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We discuss a mean-field quantum-mechanical model which describes the dynamics of a homogeneously
broadened system of two-level atoms contained in a pencil-shaped resonant cavity and driven by a coherent
resonant field EI. The model is treated in the semiclassical approximation. The model is justified on the
basis of Maxwell-Bloch equations with two coherently coupled directions of propagation, with boundary
conditions for the fields taken into account. Above a suitable critical density of atoms the system exhibits a
bistable behavior including both the stationary situation and the transient, both the light transmitted in the
forward direction and the fluorescent light. Bistability is shown to be a consequence of atomic cooperation.
We give a simple description of optical bistability leading to new predictions for the transient behavior of the
transmitted light and for the spectrum of the fluorescent light. The damping constant which characterizes the
rate of approach to the stationary situation exhibits a hysteresis cycle. In the low-transmission regime the
approach is monotonic, whereas in the highly transmitting situation the approach is oscillatory. One finds a
critical slowing down in correspondence with the values E, +, E, of the incident field where the transmitted
field (as well as the total fluorescence intensity, the rate of approach to the stationary state, etc.) changes
discontinuously. On the basis of the regression hypothesis we give a qualitative description of the spectrum of
the fluorescent light. This is shown to undergo hysteresis and discontinuous changes at the same values
EI+, EI of the incident field. Below the critical density of atoms one recovers the usual picture of
resonance fluorescence, with a continuous transition from a single-line spectrum to a three-peaked structure
when the Rabi frequency becomes equal to the natural linewidth. Above the critical density the triplet
appears only when the Rabi frequency becomes equal to the cooperative hnewidth of pure super-fluorescence
(i.e., for E, = EI+ ). Moreover, it appears discontinuously: when E& crosses the value E,+ the spectrum
changes from a single narrow line to a triplet with well-separated sidebands.

I. INTRODUCTION

Cooperative phenomena in open systems far from
equilibrium are presently the object of an ever in-
creasing interest. ' At a phenomenological level,
they are described by a set of nonlinear equations
with suitable damping terms. The interplay of
nonlinearity and dissipation alone gives rise to a
large variety of phenomena. Among them, one of
the most interesting possibilities is the appear-
ance of phase transitions in open systems lying in
stationary nonequilibrium states. As usual, ex-
actly soluble models are essential to obtain insight
into-the physics of these phenomena, as well as to
discover connections between different phenomena.
A typical example is the one-mode laser model
with distributed losses, ' which exhibits a second-
order phase transition. ' In this paper we illustrate
a soluble quantum mechanical model which shows
a first order phase transit-ion. 4 it is a simple gen-
eralization of the one-mode laser model which in-
cludes the effect of an external coherent field that
continuously drives the atoms. We put ourselves
in the simplest situation, i.e., we assume that the
frequency of the injected field is perfectly tuned
with the optical cavity and consider a homoge-
neously broadened atomic system perfectly in re™
sonance with the driving field.

In the present paper we treat our model in the

semiclassical approximation. The semiclassical
formulation can be clearly deduced from the Max-
well-Bloch equations, taking irito account the
boundary conditions for the propagating field and
performing the mean-field approximation. The
model gives a unified description of different phe-
nomena such as optical bistability, resonance flu-
orescence, and superfluorescence and allows a
clear analysis of the role of atomic cooperation in
all of them. More precisely, the results that one
finds using the present model are the following:

(i}We give a simple description of optical bi-
stability. ' This phenomenon, which recently has
been experimentally observed, ' consists of the
fact that under suitable conditions the light ampli-
tude E~ transmitted by a filled optical cavity can
vary discontinuously with the incident field ampli-
tude Ez, showing a hysteresis cycle (see Fig. 1}.
In fact, for low incident field the transmission is
very low, so that almost all the incident light is
reflected. Increasing the incident field one finds
that. in correspondence with a suitable value El
=El' the transmitted light increases discontinu-
ously. If, conversely, one decreases EI starting
from values E& &~I, one sees that the transmit-
ted light decreases continuously until in corre-
spondence with a second transition value E I ~ &K I
the transmitted field suddenly jumps dow'nwards,
closing the cycle. This behavior is due to the fact
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where y~ =&, ' is the incoherent transverse atomic
relaxation rate, while y& is the cooperative damp-
ing rate of pure superfluorescerice. ' Since y~ is
proportional to the atomic density, the bistable
behavior appears when the density is high enough
so that atomic cooperation can overcome the in-
coherent single-atom processes. Actually Eq.
(1.1) fixes a critical value of the density below
which no bistable behavior can arise. So bistabil-
ity is just the stationary counterpart of transient
cooperative spontaneous emissiony ol superfluo-
rescence, for a system coherently and continu-
ously excited. More specifically, the analysis
shows that in the bistable situation. one of the two
stable steady states chrresponding to a given val-
ue Fl arises from atomic cooperation (low trans-
mission branch of Fig. 1); for this reason it will
be called "ceoperative stationary state. " The

FIG. 1. Hysteresis cycle of the transmitted light.
Full (dotted) line arrows indicate the variations ob-
tained increasing (decreasing) the injected field E&. The
upper part of the plot corresponds to the one-atom
stationary solution, the lower part corresponds to the
cooperative stationary solution.

that the two branches in Fig. 1 correspond to two
different stable stationary states of the system
(bistability). As is well known, hysteresis is one
of the main characteristic features of first-order
phase transitions. Whereas the theory of Ref. 5

gives only numerical results, the present treat-
ment is completely analytical. In particular, it
gives an explicit condition for the appearance of
the bistable behavior and explicit expressions for
the values of the input field at which the discon-
tinuities occur.

One finds a direct connection between atomic
cooperation and bistable behavior. In fact, the
condition for the appearance of the bistable be-
havior is

other stable steady state does not exhibit cooper-
ative behavior (high transmission branch of Fig.
1); we will refer to it as the "one-atom stationary
state. " The discontinuity points E~,, EI cor-
respond roughly' to the situations 01 =y~ and O~
= (r„r) ', where &, is the Rabi frequency of the
injected field and y is the natural linewidth of the
atoms. When the system is in the one-atom sta-
tionary ."tate and EI & EI, the transmitted inten-
sity is independent of & and practically coincides
with the incident intensity. In contrast, when the
system is in the cooperative stationary state the
transmitted field amplitude is inversely propor-
tional to the number of atoms.

We give completely new predictions concerning
the transient behavior of the system, and in par-
ticular of the transmitted light. A rigorous and
complete stability analysis shows that there is a
critical slowing down in correspondence with the
discontinuity points EI, E I ' of the hysteresis
cycle. The approach to the cooperative stationary
state is monotonic and becomes slower and slower
as EI approaches Er~ . Increasing EI slightly be-
yond E'I, one has an abrupt increase in the re-
laxation rate to the ste~dy state, which now is the
one-atom stationary state. When the cavity damp-
ing constant is larger than the atomic relaxation
rates, the approach to the one-atom stationary
state is oscillatory: the damping rate is the mean
value of the atomic relaxation rates y~~

—-&, ', yj
=T, ' and the frequency coincides with the Rabi
frequency Ol. If, conversely, the incident field
is decreased, starting from a value larger than
E, , the oscillatory approach to the one-atom
stationary state becomes gradually monotonic
when EI gets close to E~~ and simultaneously the
relaxation rate becomes smaller and smaller be-
cause of the critical slowing down, Finally cross-
ing the transition value E~ from above, there is
again an abrupt increase in the relaxation rate.
Hence, one also finds a hysteresis cycle in the
transient behavior of the system.

