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We consider the time-evolution equation for the Glauber distribution function of the field emitted by a
laser with saturable absorber and investigate the role of the terms with derivatives of order higher than
second. It is found that the main effect of these terms is the following: When the relative saturabihty of the
passive atoms with respect to the active atoms is very high, the (first-order-like) transition is much sharper
than predicted by the Fokker-Planck equation.

I. INTRODUCTION

In a previous paper, ' to be referred to hereafter
as I, we have studied the dynamics of a laser con-
taining two cells, one amplifying and one absorb-
ing (laser with saturatable absorber). We have
given both a semiclassical and aquantum-mechani-
cal analysis. The latter treatment is based on a
suitably approximate Fokker-Planck equation,
which is obtained roughly as follows. The starting
point is a generalized von Neumann equation which
describes the interaction of a single damped mode
with the active and passive atoms. Then assum-
ing that the atoms constitute a dilute system and
that the atomic relaxation times are much smaller
than the field relaxation time, one gets a closed
time-evolution equation for the Glauber quasi-
probability distribution P(P, P, i) of the field alone.
This equation contains derivatives of all orders in

P, P~. By neglecting the terms with derivatives of
order higher than second, the equation reduces
to a Fokker-Planck equation, which gives a fairly
complete physical description of the problem. The
drift term of this equation is directly linked to the
semiclassical description, while the diffusion
term describes the quantum-mechanical fluctua-
tions.

The aim of the present paper is to give a de-
tailed mathematical analysis of the additional
quantum mechanical effects arising from the
terms with derivatives of order-higher than sec-
ond. In Sec. II, we recall the von Neumann equa-
tion and the derivation of the closed time-evolu-
tion equation for P(P, P*, t). This equation is
solved exactly in the stationary situation in Sec.
III. Unfortunately, this solution, which is ex-
pressed in terms of hypergeometric functions, is

not suitable for the numerical calculation of the
mean values. Hence, in Sec. IV we give an ap-
proximate solution of the steady-state equation.
This solution holds when the saturation param-
eter 3 of the absorbing atoms is much larger than
the saturation parameter S of the active atoms.
As shown in I, this condition guarantees that the
system can exhibit a bistable behavior. Finally,
in Sec. V, we evaluate numerically the first two
moments of this stationary distribution and com-
pare them with the same quantities calculated
from the stationary solution of the Fokker-Planck
equation. It turns out that the terms with deriva-
tives of order higher than second have the effect
of strongly reducing the width of the transition
region, thereby making the (first-order-like)
transition threshold much sharper.

II. QUANTUM-MECHANICAL TIME-EVOLUTION
EQUATION FOR THE FIELD

In I, we considered the interaction of a single
running mode of the laser cavity with a system of
two-level atoms of two different species. The N
atoms of the first species are pumped to a posi-
tive inversion, so that they are active atoms. The
N atoms of the second species are also pumped,
but in such a way that their inversion remains
negative, so that they are absorbing atoms. The
active (passive) atoms are labeled by the letter
p (q) where p=1, . . . , N (q=1, 2, .. . ,7). T. o the
pth active atom are associated the raising and
lowering operators a~(p), a(p). The combined ac-
tion of atomic decay and pumping on the Pth atom
is characterized by the three parameters p, (p)
(transverse relaxation time), y„(p) (longitudinal
relaxation time), and o(p) (unsaturated inversion).
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Of course corresponding operators A~(q), A(q) and
parameters y, (q), y~~(q), v(q) are associated to each

.of the passive atoms; we distinguish the param-
eters which refer to the passive atoms by simply
putting a bar on them. Note that o(q) is negative
for all q=1, 2, . . . ,N.

