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Covariant photon interaction in atomic physics
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The covariant photon interaction between electrons is reviewed briefly. Its potential function in
configuration space is obtained unambiguously in a covariant perturbation calculation. Several different forms
are presented, and their applications in atomic physics are discussed. In addition, the general matrix
elements of various potential functions are given in terms of radial integrals, suitable for numerical
computations.

I. INTRODUCTION

The lowest-order interaction between electrons
in a covariant perturbation calculation in quantum
field theory is due to the exchange of four types of
photons, namely, two transverse photons, one
longitudinal photon, and one timelike photon. The
exchange of transverse photons gives rise to the
transverse interaction, which is better known in its
Breit approximation form, the Breit interaction.
The exchange of a longitudinal photon and a time-
like photon together leads to the instantaneous
Coulomb interaction between charges.

In atomic physics, interaction between electrons
is often described by a potential which is a func-
tion of the intere)ectron distance. In quantum field
theory, however, there exists no potential function
which depends on the coordinates of the interacting
electrons taken at some instant of time, since
the electrons interact not directly but via quantized
electromagnetic field. Nevertheless in a.covariant
perturbation calculation, e.g. , S-matrix expan-
sion, it is possible to obtain a state-dependent po-
tential function to a certain order of the expansion
constant.

In this work we shall review various forms' '
of the lowest- order electron- electron interaction
and present their potential functions in an un-
ambiguous manner. The forms appropriate for
the Dirac- Fock-Slater' and Dirac- Fock" formul
isms are given in. Secs. II and III, respectively. A
brief discussion of the application is contained in
Sec. IV. In the Appendix, we present the general
matr ix elements of various potential functions in
terms of radial integrals, suitable for numerical
computations.

II. COVARIANT PHOTON INTERACTION

In a formulism where the entire interaction be-
tween electrons is treated as a perturbation, or
where the complete orthonormal set of electron
states (for both the initial and final states) is gen-
erated from a single equation, the lowest-order

interaction between electrons has a simple form.
In this case, we can take all. four components of the
electromagnetic field potential A„ to be four in-
dependent Hermitian Klein-Gordon fields of zero
mass, subject to the usual rules of field quanti-
zation. A direct result of this treatment is the
exchange of covariant photons between electrons,
represented by the covariant photon propagator' "

(0
~
T[A„(x,)A„(x,)] (0) =—

e&~ (~~-x~i
4

where T [ j denotes the Wick time-ordered pro-
duct,

~
0) stands for the vacuum state of the quan-

tized photon field, and & is a positive infinitesimal
which specified unambiguously i.n what manner we
go around the singularities. Here (1) is presented
in relativisti. c units, or natural units. The integra, -
tion of the timelike component of h in (1) will yield
the energy conservation factor, and a straight-
forward integration of the spacelike components,
f d'h, leads to a potential function when (1) is
taken between the initial and final electron states.
For easier use in atomic physics we present the
potential function in atomic units:

V„,(i „)= (1 a, ~ ot,)e'"" /r„,

where e is the Dirac matrix, r» the interelectron
distance, and co the exchange photon energy divided
by c. This form has been used extensively in the
past and may be obtained' from the semiclassical
argument that the presence of electron 1 induces
a classical four-vector potential which interacts
with electron 2. This semiclassical treatment,
however, has an ambiguity in choosing an ap-
propriate boundary condition for (1), that leads
to the potential function (2).