(ii) The model describes the impact of atomic
cooperation, on resonance fluorescence, showing
that the usual one-atom theory of resonance fluo-
rescence' is valid only below the above-mentioned
critical density of atoms. In contrast, above the
critical density the system exhibits a bistable be-
havior which concerns not only the transmitted
light but also the fluorescent light. In fact, both
the total ftuorescent light and the sPectrum of the
fluorescent light show a hysteresis cycle.

(a) When the system is in the one-atom station-
ary state, the total fluorescence intensity is pro-
portional to the number of atoms, which is the
normal situation. On the contrary, when the sys-
tem is in the cooperative stationary state the total
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fluorescence intensity turns out to be inversely
proportional to the number of atoms. This striking
cooperative effect is just the opposite of what oc-
curs in superfluorescence, in which atomic coop-
eration gives rise to a radiation output proportion-
al to the square of the number of atoms.

(b} According to the one-atom theory of reso-
nance fluorescence' the spectrum becomes three-

, peaked (dynamical Stark shift, DSS) in a continu-
ous way'as the intensity of the external field is
increased. In fact the two sidebands gradually
emerge from the central line when ~z -y. This is
a kind of second-order phase transition. In our
theory, using the regression hypothesis we ten-
tatively associate the linewidth and the shift to the
real and imaginary parts of the damping constants
given by the linear stability analysis. In such a
way we obtain a qualitative description of the spec-
trum. This shows that when the bistability condi-
tion (1.1) is satisfied one should find a spectral
hysteresis cycle. Namely, when the cavity damp-
ing constant & is much larger than y, the resulting
picture is the following: The spectrum remains
single peaked whenever the system is in the coop-
erative stationary state. Hence, no DSS appears
when Az becomes larger than y, provided ~z re-
mains smaller than y„. Also, one finds a line
narrowing as Qz approaches y„ from below (i.e.,
approaching the discontinuity point Ej+). This
cooperative line narrowing is connected to the
critical slowing down mentioned above. Only when
crossing the value Q, =y& (i.e., jumping to the one-
atom stationary state) one finds an abrupt appear-
ance of the three-peaked spectrum, with two al-
ready widely separated sidebands. The substitu-
tion of the condition Az&y by the condition Az&y~
for the appearance of the DSS is not surprising;
what is striking is that the DSS arises discontinu-
ously.

Conversely, if one starts from values of Az
larger than y„, the system lies in the one-atom
stationary state and exhibits a large DSS. De.-
creasing z one finds that the spectrum becomes
a single narrow line as the discontinuity point Ez
is approached from above. Hence when 0z ap-
proaches (ysy) ' from above there is a continuous
disappearance of the DSS. This is again a remark-
able cooperative effect since when y&&y, then also
(y„y) '&y. Finally, when crossing the value (y„y) '
(i.e., jumping to the cooperative stationary state)
one finds an abrupt line broadening but without any
appearance of DSS.

In conclusion, these results suggest a certain
number of experiments concerning both the tran-
sient behavior of the transmitted light and the sta-
tionary behavior of the fluorescent light. The
semiclassical version of the model is presented

and illustrated in Ref. 2, while the deduction from
the Maxwell-Bloch equations is shown in Appendix
A. The fully quantum-mechanical model is given
in Appendix B. In Sec. III we deduce the stationary
solutions and show that when condition (1.1) is
satisfied all the relevant macroscopic quantities
exhibit a hysteresis cycle. The linear stability
analysis of the stationary solutions, with the proof
of the existence of a critical slowing down at the
discontinuity points Ez, Ez ~, is given in Sec. IV.
In Sec. V we treat the transient behavior of the
system. The spectrum of the fluorescent light is
finally discussed in Sec. VI. A preliminary ver-
sion of the present work is given in Ref. 4.

II. MODEL

A coherent monochromatic field Ez of frequency
p is injected into a penc il -shaped optic al cav ity
of length L and volume V, such that ~ is equal to
an integral number of wavelengths (i. e. , zero cavity
mistuning). The cavity has mirrors of ref lectivity
coefficient &, and contains»&1 two-level atoms
with transition frequency ~, (i.e., homogeneously
broadened medium, no detuning with the incident
field). Apart from the external field E~ no other
mechanism to pump the atoms is considered in the
present model. The atoms are assumed to be ini-
tially in the ground state. The coherent interac-
tion between the field propagating along the longi-
tudinal axi.s and the atoms is described as follows.
Once entered into the cavity, the injected field in-
duces a macroscopic pola"ization S and changes
the population difference

b = (N, N)/2, -
where K, (N, ) is the total population of the lower
(upper} level. The polarization radiates in turn a
reaction field which adds itself to the incident field
giving rise to the total internal field E. Obviously
the central frequency of S and F- coincides with the
frequency of the incident field. The incoherent
atomic decay is characterized by the transverse
and longitudinal relaxation rates y, =&, ', yj~ =T, '.
Our model equations are derived in Appendix A
from the equations (Maxwell-Bloch type) which de-
scribe the interaction of matter with two fields
propagating in opposite directions in the medium
with coherent coupling between the two traveling
waves. The derivation is based on the proper
boundary conditions for the field' and on suitable
approximations which are quite reasonable when
the transmittivity coefficient & =1-& is small.
The model consists of three coupled time-evolu-
tion equations for the real quantities S, &, and E,
which are precisely and respectively defined as
the space averages of the polarization, of the
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population difference, and of the field propagating
in the forward direction (i.e., the direction of the
incident light). The equations are:

. S = (P/N}z. h —res,
~ = -(v/I }ZS —r(i(& —2&),

Z = -gS —~[z (Z,—/Wr)],

(2.2a)

(2.2b)

(2.2c)

where p, is the modulus of the atomic dipole mo-
ment times V3,

g= (4w&u, /3V)p, (2.3)

is the coupling constant, and & ' is the roundtrip
transit time of the photons in the cavity times &,

a' =cT/2I, , (2.4)

In writing Eqs. (2.2}we have extracted a rapidly
varying factor exp(-&&a, t) from S, Z, and Zz. The
field ~~ transmitted by the cavity is given by

Zr =vTZ (2.5}

while the fieM F~ reflected by the cavity is com-
plementary to the transmitted field

Zs = Ãr Zr}'. - (2.6)

The coherent terms in Eqs. (2.2) describe the in-
teraction between the field and the atoms in the
dipole and rotating wave approximation, while the
incoherent terms describe the atomic decay and
the escape ofphotons from the cavity (propagation).
In particular, the damping term in Eq. (2,2c)
arises from propagation and from the boundary
conditions (see Appendix A). Its structure can be
intuitively understood as follows. When the cavity
is empty of atomic material (p=0) the stationary
solution of Eq. (2.2c) is

z =z, /Wr,

i.e., Zr =ZI by Eq. (2.5). This is the usual situa-
tion for an empty Fabry-Perot perfectly tuned to
the incident field. E, is a fixed constant which we
assume for definiteness to be E, ~ 0. Putting El
=0 and replacing -2& by a positive inversion our
Eqs. (2.2) reduce to the one-mode laser model in
a ring laser cavity in the semiclassical approxima-
tion. ' Furthermore, Eqs. (2.2) with Zz =0 and
A =0 (cavity without mirrors) reduce to the mean-
field model for superfluorescence again in the
semiclassical approximation. ' Hence Eqs. (2.2)
generalize these physical situations to include the
effect of the injected field.