Let us consider the statistical operator %'(t) of
the system atoms+ running mode. More precisely,
the running mode is described in the Glauber diag-
onal representation, labeled by the continuous am-
plitude variable P. Hence, we write

~(t) = d,P
~
P)(P

~
w(P, P*, t), (2.1)

where W(P, P*, t) is an operator in the atomic Hil-
bert space alone. W(P, P*, t) obeys a generalized
von Neumann equation .

ih 9, W(P, P*, t) = (L„+LT+ L~ ~+iA„+iA~) W(P, P*, t) .
(2.2)

The explicit expressions of I „,I„, etc. are given
in I, to which we refer for all details. Here, we
limit ourselves to explain the meaning of the var-
ious terms in Eq. (2.2). L„and L~ describe the
free motion of the field and of the atoms, re-
spectively. I» arises from the interaction of the
atoms (active and passive) with the field in the di-
pole and rotating wave approximation. The inter-
action of the Pth atom with the running mode is
characterized by a coupling constant g(P). A„de-
scribes the atomic decay and pumping. Finally

I

A~ takes into account that the photons escape from
the cavity; the rate of escape will be given by a
parameter v. We have analyzed' Eq. (2.2) with
the following assumptions: (a) Low concentration
of active and passive atoms, (b) tc «y„y~~ for all
active and passive atoms.

Under these conditions, the von Neumann equa-
tion (2.2) for the full operator W(P, P~, t) reduces
to a closed set of equations for the c-number quan-
tities

P(P, P*, t) = e' &' "Tr W(P P~ t)

C(P, P, P*, t) = """T [ '(P) (P) W(P, P', t)],
(2.3)

V(q, P, P*, t) = e'~&'t" Tr[A (q)A(q) W(P, P*,t)],
where Tr means the trace over the complete atom-
ic Hilbert space. P(P, P*, t) is the Glauber quasi-
probability distribution function of the field, while
C and C are two auxiliary distributions. In the
present paper we shall consider the simplest sit-
uation:

(i) The active (passive) atoms are identical and

homogeneously distributed within the active (pas-
sive) region.

(ii) The transition frequencies of the active and
passive atoms are equal and coincide with the fre-
quency of the running mode.

Under conditions (i), {ii) the equations for P, C,
and C are [see Eqs. (4.9} of I]:

1 1 9 9 2 92
z ',P(P, P*, t)= 1+—i——P+ ~ P P(P, P, t)+—

~ ——P-. ~ P C(P, P, t)
T T T

9 9 9
+— spgsp sp P spy P C(Py P y t) (2.4a)

4l I'
—.'(1+~+sip~')P(P, P~, t)= 1+s ~P~' 4P —,

-'P* ', c(P, P~, t), o, = ', , s= (2.4b)

The equation for C is immediately obtained from Eq. (2.4b) by simply putting a bar on all atomic quanti-
ties (i.e. , o, S). On the basis of assumption (i), we have dropped the labels P, q everywhere. The param-
eter cr~ is the threshold inversion per atom when the laser contains active atoms only, S is the saturation
parameter of the active atoms. The quantities C, C can be immediately eliminated thereby obtaining the
time-evolution equation for the field alone,

K 'B,P(P, P*, t) =AP(P, P*, t),

~= 1+—+=
9 +9 g

' +~i+~i
(2 6)

where

92 w ~j

(2.6)
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and A, is obtained from A, by putting a bar on all
the atomic quantities. Clearly, Eq. (2.5) is not a
Fokker-Planck equation, since it contains deriva-
tives of all orders in P, P* due to the presence of
the inverse operator

1 9 11+S P~'- —P ———P* in A .
4 sp 4 Bp~

In I we neglected the derivative terms in Eq.
(2.4b); within such an approximation the field equa-
tion (2.5) reduces to a I'okker-Planck equation
with first- and second-order derivatives only. In
particular, we have calculated the stationary solu-
tion of such a Fokker-Planck equation, which is
given by [see Eq. (4.13) of I]
P&FP)(gi) cg [e s'(zI+ S 1)a /8((r (z)+ S-i) () /&or ]ze

