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The stability criteria in the pumping and lasing states in a cw solid-state laser are investigated using the
semiclassical theory of the multimode laser. The model admits of one (trivial) steady state corresponding to
thermal equilibrium, for which an N-body principle of minimum-entropy production may be obtained the

entropy production serving as a Lyapounov function in this case. The other (multiple) steady states are far

from thermal equilibrium. It is possible to construct an X-body Lyapounov function in the general,

multimode case for these states within the framework of the rate approximation. Near equilibrium, the linear

thermodynamics of the multimode laser are developed with the entropy production.

INTRODUCTION

The theory of the generalized entropy developed
by Prigogine et al. ' in Brussels apd Austin' 3 sug-
gests a form for an E-body Lyapounov function.
The starting point is the Liouville-von Neumann
equation for the density operator p,

epi—= I-pt

where. L== [H, j is the Hermitian Liouville operator.
For isolated systems, a "causal representation"
may be introduced wherein the density operator
p'~' is obtained from p, through a nonunita, ry trans-

formationn

p"'(&) = ~ '(L)p(f)

For weakly coupled systems (as discussed in this
paper), A = 1 and p'~' reduces to the p of Eq. (1.1).
In the new representation, one may construct a
generaIized entropy functional,

g(P) Tr p(P)tp(P)

This entropy includes the diagonal and off-diagonal
elements of the density operator. 'The transfor-
mation theory mentioned above has been used to
study damping and decay in the Friedrichs rnod-
el. ' Further, this form of the entropy has been
used by Hubert' to construct the entropy for a
dense hard-sphere gas obeying the Enskog equa-
tion and by Henin' to study the approach to equili-
briurn in the stochastic models of Kac and Mc-
Rean, using a Markovian description. However,
little is yet known concerning the formal extension
to open systems. A beginning in this direction has
been made by McAdory and achieve, ' who construct
an entropy functional for a stochastic model of a
system in weak interaction with a reservoir and

obeying Markovian kinetic equations.
In this paper, we demonstrate how the general-

ized Lyapounov function mentioned above may be
applied to investigate the stability of yet another
open system. Our model consists of N identical
two-level atoms in interaction with a multimode
electric field in a cavity. This is a realistic de-
scription of a cw laser, which we shall discuss
using thp semiclassical theory. ' In the next sec-
tion. , we briefly review the semiclassical theory to
introduce the notation and develop the rate approxi-
mation. This is used to construct the Lyapounov
function for the nonequilibrium steady states. Fi-
nally, we calculate the entropy production near
equilibrium and prove it to be a minimum, thus
obtaining bnear irreversible thermodynamics.
should be noted that the only other attempt to con-
struct a Lyapounov function for such a model was
made by Hofelich-Abate and Hofelich, '.who con-
structed a functional V(x, y) which vanished only
at the origin and was positive everywhere else,
thereby showing that the equilibrium branch was
asymptotically stable in the entire physical region
of phase space (corresponding to positive photon
numbers). ' Further, Walgraef'o has used a Fok-
ker-Planck description to derive a Gibbs entropy
for the equilibrium branch and to discuss its sta-
bility using the Glansdorff-Prigogine theory. " We
show here that we may obtain Walgraef's results
as well as the stability of the nonequilibrium branch
using a simple semiclassical approach.

II. SEMICLASSICAL THEORY AND THE RATE EQUATIONS

The assumption of the semiclassical approach'
is to treat the electric field in the cavity as being
purely classical, describable by Mmavell's equa-
tions, the atoms being treated quantum mechani-
cally. %e will consider a model of a cw solid-
state laser, consisting of N homogeneously-
broadened identical two-1.evel atoms interacting
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with a transverse radiation field. Thd complete
set of semiclassical equations then has the follow-
ing form

~ do „—d» 4~&~2
(2.11)

p, „(t)=(i „—I', „)p,„—ip g„„b„d„,. (2.1} (2.12)

bg (t) = (zing —Kg)bx + 1 Q gg, »P12, » &

+ 2i ~ (g~, »bx p2i, »
—c.c.),

1

(2.2)

(2.3)

where we set g~= b~b~ and assume that

b), -Bq exp(i+t),

because of the 1.asing process.