The reaction field is given by

Zreact = (g/~)s (2.6)

(2.9b)

(2.9c)

Neglecting the reaction field, i.e., setting E...t

=0, the atomic equations (2.9a) and (2.9b) become
a closed system of linear equations for S and &

which coincide with the equations for resonance
fluorescence (in the case of exact resonance and
for T =1) studied in Ref. 9(a). In these works' re-
sonance fluorescence is described as the interac-
tion of the external radiation field with a single
atom, assuming that the atoms evolve indepen-
dently of one another, so that S and & are simply
proportional to &. On the contrary, in the present
paper we take into account the cooperative effects
arising from radiation reaction via the nonlinea~
terms in Eqs. (2.9). We stress, finaBy, that Eqs.
(2.2) can be easily deduced from a fully quantum-
mechanical model using the semiclassical approx-
imation. Such a model is a simple genera1ization
of the one-mode laser model with running wave. '
The derivation is shown in Appendix B. The avai1. —

ability of a quantum-mechanical model is very im-
portant since a rigorous discussion of the spec-
trum of the fluorescent light requires a fully quan-
tum-mechanical treatment.

III. STATIONARY SOLUTIONS AND BISTABILITY

Let us now look for the steady-state solutions of
Eqs. (2.3) (i.e. , S= &=Z=0). For this purpose it
is convenient to introduce the Rabi frequencies'
A~ and Al in the total internal field and in the in-
cident field, respectively:

0r = p,z/I = (I /V T )(pzr/4),

0, = (I /v T)(pz, /5), ,

(3.1)

where we have used Eq. (2.5). Similarly, let us
define the saturation parameters & and p in the
total field and in the incident field, respectively:

~rl(r»ii) ', x =~I/(r rii) '
~ (3.2)

Now in the stationary situation, Eqs. (2.2a} and

(2.2b) give the typical expressions of S and 4 in
terms of s:

These equations link the reaction field, the absorp-
tion [Eq. (2.8)], and the reflection [Eq. (2.7)].

Equations (2.2) can be rewritten as follows:

S=0/&)I-- .g, /~~)l~ r,-S, (2.9a)

& = —(v/@)tZ-. t +(Z&/~~)]s —rii(& —2&),

Ereact = 8'~ ~Freact

Z, „=Z Z /vT =(—Z —Z )/vT =Z„/vT, (2.V)

where Eqs. (2.5) and (A16) have been used. Fur-
thermore from Eq. (2.2c) one has that in the sta-
tionary situation (Z = 0)

y )(
'2 X 2X

2
y y ++2 max' +g2

1a =-,N

(3.3a)

(3.3b)
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1 S2

1+& (3 ~ 3c)

On the other hand, inserting (3.3a) into Eq. (2.2c)
with E= 0 one gets the "state equation" which for
any given y (i.e., for any given Ez} fixes the sta-
tionary values of x (i.e., of Er}:

y =x +2Cx/(1 +x'),
where

C= y& ggN
y~

' ~ 28K SVkz

(3.4)

(3.5)

C = e„,I /2 (1 —8) . (3.7)

The parameter C is controlled by varying the den-
sity p, the length L, and the ref lectivity&. In the
one-atom theory (i.e., Ereacg =0, so that Zr =E,),
by definition [cf. (3.1), (3.2)] x ~y, which is the
solution of Eq. (3.4) if one neglects the term with
C. In this case, we see from Eqs. (3.3) that S, &,
and &, are proportional to N. Hence the term con-
taining C in Eq. (3.4} describes atomic coopera-
tion, as is also apparent from the fact that C is
proportional to the cooperative linewidth y&. Since
p„~N, the solutions of Eq. (3.4) depend in general
on &, so that when the term with C is important
S, &, and N, are no longer extensive quantities.
The physical interpretation of Eq. (3.4) is clear.
In fact, taking into account Eqs. (3.1) and (3.2) we
see that Eq. (3.4) can be rephrased as

(3.4')

where I, = p'/&5'z~r~~ is the saturation intensity.
Clearly the cooperative term describes absorption
from the atomic system. It is a nonlinear absorp-
tion term which gives rise to all the interesting
features of the present model. " It has a typical
saturable absorption structure which stems from
the dependence of S on the saturation parameter

In fact, in the saturation region»&1 the co-
operative term is negligible, whereas in the un-
saturated region it is relevant and can dramatically

%e note that for & =0, &„=y' is the characteristic
time of suyerfluorescence. ' In the case of pure
(i.e. , single pulse) superfluorescence, the time
duration of the hyperbolic secant pulse is -2&~, so
that y& is the cooperative linewidth. Hence C is
the ratio between a cooperative and a noncoopera-
tive decay rate. The expression (3.5) of y„can be
rewritten as'

(3.8)

where y is the natural linewidth, ~0 the wavelength
and p =N/V the atomic density. On the other hand,
taking into account the relation which links y„, y,
and the absorption coefficient o.,&„"one has

change the physical picture given by the one-atom
theory. To obtain the dependence of E& on El one
must invert the function y(x} given by Eq. (3.4).
This amounts to solving a cubic algebraic equation,
so that E~ can be a multivalued function of El.
More specifically, the function y(x) has a qualita-
tively different shape according to whether C &4
or C&4 (see Fig. 2). In other words, C =4 is a
critical value which separates two physically dis-
tinctsituations. Infact, for C&4, y is a monotonic
function of x, so that the inverse function x =x(y)
is single valued. So the transmitted light increases
monotonically and continuously with the incident
light. Also, the other physical quant;ities which
are continuous functions of x (as, e.g. , the total
fluorescence intensityI~ which is proportional to
the population of the upper level N, ) vary continu-
ously with the incident light. Hence in this case
the physical picture is not qualitatively different
from that given by the one-atom theory. The only
relevant difference is the presence of a region in
which the differential gain d@z/dEI exceeds unity,
i.e., where dy/dx&1. This phenomenon has been
experimentally checkeQ in Ref. 6."

On the other hand, for C &4 the function (3.4)
has one maximum &„, and one minimum x, given
by

2C +I S'2

C —1 + (C~ —4C)'i'

x„=[C—1+ (Ca 4C}i/2]u

(3.8a)

(3.8b)

ya:E

&m

Xg Xa

XaS

X3

FIG. 2. Plot of the function y =x+2Cx/(1+x~) for
C=l and C=20, For C»l one has xz -—1, y& -—C,
x =~2C, and y~ =~BC. Points x& and x3 are stable,
points x2 are unstable.

Hence x is a multivalued function of g. In fact, Eq.
(3.4) has one solution x, for y &y„, three solutions
x, &x, &x, for p &p&p„and one solution &, for p&g„.
%e stress that exchanging ordinates with abscissas
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in Fig. 2 for C&4 one obtains a graph which closely
resembles the numerical plot of F~ vs EI given in
Ref. 5. In the following, we shall consider the
situation C»1 in which the maximum and the min-
imum are well pronounced and separated. In this
situation, one has

In particular, for Y=g =48C one has

8, = (y ly ) '[N/(8C) '] = II /»„
where we have introduced the notation

I, = p, g/h z = 4 m&v, g'/3VRz,

so that y„= 1,2& and

(3.13a)

(3.14)

x„=v2C, ye=0'8C.
(3.9)

2C =I,N/2y~ . (3.14')

The stationary solution x, can be approximately
calculated neglecting the term x in Eq. (3.4). This
gives

y/[C + (C2 y2)l/2]

For y&y =v'8C, one has the linear relation x,
=y/2C«1. In particular, for y=V8C, x, =&2/C.
On the other hand, the stationary solution x, can
be approximately calculated by neglecting 1 with
respect to &' in the cooperative term of Eq. (3.4).
One obtains

(3.10)

x, =,'-y[1 + (1 —8C/y')'t'] .

jy 1/2 1 y 1/2 +
(y x, y y 1+(1—8C/y')'~~ '

2 2

(3.12a)

(3.12h)

In particular, for P &g& = C one has the linear re-
lation x, =p»1. The linear stability analysis per-
formed in the next section shows that points x, and

x, are stable, whereas points x, are unstable.
Since, for p &C, x, practically coincides with the
one-atom solution, we shall calI x, "one-atom
stationary state. " On the other hand, point x,
arises from atomic cooperation, so that we term
it "cooperative stationary state. " So for C & 4 and
p &p&p& the system is bistable, and it is easy to
see how the hysteresis cycle of E& vs EI arises.
In fact, onemust simplyerasefrom the plot of Fig.
2 (C &4) the part with negative slope (i.e., the part
corresponding to the unstable points &,) and ex-
change the axes x andy in order to have a plot of
transmitted light versus incident light. In such a
way one obtains Fig. 1. The discontinuous changes
occur when the system jumps from the coopera-
tive to the one-atom stationary state or vice versa.
The transition points g~ =48C and p„=C cor're-
spond to 0, = 2 (y„y, )' ' and Il, = 2ys (y ~~~y~)'

' respec-
tively. Note that the jump is of a factor C at both
transition points (see Fig. 1).