(2.7)
where

2S-'z'=
(1+(r)/o r + (1+o)/ (rr

and ZFp is a suitable normalization constant. In
the present paper, we study the additional effects
arising from the terms with derivatives of order
higher than second in Eq. (2.5). We shall limit
ourselves to the stationary situation. Contrary to
I, in the present paper we shall not use normalized
coordinates because this is not suitable when one
keeps the derivative terms in Eq. (2.4b). How-
ever, the connection with the symbols used in I is
simply given by

z=Sz', a=S/S, A=a/or, C= 1 —o/or. (2.8)

HI. STATIONARY SOLUTION: EXACT TREATMENT

We shall follow the procedure devised in Ref. 2
for the laser with active atoms only. Hence, we
start from Eqs. (2.4a), (2.4b) and set &,P(P, P*, f)
= 0. Since in the stationary situation P, C, C are
functions of the modulus of P only, we use z'= P*P
as the independent variable. Equations (2.4a),
(2.4b) become

where

z= = ", a=h+h, h=z(1+(r).Xy,
S0~ 4z (3.3)'

dP(z' —If), = 2(z' -z, —g)P,dzl (3.5)

where z, is the semiclassical intensity above
threshold for S = S [see Eq. (3.24) of I and Eq.
(2.8)],

z,= S '((r/(r, + o/(r, - I) .
The normalizable solution of Eq. (3.5) is

(3.6)

5Ie28'(If z))2(//-s+ / ))2for 0 & zg ~ ffP(z') =

0 for z'~ H, (3.7)

where X is the normalization constant. In this
case, P(z') has the same structure as the station-
ary distribution for the iaser with active atoms
only. Hence, we refer to Ref. 2 for the analysis
of distribution (3.7) as well as for the comparison
with distribution (2.7) specialized to the case S= S.

(b) General case. Introducing the new quantities

P(g') P(z'),
C(z') =e "' x C(z'),

C(g') C(z') .
(3.8)

(a) The case S= S. As shown in I, for S= S [which
corresponds to a= 1, see Eq. (2.8)] no bistable sit-
uation is possible. In this case, our system of
equations can be trivially solved. In fact, using
(3.3) Eq. (3.10) for S=S can be rewritten as fol-
lows:

1 1, 1 d1+—+—P(z') = 2S 1 ——,[ZC(g')+ZC(z')] .
0'p 0'p 2 dz

(3.4)

Hence, with Eq. (3.2) one gets the equation

c
1, 2, 1dC1+—+ —P(z') = —C(z') ——

0'p 0'z 0'z 2 dZ

2 —, 1dC
+—C(z') ——

0~ 2 dz'. ' (3.1a)

1 dC
~2(1+(r+Sg')P(g') = C(z')+Sg' C(z')-2 d, , (3.lb)

Equations (3.lb), (3.lc), and (3.2) become

—,'(1+ o + Sz')P(z') = C(z') —
2

z' —,S, dC

—(1+ rr+ Ss')I'(s') (:(z ) —
2

z'd, ), '=

2[ZC(g')+ ZC(g')1 = (Jf g')P(z') . -

(3.9a)

(3.9b)

(3.9c)

2(l+ rr+ Sg')P(z') = C'(g')+ Sz' C(z')- —,. (3 lc)
1

The formal solution of Eq. (3.9a) can be written as

C(z') = — 1- —z', (1+ o + Sz')P(z') (3.10)
1 S, d

By eliminating the derivative terms between Eqs.
(3.la), (3.1b), and (3.1c) finds the relationship

2[ZC(z') + Z C(z')) = (H -z')P(z'), (3.2)

and a similar equation for C(z') follows from Eq.
(3.9b). Substituting these expressions for C(z')
and C(z') into Eq. (3.9c) one finds