(2.13)

P12 P21 (2.4)

to this order. Also,

Pll + P22

(2.5)

together with the conjugate equations for p» „and
b, . Her'e, the indices A, and p, refer to the cavity
mode and the atom respectively, and the symbols
used above have the following meanings: co~ is the
cavity mode frequency, v» the frequency separa-
tion of atomic levels, 1"„the atomic half width,
v, the cavity half width, T, the atomic relaxation
time, and g the coupling constant. p12 RIll p21
the correlation components of the atomic-density
matrix, pll and p22 being the diagonal components
or probabilities. We have further defined d„
—= (p» —p»)» = (N, -N, ), the population difference
of the levels, d'„=—d, at equilibrium. Further,

f~(t) = l »p'(t)p(t) (3.1)

ft, = fl, + n~ = ,'(Tr
( p,-)'+ Tr

( pr ('), (3.2)

the subscripts S and E referring to the system and
cavity field respectively. It must be noted here
that our Eqs. (2.1)—(2.3) are weakly coupled, so that
the density operator p appearing in (3.1) is the
special case of the more general p~~' defined earli-
er, corresponding to A= 1 and satisfying the Pauli
equation. It is apparent from (3.2) that

(3 3)

f~r= err(Psps+PsPs)+ a Tr(@py+PyPF) (3 4)

III. LYAPOUNOV FUNCTION FOR THE NONEQUILIBRIUM
STEADY STATES

We now define a functional, "

because of probability conservation. We readily
find from the above,

For the multimode case, we have

(3.5)

p22» g(1 + d»} and pyy» 2(1 d» ) (2. 'I)

Let us now briefly introduce the rate approxi-
mation. We assume that the atom follows the field
motion adiabatically and write (2.1) in the form

(3.6)

1
P12~ g 12P12g Q y P12y Q

2yg
(2.3)

We then obtain, using (2.11),

with T,'„=—F12„.We will consider the case"

~l))y 1 (2.9) We also find

'The atom is then in a quasi-steady-state near
threshold where the correlations decay rapidly
compared to the probabilities. Hence, p» =0 and
we may set p„-=p'„, its steady-state value in the
Eqs. (2.2)-(3). From (2.1) we find

fly 2 Z sX+k' s

0
0

Qg ~ BQPl)t I

so that we have from (2. 12),

(3.8)

(3 9)

P12y g '~ y~l P21g g
2

(2.10) Z2r, 'fg,
„

f'd„
( —(0»} + T2

(3.10)

Substituting (2.10) into (2.2-3) we find the follow-
ing rate equations:

I.et us first consider the pumping branch near
threshold. We then have"
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(3.11) IV. THE EQUILIBRIUM BRANCH —ENTROPY PRODUCTION

AND THERMODYNAMICS

Hence we find

Q, &0; Q, &0, (3.12)

(s. is)

The results of Sec. III may be applied to the
equilibrium branch —using the rate equations one
may immediately write dowp a Lyapounov function
of the form (3.1) which satisfies the inequalities
(3.15). Let us now consider the thermodynamic
description of this branch, close to equilibrium.
T'o do so, we reconsider the semiclassical Eqs.
(2.1)-(2.3)and linear ize them about equilibrium by
setting

'The pumping branch is thus stable in the region
of validity of the rate equations, in agreement with
the results of a linear analysis, "

QT being a good
Lyapounov function for this branch. It may be
noted that near equilibrium, d, -d and the con, -
ditions (3.11) reduce to the stability conditions
derived elsewhere"'" by a linear analysis.

7o consider the lasing branches, we recall that
in a cw laser, the lasing states may be regarded
as a set of multiple nonequilibrium steady states
above threshold which persist as long as the cavity
is loaded. Using the steady-state solutions to Eqs.
(2.1)—(2.3), we readily find

e
P12 P12+ ~~12 t

b~= b)„+&b

0 0 ~ 1

(4.1)

(4.2)

(4.3)

0

&12, () =('+)) ~2 )&12, )) tgg& )(1 O, )) (4.4)

bx, = ('
2

— 2}bi, + 'a1*4,.
„

d', „=-d, „/T'„
(4-5)

(4 6)

Substituting these in Eqs. (2.1} (2.3) and reta1n1ng
order (&) terms only, we arrive at the linearized
equations

QT=O,

in the lasing states. Hence we finally have

(3.14) where we recall that the atoms are assumed identi-
cal. and p'„=0= b~. These equations are microscop-
ic in nature. We now introduce the quantities

QT&0 and QT~0, (s.15)

so that QT is a Lyapounov function. for both pumping
and lasing branches near equilibrium. It should
be noted that the inequalities (3.15) could also be
obtained by linearizing Q about the steady state
and using a linearized form of the semiclassical
Eqs. (2.1)-(2.3). However, this would only demon-
strate stability in a very small neighborhood of
threshold, whereas the rate approximation has a
far greater range of validity. Our results then
are more general than the corresponding ones ob-
tained through linearization.

Finally, we may construct an N-body entropy
for the nonequilibrium branch by setting'

(4 8)

where we have dropped the tilde and the index p
(recalling that all the atoms are identical), setting

We now time average (coarse grain) both
sides of (4.8}using the prescription"

(4 (()) =-
1 f A (() dt

We then find

(4.9)

p =p e'"»' and b„=b,e '""', (4.7)
\

which we substitute into the linearized Eqs. (4.4)-
(4.6). Let us consider, for instance, Eq. (4.4) in
detail. We find, using (4.V),

Qs --,'lnQ„.