Clearly from Eqs. (3.3) we see that one finds a
hysteres'is cycle in all other relevant physical
quantities. In fact, using Eqs. (3.3) and (3.11)we
see that when the system j.s in the one-atom sta-
tionary state x„which corresponds to practically
complete saturation (i.e., &,» I) one has

s, =s.,„(2/c) . (3.1Sh)

Note that in this regime S and +, are proportional
to &, which is the normal situation. Qn the other
hand, from Eqs. (3.3) and (3.10) we see that when
the system is in the cooperative stationary state
x, one has

~i = (Ny/4C)(ys/»)'"=I~I fl„
N.'" =Pl4C')[y'/[I+(I-y'/c')'"]],

(3.15a)

(3.151)

where to deduce the last term of (3.15a) we have
used (3.2) and (3.14'). Note the linear dependence
of S, on&. In particular, for p =p =v'SC one has

Ni» =N/C (S.le a)

where for p =p„= C one has

N —~N, $ —$~,„,(z) (S.18h)

Note that since C ~& in this regime S turns out to
be independent of & and N, is inversely propor-
tional to N. This means that the total fluorescence
intensity I~, svhich is PxoPoxtional to &„ is in-
versely proportional to the number of atoms, This
is a striking cooperative effect. Furthermore
from Eqs. (3.1), (3.2), and (3.1G) we also see that
in the cooperative stationary state the transmitted
field amplitude is inversely proportional to the
number of atoms (whereas in the one-atom sta-
tionary state one practically has E& =E, indepen-
dent of N). The physical interpretation of this
cooperative behavior of the quantities E&, S, and
Iz in the state x, is as follows. In the bistable si-
tuation, the system has two possibilities. The
first possibility is that the incident field EI inter-
acts with the single atoms separately (one-atom
stationary state) In other. words, the interaction
of the incident field with each atom is unaffected
by the presence of the other atoms. In this case,
since the saturation parameter p of the incident
field is large, the atoms get saturated so that the
absorption is negligible and the medium is prac-
tically transparent. The second possibility is that
the incident field interacts with the atomic system
as a whole (cooperative stationary state). The

To derive the last term of Kq. (3.13a) we have used
Eqs. (3.2) and (3.14'). For y =y„=C»l Eq. (3.12a)
gives [cf. Kq. (3.3a)]
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FIG. 3. Hysteresis cycle of the fluorescence inten-
sity per atom. Full (dotted) line arrows indicate the
variation obtained increasing (decreasing) the input
field EI . The upper part of the plot corresponds to the
one-atom stationary state x3.
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atoms cooperatively create a reaction field which
counteracts the incident fieM. In this case, E, is
strongly absorbed and hence reflected [cf. Eqs.
(2.7) and (2.8)], so that the transmission is very
low. In such a situation an increase of the number
of atoms enhances the absorption. Hence, in the
limit of large N with fixed EI the incident light
gets more and more completely absorbed; this
explains why in the cooperative stationary state
for C»l, S is practically independent of N. Equa.-
tions (2.7), (2.8), and (3.15a) show that this situa-
tion corresponds to practically complete reflection
E„=-E,. Simultaneously the transmitted and fluo-
rescent light tend to vanish in the limit of large N.

The hysteresis cycles of I„and S vs EI are shown
in Figs. 3 and 4, respectively. Note that the jumps
are at least of a factor of 2 both for S and for I„.

IV. LINEAR STABILITY ANAI. YSIS AND CRITICAL
SLOWING DOWN

Not to overburden the notations, we shall indi-
cate by S, &, and E the generic stationary solu-
tion of Eqs. (2.2) and by ~S, ~&, and « the cor-
responding deviations from the stationary values.
Retaining only the terms which are linear in &S,

«, and «one obtains, from Eqs. (2.2}, the

following set of linearized equations:

5$ =-y~5S+(p, /I)E«+(p/S)6«,
« = (pk-}E6s yii«——(p/h}s«,
~E = -g~s- «E.

(4.1a)

(4.1-b)

(4.1c)

Let us look for solutions of the type

6g =g ' 6g,

(4.2)

The system (4.1) admits nontrivial solutions only
if ~ is an eigenvalue of the matrix

(4.3)

The characteristic equation det(M —&1}=0 gives

FIG. 4. Hysteresis cycle. of the polarization. Arrow
convention as in Figs. 1 and 3. The part of the plot be-
ginning from the origin corresponds to the cooperative
stationary state x&, while the other branch corresponds
to the one-atom stationary state. $I~ is defined as
—.'~(v„&v, )"'.

~'+ (r, + rii +~)~'+(r, rii + ~r, + ~r~~ + (p/h)g~ + (v'g'}E'j~ + ~r~rll + (p/~)gag& + (u'4')&E' (u'/I')g Es =-0. (4.4)

~'+a, ~'+a, A. +a =0,
g 'jg +/g +K

(4.6)

(4.7a}

Taking into account that in the stationary state

(4.5)

and using (3.1) and (3.14), we see that Eq. (4.4)
becomes

~, =r rg+~r, +~rii+&~,&+(Pg-~P)', {4.7b)

~, =~[r,yg +rgb~ + (a, rS ) (a, 2I,S)]-(4.7c—).
The stationary solution is stable if and only if all
the roots of Eq. (4.6) have a negative real part.
As it is shown in Appendix C, using the extended
Routh-Hurwitz theorem'4 one sees that the sta-
bility cohdition for this problem is simply
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a &0.-. (4.8)

Now inserting into (4.7c) the expressions (3.3a)
and (3.3b} for S and 6, and taking into account that

by (3.2) and (3.4),

&, = (~.~ )"{x+[2«/(I +x')1),
we see that condition (4.8) becomes

(4.9)

y~~I,N g2 2Cx y ~~

2 I,Nx
yy 2(l,'. )

'(y )'" 1,. —
y, 2(1..)

2Cx ~2 l Ãx
1+x y 1 +x2 ~ (4,10)

Using the relation (3.14'}one verifies by str'aight-
forward algebra that (4.10) reduces to

(1 +x2)'+2C(1 —x') & 0

Equation (4.11) is precisely the condition

dy/dx~ 0.