DKMBIN SKI, KOSSAKO%SKI, LUGIATO, AND MAN DEL 18

1 ——z', Q+ —+ 1- —z', h+= P z' = H-z'P z', (3.11)

where definition (3.3) has been used. Finally multiplying both sides of this equation on the left by
(1 —2 Sz' d/dz')(1 —&Sz'd/dz') one finds for P(z') the second-order differential equation

z'(H z')-,2+(h(l-28 ')+h(1 —28 ') —z'[3-2Z(l+ or) —2Z(1+ 0'r)]) —,
dz T T dzf

—[4ZZ(1+ or)(1+ o~)+ 1 —2Z(1+ or) —2Z(1+ or) —4ZZ]P =0 . (3.12)

Introducing the new variable

h= z'/H

and using the notations

u„= 1 —Z(1+ or) —Z(l+ or) + ~h

b, = [ Z(1+ o'r) —Z(1+ or) ] '+ 4ZZ) 0,
y = 1-2(h/H)Z or —2(h/H) Zor & 1,

(3.13)

(3.14)

in the laser-absorber system one has that n,
+ u —y & 0 and

i u, + u —y i» 1, so that (i) the
solution (3.16) converges also for x= 1 and (ii) a
suitable large number of derivates of (3.16) con-
verges for x"-1.

The admissible solution P(x) must be integrable
in the following sense:

Eq. (3.12) takes the form

x(1 —x), + [y —x(u, + u + 1)] ——u, u P =. 0 .d2P dP
dx3 ' ch

(3.15)

This is the hypergeometric equation. For 0 ~ x(1
the general solution can be written'

P(x) = C, E(u„u, y, x) + C, x' "

x E(u, +1 y, u +1 —y, 2-y, x), (3.16)

where E is the hypergeometric function and we
have taken into account that in our case, as one
easily verifies,

a, +n —y &1.
More precisely for the values of the parameters

e'""P(x)dh& ~
0

as follows from the normalization condition of the
quasiprobability distribution P. No one of the
solutions obtained by analytic continuation of (3.16)
provides convergence of the integral (3.1V). Hence,
the only possibility to fulfill condition (3.1V) is to
look for a solution which vanishes identically for x
larger than a suitable value x [cf. Eq. (3.V)].
Since (apart from the boundaries x= 0 and x= ~)
x= 1 is the only possible point of nonanalyticity of
the solutions of Eq. (3.15), one has necessarily
x =1. For the sake of continuity of P at x= 1 one
has to impose P(x= 1) =0 and this can be achieved
by a suitable choice of constants C, and C, when

y 40, -1, -2, ... . This leads to the following form
of P

E(u, , u, y,x), „E(u, + 1 —y, u + 1 - y, 2 —y, x)
1.(y)r(1 u, )r(1 u ) r(2-y)f (y u, )r(y-u )

0 for x~1 .
(3.18)

P(z')= "e'P( /z)H, (3.19)

where X is determined by the normalization con-
dition

P z' dz'= 1 .
0

We notice that when 8 =8 from (3.14) one has

n, =1 —2S"'=y,

u =1-2S i-2(Z+Z) .

One can verify that also dP/dh and d'P/dx' are
continuous at x = 1. Finally, the stationary solution
is

f

Hence, taking into account that i F(0) i
= ~ and that

E(u„u, u, , h) = (1 —x) - one easily verifies that
(3.19) reduces to the previously found distribution
(3.V).

IV. STATIONARY SOLUTION: APPROXlMATE
TREATMENT FOR S))S

Unfortunately, the solution (3.18), (3.19) does
not seem suitable for the numerical computation
of the mean values. Therefore, here, we give an
approximate treatment which is valid for S» S.
To illustrate it, let us come back to the case of
the usual laser with active atoms only. In Ref. 2
it is shown that the derivative terms in Eq. (3.lb)
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is irrelevant in the threshold region. This can be
easily understood because dC/dz' is multiplied by
the factor Sz'. In fact, this factor is very small
for the relevant vaiues of z'in the thresold region.
Note that other terms in Eq. (3.lb} contain the
factor Sz', but they cannot be neglected because
they ensure the saturation of the gain for large z',
which is essential for the laser above threshold. ~

On the other hand, when the laser is well above
threshold, the derivative term appreciably in-
fluences the width of the distribution.