By retaining terms of order (v/c)', where v is
the velocity of the electron, in (2) we obtain a,

state- independent potential function
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Va(ri2) =
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where the first term is the Coulomb potential, and
the second term the well-known Breit interaction. '

III. TRANSVERSE INTERACTION

In atomic physics, one often includes as large
a, part of the electron-electron interaction a,s pos-
sible to define the unperturbed electron states.
This can be done, e.g. , in the Dirac- Fock formul-
ism,"at the expense of introducing a, more com-
plicated potential function than (2). Usually, the
instantaneous Coulomb interaction between charges
is considered in the unperturbed Hamiltonian, and
therefore only the transverse part A', " of the
four-potential A is treated dynamically as a per-
turbation. Note that although the single- electron
states in a Dirac- Fock calculation are generally
obtained from different differential equations, they
can be made, at least in principle, orthogonal to
each other by including nondiagon. al Lagrangian
multipliers. The rest of the complete orthonormal
set of single-electron states may be obtained from
a frozen- core Dirac- Fock calculation. The neg-
ative energy states may also be obtained; how-

ever, we do not need their explicit forms. With
the complete orthonormal set of single-electron
states, we can quantize the Dirac field in complete
analogy with the quantization of the field-free
Dirac field treated in many standard text books. ' "
In a similar manner we get the transverse photon
propagator, in relativistic units,

(o
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where the subscripts i and j denote the spacelike
components of a, four-vector. Here aga, in the in-
tegration of the timelike component of k concerns
the energy conservation, and the integration of the
spacelike components gives rise to a potential
function which has the form, in atomic units,

V,„(ri2) = —ni ' n2
12

+a V c7 ~ V
h) y'12

with & ~ 0. This is the so-called transverse inter-
action and reduces to the Breit interaction' in the
lowest order.

Note that in (4) the positive infinitesimal a comes
naturally due to the properties of the Wick time-
ordered product T[ ], and this unambiguously
specifies the treatment of the singularities en-
countered in the integration of the spacelike com-
ponents. To demonstrate that an ambiguity in
choosing the appropriate boundary condition may
otherwise arise, we shall derive the transverse
interaction by the noncovariant second-order per-
turbation theory' ba, sed on energy denominator,
rather than on relativistically invariant denomina-
tor which treates the energy and momentum on the
same footing a,s in. the cova.riant perturbation theo-
ry.

In the semiclassical treatment, the emission or
absorption of a photon by an electron May be con-
sidered as an interaction of the electron with an
equivalent unquantized vector potential. Regarding
this vector potential as a perturbation, we can
easily write down the second-order transition ma-
trix element, in atomic units,

Ik I IkI e +8„—E,

( f I n2 ~ we' '2I n) (n I n, ~ ee '"'iIi )+
Ik Jc+E„Z,

Here ~i ) and (f
~

denote the two-electron initial
and final states, respectively, the first summa-
tion is over the two polarization states perpen-
dicular to the momentum vector k, E, is the total
energy of the two-electron initial state and 8„ that
of the intermediate state jn), and the n summation
is over all possible eigenstates of the two-electron
system, including energy-conserving and energy-
nonconserving intermediate states. Physically,
the first term of (6) corresponds to the process

in which a virtual photon is emitted by electron
2 and subsequently absorbed by electron 1, and the
second term corresponds to the reverse process.
A straightforward calculation of (6) yields the po-
tential function V„(r») in an integral form, '

V

3 , ~ ka'. 2 'k e
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To obtain the appropriate potential. function in con-
figuration space, we must determine the integra-
tion contour in the complex k plane with respect
to the poles at +&. We find, however, that a
sensible choice of the contour may not general. ly
be obtained in this ansatz. Note that the replace-
ment ar-v —i& (&u&0, e &0), suggested' by the
physical model of decaying states with finite level
width, gives rise to an effective potential which
differs from (5) in that &u is replaced by -~.

IV. DISCUSSION

The covariant photon interaction presented in.

(2) can be used in the Dirac-Fock-Slater' formul-
ism or in eases where the unperturbed electron
states are free-electron states or are obtained in
a single effective potential. The transverse in-
teraction in (5) should be used in the Dirac-Fock
formulism or in cases where the unperturbed
electron states are obtained from different dif-
ferential equations. The general matrix elements
of these interactions are presented in the Ap-
pendix.