(4.11)

(4,12)

Hence a solution of the stationary equation (3.4) is
stable if and only if it lies on a part of the plot y(x)
with positive slope. This proves what was anti-
cipated, i.e., that points x, and x, are stable,
whereas points x, are unstable. The stability con-
dition (4.8}can be immediately used to establish
an important result, i.e., the existence of a cri-
tical slowing down in correspondence with the
transition points y„, y„(i.e., Zz, Zz ). This cri-
tical slowing down is similar to that which occurs
in. tunnel diodes. " In fact, let a,~ be the coeffi-
cient ao appearing in the characteristic equation
(4.6) for the stationary solution x, . As y-y„-one
has that x, -x„-and that y'(x, )-0. From what we
just demonstrated

dy/dx& 0 ~ a, & 0,
so that

ao 0 fo(z) (4.13)

V. TRANSIENT BEHAVIOR

Let us consider a stable stationary state of our
system. If at a given time the state of the system

Hence one of the roots (and only one, because a, is
always positive} of the characteristic equation
(4.6) corresponding to the stationary solution x,
tends to zero as p-y&-. This means that the co-
operative stationary solution x, exhibits a critical
slowing down as E, approaches the transition point

from below. In fact, the roots of the charac-
teristic equation (4.6) give the rate with which the
system returns to the stationary state once it has
been slightly removed from it. Hence @s E'~ ap-
proaches E~ from below the system returns to
the stationary state x, more and more slowly.
This phenomenon concerns all the physical quanti-
ties, i.e., S, &, &„E, and in particular the trans-
mitted light. The proof of the existence of a cri-
tical slowing down as E~ approaches E~~ from
above is completely analogous. This situation characterizes superfluorescence as

opposed to the usual laser systems.
(i) y =y„=AC, x =x,. Within higher-order cor-

rections in C ', one finds the three roots

yll ~b yz, A. = -K (5.2)

I

differs slightly from this stationary state, the ap-
proach to the steady situation is ruled by the three
exponentials exp(A. ,t) (i =a, b, c), where &, are the
roots of the characteristic equation (4.6). The ini-
tial deviation from the stationary state can arise
either from an external Perturbation or from a
spontaneous fluctuation of the system. In this sec-
tion we discuss the first possibility, i.e., the
A ansient behavior of the system. Qn the other
hand, in Sec. VI we shall illustrate the possible
implications of the linear analysis with respect to
the spectrum of the fluorescent light, which arises
froid the fluctuation in the stationary situation,
The transient behavior can be experimentally
studied in the following way. Let us assume that
the system is initially in a stable steady state cor-
responding to some value E~ of the external field.
If Zz is suddenly changed into Zz+6Z~ (~&Z~~«Z, )
the system approaches the new slightly different
steady state corresponding to E~+&E~. This ap-
proach is described by a solution of Eqs. (4.1) and
can be experimentally observed by looking at the
transient behavior of the transmitted light.

Let us now analyze the roots of the character-
istic equation (4.6). We have approximately solved
Eq. (4.6) for both stable steady states x, and x, in
the neighborhood of the transition points y and yz.
We have done this for C»1, neglecting higher-
order corrections in C '. Since the zeroth-order
term ao in Eq. (4.6) vanishes for (y =y„,x =x„f and
(y =y, x =x } due to the critical slowing down, the
value of x, for g =y„—& and the value of x3 for

+e must be evaluated with some accuracy.
This evaluation is explicitly given in Appendix D.
The analysis of Eq. (4.6) in the four cases

(y =y, x =x,), fy =y„—e, x =x,},
(y Ryu, x =x f, (y =y~+6, x =xq), '

is shown, instead, in Appendix E. Here we simply
review the results and comment on them. Let us
first consider the case
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for w»y» and

1 ~

A. = —y(( A.~
——-as k 'L(xmas) (5.2')

for I(')) y
(j,i) y =y„—e = C —e, x =x,. In this case one

finds

[1 —(y'/C')1'
~.=-»ii 1+[1 (y2/Cs)]Us s

A., = --,'y„{1+ [1 —(y'/C')]' '}, (5.3)

for w»yz, and

[1 —(y'/C')] '
a Nil 1 +[1 (y2/C2)]1/2

x ~ t (1 g jl [I (y2/C2)]1/2] )1/

(5.3')

for a«ys. Note that (5.3) and (5.3') reduce (5.2)
and (5.2') for y/C«1.

(iii) y&y„=C, x=x,. One gets the roots

k(If+vs) + &QE
(5.4)

A. =-g.C

[(y2/8&) 1]li 2

'
2&,+j„2j,[(y'/8C) I]'~"

~, = -(2y, +yU —2y, [(y2/8C) —I]"'},

The result (5.4) is independent of the assumption
(5.1).

(iv) y =y +c = 48C +e, x =x,. One obtains

relaxation rates y~, y~~ while the frequency of oscil-
lation is the Rabi frequency 0,. Let us now de-
crease the incident field starting from values E,
&&&i'I (i.e., y &y„). Since & =&, is real in the neigh-
borhood of y =y„+& [cf. Eqs. (5.5) and (5.5')], the
oscillatory character of the approach to the one-
atom stationary state continuously disappears as
P is decreased from p& to p . Furthermore, ap-
proaching the value p = v"8C from above ~ tends to
zero (critical slowing down) as (y —y„) '. Finally
crossing the transition value g =p, the rate con-
stant ~ suddenly jumps to the value ~ =-y~~, closing
the cycle. The hysteresis of the real and imagi-
nary part of the rate constant -~ is shown in Fig.
5,

We note that when & is dominant over all the
other characteristic rates in play (i.e., not only

y~, y~~ but also Ijr, y„) the field E can be adiabatical-
ly eliminated from the model equations (2.2) [i.e.,
one can put Z =0 in Eqs. (2.2c)], obtaining the two

(a)

C

for Kp~ Kpg++I and one obtains

[(y'/8C) —1]~'
1 +2[(y2/8C) —1]+' '

2[(y2/8C) —I]»2
1 +2[(v*/ac) —1]~*)

+ iaQ~(l +2[(ya/8C) —1]~sj~a

(5.5)

(5.5')

for x«QI. On the basis of Eqs. (5.2)-(5.5') we
can now discuss the hysteresis cycle in the tran-
sient behavior. Since the damping constants ~„
~~, and ~, are well separated the approach to the
stationary state is mainly characterized by the
slowest decaying exponential exp(Xt). In all the
four cases considered one has X=X,. Hence, from
Eqs. (5.2), (5.2'), (5.3), and (5.3'), we see that
the approach to the cooperative stationary state is
monotonic, because ~ is rea1.. Approaching the
value g„=Q from below the rate constant ~ tends
to zero (critical slowing down) as (ys —y)' '. At
the transition value p =p& the rate constant ~
changes discontinuously and becomes complex
[see Eq. (5.4)]. Hence the approach to the one-
atom stationary state for p &p& is oscillatory. The
rate of approach is given by the mean value of the

IC' = 2g
K» g,
C =2O

~SC

FIG. 5. Behavior of (a) the real part, and (b) the ima-
ginary part, of the damping constant X, which charac-
terizes the approach to the stationary state. Arrow
convention as in Figs. 1 and 3. The part of the plot be-
ginning from the left corresponds to the cooperative
stationary state x&. For y &C»1 one has that ~1m'

~

= Oz»
~
ReX (

=y„. Decreasing the incident field, ImX
vanishes when y is only very slightly larger than y
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closed equations for S and ~:
(2y—/N)Sr ~n&s —y S,

L = (2y„/N)S' —Q~S —y~, (b. —2N).
(5.6)

5x = —«(I + 2C[ (1 —x')/(1 +x')'])5x .
From Eq. (5.9}we get

I& (1 +2C-[(1 —x')/(1 +x')'g .

(5.9)

(5.10)

Using Eq. (5.10), we obtain in the four considered
cases:

(i) y =y„= (8C)~', x =x .

~ =-2zC, (5.11)

(jjj) p & )& —C, x =xz.

(jv) $ =J~+E —(8C) +&, x =x3.

X =-2m[(y'/8C)-1]~'.

(5.12)

(5.13)

(5.14)

Hence, in the case «&y, y~~ one also obtains a
hysteresis cycle for the transient behavior. The
main difference from the case &»y~, y~~ is that now

the approach to the stationary state is always mo-
notonic.