Let us now come back to the case of the laser
with saturable absorber. On the basis of the pre-
vious discussion, we can say that the derivative
terms in Eqs. (3.11), (3.lc) are negligible when
Sg, «1, Sz, «1, respectively, where z, is the
positive stable semiclassical value of the intensity
(which corresponds to the normalized value I, of
paper I). Now in I we have shown that the bistable
situation, which is the interesting one, occurs:for
a& C/C —1, which in the present notations [see
(2.8)] gives

S&S(l+o / o ) . (4.1)

Let us consider the case S» S. Then there is a
range of values of the pump parameter o such that
Sz, & 1 but Sz, «1. In this situation we can safely
neglect the term with dC/dz' in Eq. (3.lb). In this
section, we shall analyze the problem within this
approximation. Clearly, this procedure does not

(4.2)

By inserting Eq. (4.2) into Eq. (3.2) we find

2Z 2Z(1+ Sz')
(4 3)

Let us' now substitute Eqs. (4.2), (4.3) into Eq.
(3.la). Assuming that'S«l, H&/&1, h»er' (as
it occurs in the usual lasers) one has

1+e+ Sz'
dz' 1+Sz'

d H-g'
dz 2Z

d h+ z'/or
dz' 2Z(1+Sz'}

1+o'+ Sz'
1+Sz'

H.—g'

2Z

so that we neglect the terms containing these
derivates and obtain

allow us to treat the very high-intensity situation.
Hence, this treatment is in a sense analogous to
Risken's analysis of the usual laser, which is
limited to the threshold region. '

.The interesting
feature in the present problem is that even in this
region the absorber is saturated, so that one
needs a high-intensity treatment for it.

Neglecting the derivative term in Eq. (3.1b} we
get

sp I 1+e+sg' s s+z'/r s . , 1 1 1 1+e+sz' —,—s+s'/s„)

(4.4)

Finally, by performing some trivial but lengthy algebraic manipulations one gets

y, (z') d, =y, (z')P(z'),

s,(s')=s" —z'[s(rr-rr, )+z(ir-ir, ))+ (ss)'(1-—
T r

)

o' — 1 + 0' 1 + o'
y, (z')=z''-z' Z(o-er)+Z I+a+— -(SS} ' +'

0'~ o~ oz

(4.5)

Equation y, (z') =0 has two real solutions z' =n„z' = -n, with n„n, .&0. Hence, the normalizable solu-
tion of Eq. (4.5) is

' Xe"'(n, —z')' (n, +z')'" for 0 &z'&n, ,

0 forz on

where X is the normalization constant and

1 1 — — o'~
(SS) ' 1+ —+ —.+n, Z I+a'r+ —r (n, +n, ) ~

or (yT
'

{yT

o 1 1M= n, Z I+or+ ——(SS) ' 1+ —+ — (n, +n, ) '
o'z o'~

(4.6)

(4 7)
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o 1 o 1
1 =0

o.~ 1+Sz' 0~ 1+Sz' (4.9)

which is the semiclassical stationary equation for
the intensity [see Eq. (3.18) of I and (2.8)]. Hence,
both distributions (2.7), (4.6) have a minimum at,
z'=z and a maximum at z'=z, , where z, are the
nonzero semiclassical stationary values of the in-
tensity. Note in this connection that n, &z, , z be-
cause one easily verifies that y, (z') &y, (z') always
holds. Clearly, the relative heights and the widths
of the two peaks at z'=0, z'=z. in the bistable re-
gion is in general different in the two distributions
(2.7), (4.6). A numerical comparison of the two
distributions is shown in the next section.

