p, g and hence the behavior of the
parameters V„(p) and A. (p) is determined by two
effects, the increase of the resonator lifetime with
rising stimulated emission rate, and the amplitude
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For a =10 the numerical values coincide fairly well
with the corresponding exact values' given in
brackets: V,'=0.9950 (0.9950), V,'=-4.9V5 x 10~
(4.829x10~), A'=0. 1 (0.10212), A.,'=20.1 (19.23V).
Obviously, the lowest-order term of the field auto-
correlation function is mainly determined by phase
fluctuations and the first-order term by amplitude
fluctuations, at least far above threshold.

Indications. of the existence of terms higher than
first order can be derived from the intensity cor-
relation function G,(r) known from Refs. 5 and V.
From the relation

G,(r) = 4~& p'&g, (r) + G2.(7),

with G,~(7)=(p'(f)p'(]+&)}—(p'(t)}' follows

g,(T) =g, (7) = G,(T)/G, (0)

(24)

(25)

for p»1. Thus, g,(r) like g, (r) is composed of a
series of exponentials and is approximately deter-
mined by the same set of parameters. Although

stabilization due ta the saturation of the inversion
taking place above threshold. The first effect is
clearly responsible for the general 1/p dependence
of A and the second one for the linewidth factor
transition and the higher-order fine structure
terms. Well below threshold, when the cubic term
in Eq. (1) is negligible, only the relaxation rate A,

is present. The same is approximately true far
above threshold, where the small. natural-ampli-
tude fluctuations may be neglected. Evidently, the
fine structure is associated with an incomplete am-
plitude stabilization; in the limit of lacking or total
stabilization it disappears.

As a consequence of the amplitude stabilization,
the laser signaL above threshold can be interpreted
as a sinusoidal carrier modulated by quantum
phase noise and the remaining small portion of the
quantum amplitude noise. The corresponding nor-
malized field-autocorrelation function g (7) is found
to be

g'( )=(1/~')i '+&.o'}g,( )lC ( )

if correlations between phase and amplitude fluc-
tuations are neglected.

For p»1 approximate expressions for go(7') and

g,(&), the contributions of phase and amplitude fluc-
tuations alone, cari easily be obtained by a quasi-
linear solution of Eq. (1).' Both are exponential
functions with the decay constants Xe = 1/a and A.,
=2a, respectively, (a=-2p/~mfor p»1). The
weight factors and relaxation rates of the resulting
double exponential function g'(r) are

2a2, 1,1, 1

I

the individual parameters differ from the exaCt
ones, the function g(r) is nevertheless reasonably
approximated by g'(r) obtained in this way. Be-
cause of a near pairwise degeneration of the decay
constants' of g, (r) it is obvious to combine the cor-
responding terms and to compute effective param-
eters. As a consequence, even terms in g'(r) can-
not be expected, a prediction that is supported by
the strong dominance of the odd terms in the exact
solution (see. Fig. 1).

For a = 10 the effective relaxation rates and
weight factors V,' and V", agree sufficiently with the
exact values, whereas V,' and V,' differ by approxi-
mately a factor of 2 or 3, respectively. Discrep-
ancies in this order of magnitude are not surpris-
ing because of the neglect of the small terms in
Eq. (25) and the restriction leading to Eq. (22).
With increasing distance from threshold a better
agreement can be expected.

In the usual operating range of a laser far above
threshold, the fine structure of the natural field
autocorrelation function is thus essentially associ-
ated with an analogous structure of the natural
amplitude correlation function resulting directly
from the inherent nonlinearity of the laser process.
Near threshold the values of the fine-structure pa-
rameters are influenced by couplings of phase and
amplitude fluctuations.

Thus far we have made the premise that the theo-
retical results presented in Sec. II are directly ap-
plicable to the laser used for the mea, surements.
Because some of the assumptions of the theoretical
model are not fulfilled (e.g. , the laser transition
is not strongly homogeneously broadened and
standing waves instead of travelling v~aves are
present), a short justification. shall be given. Spe-
cific laser properties as line broadening and fieM
structure may be very important for the behavior
of the laser far above threshold; near threshold,
however, only modifications of the scaling factors
p and q have to be allowed for."2' The validity of
the Van der Pol model is predicted to apply in the
range 1/n, &P &n„where n, is the averaged thresh-
old photon number. ' In our case n, is approxi-
mately 7000 and thus by far greater than the maxi-
mum relative laser power P = 100.

VII. CONCLUSIONS

Autocorrelations of the laser field yield informa-
tion about natural amplitude and phase fluctuations
as well. Although effects connected with phase
fluctuations are of fundamental physical interest,
especially near the oscillation threshold, most
experimental work was concentrated on intensity
correlation and related quantities. This may be
explained by the great difficulties arising from un-
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avoidable technical noise that affects the phase of
the field far more than the amplitude and the in-
tensity. As a consequence, the natural component
is in general masked largely by technical phase
noise. Using an improved interferometric auto-
dyne method and an experimental system optimized
in decisive aspects, we have made measurements
of the natural field autocorrelation function
throughout the threshold region. The stationary
component of the technical fluctuations was elim-
inated by a reference-measuring technique taking
advantage of the different operating-point depen-
dence of technical and natural noise. Additional
sporadic disturbances, however, turned out to be
troublesome; they result in a spread of the mea-
sured values and in a, small fraction of useful mea-
surements.

Nevertheless, the achieved accuracy is sufficient
to confirm the nonexponential decay of field auto-
correlations predicted by the Van der Pol laser
model and to compute parameters of some of the
exponential fine-structure terms characterizing
the special shape of the field autocorrelation func-
tion. Implicitly, small deviations of the natural
laser spectrum from a pure Lorentz profile slight-
ly above threshold are detected. The higher-power
density in the wings results from a flat, broad con-
tribution which is closely associated with a partial
stabilization of the field amplitude due to the non-
'near character of the laser process. Above

threshold a narrowing of the natural linewidth up
to a factor of 2 in addition to the general reciprocal
power dependence is observed, in full agreement
with the theory.

*Present address: Carl Zeiss, 7082 Oberkochen, Fed-
eral Republic of Germany.
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