VI. SPECTRUM OF THE FLUORESCENT LIGHT

The description of the spectrum of the fluores-
cent light requires the analysis of the fluctuations
(time correlation function) of the fluorescence
field around the stable stationary states. As shown
in Ref. 9(a), the fluctuations of the fluorescence
field are in turn simply related to the fluctuations
of the polarization. Of course the study of these

In this situation, one can discuss the transient be-
havior by ljnearjzjng Eqs. (5.6}. Hence ohe ob-
tains a characteristic equation of second degree,
which can be solved more easily. The two roots
that one obtains coincide with the roots ~, and ~,
given by Eqs. (5.2)-(5.5}, respectively, in the cases
(j)-(iv).

Let us now consider the situation

(5.7)

In this case, we shall evaluate the damping con-
stant ~ by adiabatically eliminating the atomic
quantities S and b, from the model equations (2.2).
Hence, using Eq. (3.2) we obtain the closed equa, —

tion for x ~E,
x = ~(y —x —[2Cx/(1+x')j), (5.8)

which gives the linearized equation

fluctuations requires a fully quantum-mechanical
analysis. However, on the basis of the regression
hypothesis we can assume that the time dependence
of the polarization fluctuations in the stationary
state is well reproduced by the transient approach
of the polarization t0 the stationary state. Since
we have analyzed this approach by means of the
characteristic equation (4.6), we can get some in-
formation concerning the spectrum.

We recall-that the presence of oscillations in the
time correlation function is a necessary condition
for the existence of a DSS (i.e., three-peaked
spectrum) which in fact appears when the shift
becomes larger than the linewidth. Hence in this
spirit we shall consider as a necessary condition
for the appearance of a DSS the presence of oscil-
lations in the approach to the stationary state.
More specifically, we shall tentatively estimate
the linewidth of the incoherent part of the fluores-
cent light as 2 I Re%. I and the shifts as ~lm&~. In the
following we shall consider the case (5.1}, which
is more interesting. On the basis of Eqs. (5.2)-
(5.4) we can now discuss the discontinuous change
in the spectrum which occurs when increasing the
incident field up to the transition value p =p„(j.e.,
E, =E, ). Let us consider for simplicity the case(+)

y =y,~=y. From Eqs. (5.2)-(5.3') we see that
when the system is in the cooperative stationary
state x, the spectrum is single peaked, because
the approach to x, is monotonic (X=~„real}. Fur-
thermore one has a line narrowing (&-0) as S ap-
proaches p„ from below. When crossing the tran-
sition value p =g„one has an abrupt appearance of
a large DSS, which coincides with that predicted
by the one-atom theory in the high-intensity limit.
In fact the shift is given by the Rabi frequency Q~
and for y~, =2y one sees that 2 ~ReX, , ~

coincides
with the width of the sidebands as predicted in

Ref. 9. These sidebands are well separated, be-
cause from Eq. (3.2) II, = (z y~~)' 'X =yS = yC» y
Therefore the condition for the appearance of the
DSS is y &y~=C, which for y~= y„=y means (ne-
glecting factors of 2) Q, &y„. The threshold Q, =y~
can be well understood by referring to the Rabi
frequency O~ of the total internal field instead of
referring to the Rabi frequency A~ of the incident
field. In fact p &C corresponds to x&1, which for
y~=y~~=y means O~&y. Now the atoms are acted
upon by the total internal field, which for p & Cis
not intense enough to give rise to a DSS. Only
crossing the transition value E~ the intensity of
the internal field abruptly increases giving rise
to a large DSS.

Figure 6 compares the picture one has below
the critical density of atoms (y~ & y) with that
which one obtains when atomic cooperation is dom-
,inant (y„»y}. In the latter case one has a kind of
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first-order phase transition in the spectrum at
the transition value Zl~ ~ (i.e., Qz =y„).

Let us now discuss the discontinuous change in
the spectrum which occurs when decreasing the
incident field to the transition value p =p„'(i.e.,
EI = Ez~ ). Again we refer for simplicity to the
case y~~yI[=y. %e know that for g~g&when the
system is in the one-atom stationary state the
spectrum is three-peaked. However, approach-
ing the transition value El from above the spec-
trum becomes a single narrow line, because as
shown by Eqs. (5.5) and (5.5'), X=~, becomes real
and ~-0. Therefore because of the critical slow-
ing down one has a continuous disappearance of
the DSS as EI—EI +&. Let us remark that for
g =p, C» 1 one has not only Qz = (ysz) ' » y but
also Qr =Q~ »y (systematically neglecting factors
of 2). Hence for high density (y„»y) the DSS dis-
appears when the field is decreased much earlier
than expected on the basis of the one-atom theory.
This is another cooperative effect. Finally cross-
ing the value EI from above one finds an abrupt
change from the narrow line (5.5) and (5.5') to a
line of width 2y~~ [cf. Eqs. (5.2) and (5.2')] which is,
however, still one-peaked.

Thus Eqs. (5.2)-(5.5') describe the spectral hys-
teresis cycle. We stress that the conclusions con-
cerning the line narrowing for p-p„—E and p-p
+& are independent of the assumptions &»yj, yI),
C+~&, and yj. =yg =y. In fact, they follow simply
from the existence of a critical slowing down,
which has been rigorously established in Sec. IV

under the only condition C&4. Clearly all the
statements of this section must be substantiated
by a complete quantum-mechanical analysis,
which should also give the analytical shape of the
spectrum of the fluorescent light. "

Note added in proof (a.) After submission of
this paper, we have analyzed the problem of opti-
cal bistability in a ring cavity, which does not
present standing-wave effects. We have solved the
Maxwell-Bloch equations at steady state, with
proper boundary conditions. As a result we get an
exact analytical expression for E~ as a function of
E~, which takes fully into account propagation ef-
fects. The mean-field approximation is recovered
in the limit n,„,L-0, T-0 with a,~L/T=2C fixed
and arbitrary. In practice, for C= 10 the mean-
field treatment turns out to be valid up to n,~L =1.
Hence, the predictions made in the present paper
are certainly correct for a ring-laser geometry
and n ~, L, not too large. (b) In Sec. VI we have
made some predictions concerning the spectrum
of the fluorescent light. Of course the same pre-
dictions hold for the spectrum of the transmitted
light, which is given by the Fourier transform of
the time correlation function (A~(t)A) (see Appen-
dix 8). We have recently calculated this correla-
tion function using the quantum-mechanical model
shown in Appendix B. The re'suit is that the spec-
trum of the transmitted light is composed of a
coherent part proportional to the transmitted in-
tensity and an incoherent part whose behavior fits
all the predictions made in Sec. VI. These results
will be discussed elsewhere.

ONE - ATOM
'

BEHAVIOR

COOP ERATIVE BEHAVIOR

4 ~~. K'

E,

APPENDIX A

Let 8 (z, t) be the positive f requency part of a field
with central frequency or, propagating in the active
medium along the longitudinal axis s. The optical
cavity contains N two-level atoms with transition
frequency &o,. Let P(z, t) be the macroscopic po-
larization field and let D(z, f) be —,

' the population
difference between the lower and the upper level.
Let us introduce the slowly varying envelope
approximation as it follows

8 (z, f) =Ez(z, t) exp[ i((o,t+ z,z)]-
+Ez(z, f) exp[-i(a), t- z,z)],

S (co)

Ko = (do/C, (A1)

I I

CXi

ET
EF

E,

FEG. 6. Behavior of the spectrum of the fluorescent
light for increasing incident field EI when f(» y J
and p J p II

—y; For yz & y the DSS appears continuously
when DI ——y, for yz»y it appears discontinuously when

Or =&z

EB

FIG. 7. EI is the incident field. The interaction with.
the atoms gives rise to two fields E& and Ez propagating
in opposite directions along the z axis. Ez is the trans-
mitted field and Ez is the reflected field.
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where E~ and EB are slowly varying fields which
propagate in apposite directions as shown in Fig.
V. Correspondingly we put

P(z, t) =p»(z, t) exp[-i(ur, t+ Koz)]

+Ps(z, t) e xp[-i((o,t —z,z)]+c.c. ,
and

(A2)

8E& 8E~
8t 8z

C =-gPJ;q

8EB BZB
8t' +C-8' =-g'PB~

(A4a)

(A4b)

D(z, t) =D,(z, t)+[D,(z, t) exp(-2iz, z)+c.c.] (A3)

where P~, PB, D„and D, vary slowly.
Then, if one neglects the terms proportional to

exp(+3ikoz), the slowly varying fields obey the fol-
lowing field-matter equations".