It is worth noting that both potentials (2) and
(5) are not Hermitian. Because they are obtained
from the S-matrix expansion defined in terms of
the time-evolution operator, the matrix elements
of (2) and (5) are to be considered as transition
amplitudes. The appropriate physical meaning
of the diagonal S-matrix element, when evaluated
to all orders, is the probability amplitude that the
system under consideration remains unchanged.
Therefore, the nonunity of (or the nonvanishing of
the imaginary part of) the diagonal 8-matrix ele-
ment of the zero- order ground state indicates
simply that it is not the true ground state. Since
the amplitude is not physically measureable, the
imaginary part needs no further interpretation.

On the other hand, in the usual first-order per-
trubation theory the diagonal matrix element of the
in.teraction Hamiltonian in configuration sPaee is
always real and corresponds physica. lly to the en-
ergy shift. This may seem disturbing. We note,
however, tha, t in quan. turn field theory although the
interaction Hamiltonian in terms of field opera
Iors is itself Hermitian, the S matrix derived from
it is unitary. In fact, it is the- Hermiticity of the
interaction Hamiltonian which proves the unitarity
of the S matrix. Nevertheless, the interaction
Hamiltonian in configuration space is certainly
required to be Hermitian in. order to satisfy the
probabil. ity conservation in the quantum theory.
Therefore, the potential forms (2) and (5) are not
to be considered as the interaction Hamiltonian
in configuration space in the usual sense. Although
it should be possible to extract gnambiguously a

configuration-space Hamiltonian from the S-matrix
expansion via a Rayleigh-Ritz variatona, l proce-
dure, it requires further investigation. Alterna-
tively, a configuration- space Hamiltonian ean
be obtained" by defining a Fock-space wave func-
tion which contains only a single (no electron-
positron pair) amplitude function and by successive
contact transformations to decouple the radiation
and matter fields to some order in n.

In bound-state energy calculations, the real part
of the matrix element represents the energy shift
of the atomic level while the imaginary part con-
cerns the level width. Using Dirac- Fock wave
functions, Mann and Johnson' have taken the real
part of (5) to calculate binding energies of inner
shell electrons in heavy atoms with good agree-
ment with the experimental results. We have used
both form (2) (Ref. 13) and form (3) (Ref. 14) to
perform the binding-energy calculation in the
Dirac- Fock-Slater formulism. The difference
between energy shifts obtained from the Dirac-
Fock and Dirac- Pock-Slater calculations is in-
significant when state-dependent forms are used
in both cases.

A few Auger transition calculations have been
carried out by using form (2);" however, we ex-
pect that a Dirac-Fock calculation using form (5)
would give significantly different results because
Auger transitions are more sensitive to the elec-
tron correlation. " Also we expect form (5) of the
transverse interaction could play an. important
role in atomic collision processes for the same
reason. In configuration interaction or multi-
configuration calculations, only the real part of
the covariant photon interaction has been
treated. ""Although in principle the imagin. ary
part could contribute, it is of no interest at the
present stage of the molticonfiguration formula-
tion. In. addition, we note that the present forms
(2) and (5) are strictly applicable only to cases
where the tota, l energy is conserved. Mittleman"
however has obtained a form af electron-electron
interaction valid when the total energies of the
i.nitial and final states are not the sa,me.

APPENDIX: GENERAL MATRIX ELEMENTS

A more complete relativistic formulation is
necessary in the calculation. s of atomic collisions,
transitions, correlations, binding energies, level
widths, and others. In most cases, matrix ele-
ments of the electron-electron interaction between
many-electron configurations are needed. Be-
cause these matrix elements can. always be ex-
pressed as linear combinations of matrix ele-
ments in corresponding two-electron configura-
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tions, ""we shall deal only with the general ma-
trix of the electron-electron interaction between
two-electron configurations in the jm scheme,
j..e. ,

commonly used potential functions as follows.
(i) Coulomb potential.