Differentiating with respect to time yields

(3.16) T
((t)12)r ——-T2 ((t)») r —2d() 2T g2b)*„e

T

(4. 10)
(3.1V)

From (3.12) we find

(3.18)

'Thus, the functional 8 has the properties of an
entropy near a steady state far from thermal
equilibrium.

We will assume further that b»(t) is slowly varying
compared to the oscillatory terms when ~~ I co,

so that it may be taken outside the integral. Also,
since we are near equilibrium, we expect Q) r to
be independent of the initial time so that we may
let T -~ in the second term on the right-hand side
of (4.10). This is an extension of Birkoff's theorem
which states" that



SEMICLASSICAL THEORY OF STABILITY IN A LASER. . .

Q(f)&, = Q(f)&. , (4.11)

provided the phase space is metrically indecom-
posable. Assuming that the laser modes in the
cavity form a continuum, we may write

J-d~, D(~,),
)t p

(4.12)

D(ur, ) being the density of states Substituting
(4. 12) into (4.10) and interchanging the order of
integration, we arrive at

&~„&= -7.'&e,.&
—gd.D( )(b,*& (4.13)

Similarly, we obtain for Eqs. (4.5) and (4.6),

&b,*& = —.&b,*&. g*&~,.&, (4. 14)

(4.15)(d,) = -(d,&/r .

We stress here that the Eqs. (4.13)-(4.15) involve
macroscopic quantities so that we may use them
to introduce a thermodynamic description of the
system. Further, because of our time-smoothing
procedure, the index X no longer appears —Eqs.
(4 13)-(4.15) effectively describe a monomode laser.

We now introduce the general. ized entropy as in
the previous section,

j.Ss = -2 lnQs. (4.16)

Close to equilibrium we have' (apart from positive
multiplicative constants),

Ss = -ns (4. 17)

To order &2 we have

For the radiation field we find

S,= -&b,&&b,*&(&b,&&b,*&). (4.20)

o'g = 272' I&/„&—(ig*d, /7', ')D(~}&b,& I

+ (d,&'/2T, g' d', [-D((u)] 1(b )

It has been shown" that

Os~0'

(4.22)

(4.23)

the equality holding at equilibrium. Evidently, the
entropy production plays the role of a Lyapounov
function near equilibrium.

I et us now define "generalized forces, "

x, =g„&=x&,
x, =(b,) =x+,

x,=(d,).
Then we have

(4.24)

o's= Z JA=Z I ~A'8'a. (4.25)

'The J,'s are the generalized "fluxes" correspond-
ing to the forces X„andL is the matrix of On-
sager coefficients. We find, from (4.22),

However, the leading term in (4.20) is of order
z' and does not contribute near equilibrium. Hence,
to order &', we may write

Ss =-os
~ (4.21)

os being the entropy production, which we may
cast in the form

S = -((e,.&&4„&+&k„&&e.,&+ l&d, &&d,&) (4 16)

Using the linearized Eqs. (4.13)-(4.15), we find

S.= ».'I && .& I'+ id.D(»(g&b*&&4. &
—c c )

+ (d,&'/2r, . (4. 19)

Z, = 7' (y„&—id~+D(~)(b, & =@+,

J, = -id~*D(&o)(P»& = Z,*,
J,=(d,&/T, .

Also,

(4.26)

(4.27)

(4.28)

0
1

2

id, g*D(&o)-

0

T 1
2

0

id, gD((o)

id, g*D (ro)-
id, gD(&u)

1/27',

(4.29)

We see that

L f j ~ 0

L,~= L~, for every i 4 k. (4.30)

'These conditions are sufficient" for the near-

equilibrium branch to be stable and have a mini-
mum entropy production associated with it.

V. CONCLUSION

We have demonstrated in this paper how the N-
body Lyapounov function (3.1) may be used to prove
the stability of the cw laser, both near and far
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from equilibrium, it being possible to define a gen-
eralized entropy in each case. For the near-
equilibrium branch, the entropy production + has
been shown to be a minimum, consistent with the
results of linear irreversible thermodynamics.
0 is a I,yapounov function for this branch. It should
be stressed here that the results of Sec. IV hold
only close to equilibrium (order e'). To higher
orders in z, the contributions from the cavity field
must be considered and (4.21) would have to con-
tain terms in S~. I,ittle is known about the entropy
production of this system, or for that matter of
any open system far from equilibrium. This will

be the subject of continuing investigation.
A final remark is in order. The Eqs. (4.26)—(4.28)

indicate that we have as many flows as there are
levels of description in the system even though the
forces (4.24) are macroscopic. This was first
discussed by Klein and Meijer, "who showed that
the minimum entropy theorem held in a micro-

. scopic description wherein the entropy production
was considered a function of the microscopic prob-
abilities (and correlations) and minimized with re-
spect to these parameters. A general proof has
been given by fallen, "and our results bear this
out.

+A preliminary version of this paper was presented at
the Fourth Rochester Conference on Coherence and
Quantum Optics, June, 1977.
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