I"G =EG, {Aio)

which holds when the fields are nearly uniform.
This is certainly the case when T «1.' - Then in-
tegrating Eqs. (A4) and (A5) over the space and
taking the boundary conditions (A6) and (A7) into
account we obtain the following set of equations:

E» —(c/L) [(R/T)'~'E„+ (1/WT)(E» —Er)] = -g'P»,

(Alia. )

E 0 B 1 L gy

= (u'/tf)(E, D, + E,D, ) y,P,—,

D, = (p'/tt)-(E , P +E P )-y„(D, N), —

D, = (I '/2a-){E P +E~ ) y„D, . -

(A12b)

(A12c)

Es+ (c/L)[(1/VT)E„+(R/T))~'(E» —Er)] = g'P~-,'

(A11b)

P =(y.'/ft)(E D +E D ) y P (A12a)

8P~ p~
= —(E»DO +EsD) ) —y).P», ,

(EB 0+» 1) yI B &

8D, p,
'

1

8t I' (E»P» y—EsPz) -y(((D(&- zN),

8D, & p,
'

8t' 2 S (EzP—»—+ E—»Ps) -y„DI y

(A5a)

(A5b)

(A5c)

(A5d)

Equations (All) can be rephrased as follows:

d(E»+ UR Ez) c
+ —WT(Er —E») =-g'(P»+VRPs),

(A13a)

—WTE„= — '( RP P ).dt +L,
(A13b)

To close the set of Eqs. (A12), (A13) we introduce
the following two Ansatze:

where

g =(4v~, /V)t', (A5')
(I) E»=Es= E, P»=Pe =P,— —

4

(ii) E =Er/WT.

(A14)

(A15)

P, (z, O) =P, (z, O) =O,

Do (z, 0) = z N, D, (z, 0) = 0 . (A8)

For any field E(z, t) we consider the spatial aver-
age T(t),

T(t) = — dzF(z, t).
0

(A9)

Let us now introduce the mean field approximation

p,
' is the modulus of the atomic dipole moment and

all the fields have been assumed real. The para-
meters y, and y„have been defined in Sec. II.
Clearly the field D, couples coherently the for-
ward and backward propagating waves. The bound-
ary conditions for Eqs. (A4a) and (A4b) corre-
sponding to the physical situation described in
Sec. II, are'

Er(t) =WTE»(0, t), Es(0, t) =%RE»(G, t), (A6)

E (I., t) —VR E (L, t) = v TE, (AVa)

Ez(L, t) —vR E»(L, t) =v T Ez(t), (AVb)

where E„ is the reflected field amplitude (see
Fig. 7). Initially one has

E =E —E. (A16)

Thus the amplitude of the reflected light is sim-
ply complementary to the transmitted light.

From the first of the boundary conditions (A6)
we see that (A15) amounts to assuming for E the
value of E»(z, t) at the left boundary. Both as-
sumptions (A14) a.nd (A15) are reasonable for
T «1.' With Eqs. (A14) and (A15), Eq. (A13a)
becomes

E =-gV -«(E E,/vr),
where

a = c T/'L (1+vR ) = c T/2L .

(A17)

(A18)

On the other hand, with Eqs. (A14) and (A15)
Eqs. (A12) become

P = (l),'/K)E(D, +D,) —y„P,

D, = (2l).'/a)EP-y„(D, - ,'N), -
(A19a)

(Aisb)

Clearly Ansatz (A14) is compatible with Eqs.
(A12a,) and (A12b), which reduce to one equation.
Furthermore, (A14) with Eqs. (A13) implies im-
mediately that
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D, = (p-'/K)EP y—„D,.
Equations (A19b) and (A19c) imply that

(A19c) A, W= ~ ( [(A- a), W(A —o&)']

+[(&4 —n)W, (A —a)t]j,

—(Do —2D, ) = -y„(DO —2D, —~ N) . (A20)

Equation (A20) with the initial condition (A8) im-
plies in turn that

A„W = (,' y„(-[r;,Wr;]+[r-,w, r;])
+ (y, —,

' y„)([r„,wr„.]
+ [r,tW, r,&])}. (B8)

D, = ~(DO —2N) ~ (A21)

Hence introducing the quantity 4, =D, +D, we get
the foHowing two equations:

P = (p, '/e)E~ y,P, —

~= (3i'/ff)EP y„(~ ,'N). —

(A22a)

(A22b)

Finally, if one introduces the quantities

S=vS P, p=v3 i&,', g=g'/W3, (A23)

Eqs. (A17), (A22a) and (A22b) reduce to our model
equations (2.2).

Qt is a fixed real number. Note that the stationary
s~lutio~ of A~ (i.e., the solution of the equation
A~K=0) is the coherent state ~a ) (o. . The sec-
ond term in (B8) is a dephasing one. Clearly for
o& = 0 (B4) reduces to the usual one-mode laser
model in the case of no pumping. '

Taking into account that the mean value (0) of
any observable 0 is given by Tr(0W) and using
the commutation relations (Bl) and (B4) one easily
deduces from Eq. (B5) the equations

(B9a)

APPENDIX 8

Let A be the annihilation operator for photons of
the internal field. It obeys the boson commutation.
relation

[A,A~] = 1.

27747
(R,) =- ~o p, ((AR )+(&&itR ))

-y„((R,) + 'N), —

~ 2g(0
(A) =+ ' p(R ) -t&((A) —o.') ~

(BQb)

(B9c)

Let x&, r", be the raising and lowering operators
of the ith atom and let r„=,'(r&r, -r, r', ). -We con-
sider the 2 total population inversion operator.

R, =

and the collective dipole operators R' defined as

(B10a)

(Blob)

S=-(R ) =-(R'),
~=-(R,),
E 8gIMO

A
8K' 0 At, Bloc

Now, introducing the semiclassical approximation,
i.e., factorizing (AR, ) into (A)(R, ) etc. , one
obtains Eqs. (2.2) by setting

R' = r', exp(+ i ko x,),
=1

(B3)
g = (8vff&d /3V)'&'2 &x (B10d)

where k, is the wave vector of the injected field
andx, is the position of theithatom. 'The operators
R,R3 obey angular momentum commutation rela-
tions

(B4)

dW'

dt
= -iL ~$'+ Ap S'+ A~%', (B5)

where

[R,R-] =2R„[R„R']=+R' .
We call W(t) the statistical operator of the coupled
system (internal field)+ atoms in the interaction
representation. Let W(t) obey the master equation

a = (A) -a =(At) —c&,

(Bl1)g= (2v&d, /3AV) p, .
Note that in the present paper the symbol g in-
dicates a different coupling constant [cf. Eq.
(2.3)].