I~(ab; cd) = ( W„R~ W~~ &
'"",

which ha, s the explicit form

(A6)

&ab
I V(r.) lcd& = 3r

a
'r, U.'(1)U', (2)

x V(r„)U, (1)U, (2), (A1)

( w., R,. w„& '"- = dr, W„(r,)

.x R, (r,r,) W. M (r, ) (A7)

where a, 'b, c, and d denote generally different
Dirac orbitals. These orbitals are assumed to
have the form'

1 (iG„„(r)n„ i
&F„„(r)n„j (A2)

where the coefficient G,. (ab; cd) concerns the
angular-momentum recoupling and is defined in
terms of signer's 3j symbols" as

)gb m&+ 1~+m~-a c

Im, -m, +m, -m, j

„(fg
1m~ m, —m, —m~j

The expression X~(ab; cd) in (A3) is called the
interdiction strength, having the form

(A4)

X;(ab;cd) = (-)'&'~

x [(2j, + 1)(2j~ ~ 1)(2j,+ 1)(2j~ + 1)]
'i '

where the radial functions G„„and F„„are the
large and smaLL components, respectively; the

are normalized two- component Dirac spinors.
Here the orbitals are completely specified by the
quantum numbers n, K, and m, which have their
usual meanings. By using the techniques of the
vector- spherical- harmonics expansion, "'"first
employed by Mann and Johnson' in this connection,
we have obtained the general matrig elements as
linear combinations of radial integrals, suitable
for numerical computations.

The general matrix elements (Al) can be cal-
culated with the result

\

(ab j V(r») i cd & =i+G,. (ab; cd)Xi (ab; cd), (A3)
J

wit}1

W. , (r) = G. (r)G, (r)+F. (r)F, (r),

R, (r,r, ) = r&/r)"

Here the notation &
&'""" ' denotes that the integral

is to be replaced by zero unless both (l, +j+ l, )
and (l, +j+l~) are even (odd).

(ii) Covariant photon interaction as defined by (2).

IJ (ab; cd) = (2j + 1)( W„gi WM ) '"'

—(1 —5„)(K,+K, )(K, + «, )
2j+ 1

j j+1

where

x (V„g,V„&'"+I&P„g,, P„&"-
+ (I + 1)& Q„g~„Q~~ & (A8)

g~(r, r, ) =is) ji (&ur() h~((or~ )

with j~ and h~ bei, ng the spherical Bessel and Han-
kel functions, respectively. In (A8) the different
combinations of radial functions are defined as

V„(r)= G,(r)F, (r)+F, (r)G, (r),
P, (r) = G, (r)F, (r) —F,(r)G, (r)+V„(r)(K K)/j, —

Q., (r) = -G.(r)F, (r)+ F.(r)G. (r)

+ V„(r)(K, —«,)/( j+ 1) . (A10)

(iii) Transverse photon interaction as defined by
(~).

where

I&(ab;cd)= —(1 —6&,)(«, + K, )(«g+ Kg)

x[(2j+I)/j(i+1)]«, g, V &"

+(K, -K. )[& V.,g, ,P„&'"" &V+„g,.,q„&"-]

+j (i+1)[&P..s, Q„&"-+&Q., t, P„&""j,

(i. j. j /f j j)i(b d)~ 0 ~c
kk -z o kk -a 0j
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- (i/r, ) jz„(&or,)h &
(cur, ), r, &r,

S~=
r i~ '/&u'r,"'

(i /r, )j &
(er,-)h&„(u&r,), r, ( r, ,

where I,(ab;cd) is define. d in terms of radial in-
tegrals, depending on the specific form of V(r»).

+le summarize the results'""" for various

r,' '/ur'r i~" —(i/r, )j &,(&or, )h& (&u ), rr, & r,~

~-(i/r, )j i(~r, )hi.,(~r,), r, (r, . (A12)
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