V. COMPARISON

By means of Eq. (4.6) one can evaluate the mo-
ments of the photon distribution; e.g., the first
two moments are given by

(n) =v

(n') =m

dz' P(z')z'

dz' P(z')(z" +z'),
(5.1)

where n is the number-of-photons- operator. We

TABLE I. Mean photon number and intensity fluctuation
for distribution (4.6).

Contrary to (2.7), the distribution (4.6) vanishes
from z'=n, onwards. Distributions (2.7), (4.6)
have the same behavior in the neighborhood of the
origin z' 0, because they give

(
dP/dz

2
1 (7/(Xr 0'/ or

(4 8)P .. . (1+v)/or+ (1+~)/or

The (nonzero) extrema of P(z) are given by the
equation y, (z') = 0. This equation can be rewritten
as follows:

have numerically evaluated the quantities (5.1)
as functions of cr for the values of the parameters

8=10 8 8=10 ~ g =o =10 3r T

o =-0.5
(5.2)

and we have compared the results with the cor-
responding quantities calculated (numerically) with
distribution (2.7) obtained in the Fokker-Planck
approximation.

From Eq. (2.8) we see that the parameters (5.2)
correspond to

a=10', C=500, &-103 .
Hence, the present situation is drastically dif-
ferent from that considered in I, in which we
had a= ~, C =20, z = 100. Firstly, in the present
case the hysteresis cycle is much wider, since
it ranges from A = 1.146 to A =500 [see Eqs.
(3.33) and (3.34) of I]. Secondly, the value of the
parameter a is now much larger. As we shall see,
these features have the effect that the transition
region turns out to be very near ]he left-hand
boundary of the hysteresis cycle (i.e., it corre-
sponds to values of A only slightly larger than
1.146). Table I shows the mean photon number
(n) and the mean-square fluctuation (n') —(n)'
as a function of A in the transition region, where
(n) and (n ) are calculated by means of distribu-
tion (4.6). Table II shows the same quantities, but
(n) and (n') are calculated by means of distribu-
tion (2.7). Note that, in Table I S(n) remains
small for all the values of 0 considered in the
table, whereas S(n) is large for o & 1.17239or.
The most striking feature that appears from the
comparison of the two tables is that the transition
is much sharper in the case of distribution (4.6).
Hence this sharpening is the main effect of the
terms with derivatives in P, P~ of .order higher
than second in Eq. (2.5). A minor effect is that the
threshold region is slightly shifted towards

&n& &n'& &n&' TABLE II. Mean photon number and intensity fluctua-
tion for distribution (2.7).

1.172 365
1.172 37
1.172 375
1.172 38
1.172 385
1.172 39
1.172 395
1.172 4
1.172 405
1.172 41
1.172 415
1.172 42
1.172 425

1.5019
1.5020
1.5044
1.5824
4.1250
8.6962 x 10
2.7309 x 103

5.3260 x 104

1.2316 x 105
1.2833 x 10~
1.2850 x 10'
1.2851 x 105
1.2852 x 105

4.06
1.35 x 10'
3.21 x 102

1.03 x 104

3.37 x 105
1.10 x 10~

3.43 x 10s
4.01 x 10
6.57 x 1ps
2.21 x 10~

9.25 x 105
2.75 x 10'
2.55 x 10~

1.275
1.28
1.285
1.29
1.295
1.3
1.305
1.31
1.315
1.32

7.40
2.62 x 10~

1.15 x 10~

5.50 x 102

2.71 x 103

1.34 x 104

5.87 x 10
1.68 x 10~

2.59 x 105
2.92 x 105

&n'& —&n&

1.33 x 106
6.24 x 106
3.00 x 10
1.48 x 10s
7 41x10s
3.58 x 10
1.34 x 10 0

2.08 x 10
9.75 x 10
3.00 x 10
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smaller values of A in the case of distribution
(4.6).
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