APPENbEX C

We mention finally that the model equations used
in Ref. 4 are simply obtained from Eqs. (B9) in
the semiclassical approximation using Eqs. (B10a)
and (B10b), and setting

L~zW = 8'[H~, W],
'

2~co e '~'
(B8)

Let us first recall the extended Routh-Hurwitz
theorem, which is well known in algebra and in
nonlinear mechanics'. " Consider the algebraic
equation of degree n,
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CQA."+C~A.
"" + ~ ~ ~ + C„=0, (Cl) y/2C = [x/(1+ x')]+ x/2C,

where the coefficients are real and C, &0. Let the
determinants D„ l=1, 2, . . . , n, be defined as fol-
lows:

D, =C, ,

so that by (3.3a)

n, /I, = S+ (yll/y, )'"-.'N(x/2C) &S,

which proves Eq. (C4).

c, C, I

7

C3 C2

C, C 0

D, — C, C, C,

C5 C~ C3

APPENDIX 0

Let us consider the stationary state equation
(3.4) in the case that C» 1 and y is slightly smal-
ler than y„. The roots x„x, can be obtained by
approximating the function f(x) = x +2Cx/(1+x') by
a parabola with maximum at x= x„,y=y„; that is,
we approximate Eq. (3.4) by

y= y~+ 'f" (xu)-(x —x~)'. (Dl)
C,

C3

CQ

C2

0 0 0 0

C, 0 ~ ~ 0
Since, neglecting higher-order corrections in C ',
one has

x„=1+C ', y„=C+1, f"(xg)=-C+3, (D2)

C2n-1 2n-2 2n 3

Eq. (Dl) is explicitly given by

y = C+1--.'(C —3)(x -1-C-')'. (D3)

P='V(cp, D„,D2/Dl, Dp/D2, .. . , D„/D„ i). (C2)

Let us apply this theorem to our equation (4.6).
We have

CQ= 1,
D = a2 = p~ + p() + K,

2 2 2 2
ala/ ap rJ-rll +rzril +~(r, + yll ) + (ri+ yll )

+ (y~+ v)zi, h + (y~ + yli )(n~ -I,S)'

+~(n, -I,s)I,s,
D3=aQD2.

(c3)

Now taking into account that by Eqs. (3.3) b, &0,
S& 0 and that

Let '(0n„n„. . . , n„) denote the number of changes
in sign in the ordered sequence Qy Q2 ~ ~ ~ Q„.
Then if D, 0 0 for L = 1, 2, . . . , n, the number I' of
roots. of Eq. (Cl) having ajositive reaf Pa& is
given by

The solution x, is given by
' j./2

x =1+C ' —(1+g C ') 2 1+ ——— (D4)

x, = 1+C ' —(1+—' C ') (1 —y~/C )
' ' . (D5)

Using Eqs. (3.3a) and (3.3b) and systematically
neglecting higher-order corrections in C and in
(1-y'/C')' ', one obtains the following values of
S and 6 in the stationary state x,:

S,= (yl /y~)' ' ,'N(1 + C '(1-y—'/C')' '], (D6a)

,'N[1 —C '+ (1+--,' C ')(1-y'/C')'I'] . (D6b)

The condition y=y„=C+1 [cf. Eq. (D2)] with (3.2)
and (3.14') implies that

(r /r, )''-.N=(n /I, )[1-(1/y)]
= (ni/I, )(1 —c '),

which, neglecting C ' in the root and taking into
account that for y = y„= C one has 2 = 1+y/C, can
be rewritten as

n, -I,S &O, (c4) so that Eq. (D6a) can be rewritten in the manner
we see immediately that D,/D, &0 and that s, =(n, /I, )[1-c-'+c-'(1-y'/c')" ]. (DV)

D,/D, 0 &a,~0. & (C5)

Hence, one has no root with a positive real part
(stability condition) if and only if a, &0. Equation
(C4) can be proved as follows. Using Eqs. (3.2)
and (3.14'), we get

n~/I, = (rll/y, )'"aN(y/2C).

On the other hand, Eq. (3.4) gives

y = y„+,' f"(x ) (x —x„)'. — (D6)

Taking into account that, within higher-order cor-

We can follow the same procedure to solve the
steady-state equation (3.4) in the case that C»1
and y is slightly larger than y .

The roots x„x, can be obtained by approximating
Eq. (3.4) as follows:
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APPENDIX E

L«us consider Eq. (4.6) for C»1 in the four
cases considered in Sec. V.

(i) Case y=y„= v'Sc, x=x,. We assume that x

»y„y'~. Using Eqs. (3.15a) and (3.16a) and neg-
lecting higher-order terms in C ' we see that Eq.
(4.6) is given by

P3+K~2+zyz~+zy[, yz = 0. (E1)

In the case z»y„we solve Eq. (E1) approxima-
tively by neglecting higher order -terms in y„/»
and obtain Eq. (5.2). On the other handfor , x «y„
we neglect higher-order corrections in z/yz and

get Eq. (5.2').
(ii) Case y=y„-e=c-e, x=x,. Assume that~

»y, y,~. Using Eqs. (D6b), (DV) and neglecting

rections in C

x =(2C)'t'(1 ——,'C ')

y =(sc)'t'(1 -'c-')
f"(x ) =(2C ')"'(1 -'C ')

one obtains

x, = (2C)'t'[1--,' C '+(1+- C ')(y'/SC - 1)'t'],

(DS)
from which, using (3.3a) and (3.3b),

s.= (y /y, )"[x/(sc)"']
&&g+4C '-(1+sc ')(y'/Sc-1)'t'], (D10a)

', =x/4C[1+ c-'-(2+ ~4 c-')(y'/Sc —1)'"]
(D10b)

The condition y=y =(8C)'~(1-& C ') with (3.2)
and (3.14'), gives

(y~~/y~) [N/(SC) ] —(Qg/2I~)[1+1/y(2C) ]

= (Q, /2I, )(1+-.' C-'),

so that Eq. (D10a) can be rewritten as

S, =(Qr/2I, )[1+g C ' —(1+8 C ')(y'/8C —1)'t2].

(D11)

Z +(yi+yii+z)& +~(yi+yii)&+~Qr =0 ~ (E3')

By neglecting higher-order terms in QI/e one ob-
'tains the three approximate solutions (5.4). On the
other hand, for Qz»z, y~, y~, Eq. (E3) reduces to

+(yk+yll +K)~ + QI'+ KQI (ESII)

Equation (E3") can be easily solved by neglecting
higher-order terms in v/Q» y~/Q» and y~~/Q'.
One again obtains result (5.4).

(iv) y=y„+e=v'SC+e, x=x,. Assumer»y„, y~~.

Using Eqs. (D10b) and (Dll) and neglecting higher-

order corrections in C ', Eq. (4.6) reduces to

'+KA+(z(2y~+. y~~) 2y~(y2/Sc 1)'tm

+&Q,'[1+2(y'/Sc 1)'']]y
+-,'~Q,'(y'/SC —1)'t'=O. (E4)

For my~, ay~~» Q,' Eq. (E4) can be approximately
solved by dropping the term 4 Qt2[1+2(y'/Sc
—1)' '], obtaining the roots (5.5). On the other
hand, for ~ «Q' one can drop the term x [2y'
+y„-2y~(y'/8C —1)'t'], obtaining the result
(5.5').

higher-order corrections in C ' we see that Eq.
(4.6) reduces to

A.'+zA'+-, «y„[1+(1-y'/C')' '] y

"y, y. (l-y/C )' =o. (E2)

This equation can be solved in. the two opposite
situations e»y sand z «y„exactly as Eq. (El),
obtaining the roots (5.3) and (5.3'), respectively.

(iii) Case y'y„=C, x=x,. Taking intoaccount
that in this case I,S QI Ixh y~ y][ and that

y„y~, «Qz, Eq. (4.6) becomes

g'+(y~+yp+x)~ +(xy~+Ky~)+Q~)~+zQI=O, (E3)

where 0,' ~ y~y„C. Note that in this case we have
not assumed a»y~, y„. We solve Eq. (E3) approx-
imately in the two opposite situations vy„wy„
»QI (which implies z»Qz and a fortiori &

»y~, y~~) and Ql»x, y~, yp. For Ky~, Ky~~ »Qg
Eq. (E3) reduces to
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