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The 7'S-O'P energy separation of 'He has been measured by the method of laser magnetic resonance in
electron-beam-excited He. The measurements have also provided Zeeman tuning coefficients for terms up to
fourth order in the field B. Notional-Stark-eAect |,MSE)-dominated line shapes ar'e observed at most fields.
These line shapes are analyzed, and their Doppler-free portions used to obtain a value for the energy
separation with a precision exceeding l ppm (hE, = 980.7979+0.0002 cm '). Arguments are presented that
show the importance of the .MSE in magnetically confined hot plasmas and in certain collapsed stars
possessing high magnetic fields.

I. INTRODUCTION

In recent years, the precision spectroscopy of
'He, employing methods far more precise thorn

those of conventional optical and infrared spectro-
scopy, has become an active area of atomic phys-
ics.' ' '

The need for precise data on He, the sec-
.ond most abundant universal matter, is easily
justified. In addition, the precision measurements
provide the necessary data for testing approximate
solutions to the atomic three-body problem. ' ' In-
terest in the general physics of atomic Rydberg
states has also been growing recently, ' especially
with the work on laser excitation of alkalis by
several groups. "'"

In a previous paper' we presented a new tech-
nique, which relies on the motional Stark effect
(MSE), present in magnetic fields, for obtaining
sub-Doppler spectra of molecules (atoms) in high
magnetic fields. The present paper has a three-
fold purpose, each of which is considered sepa-
rately in Secs. III, IV, and V. In Sec. II we de-
scribe the experimental apparatus. In Sec. III
we expand on the concepts discussed in Ref. 1
(henceforth to be referred to as I) and provide
some physical insight into the line-shape analysis
presented there. In Sec. IV the results of applying
the line-shape analysis to the 7'$-9'P transition
of 'He are presented. Along with the precise zero-
field energy separation of these states we report
measurements of the Zeeman tuning parameters,
up to fourth order in the field B. Finally, in Sec.
V we point to the presence and applicability of the
MSE line shape to plasma diagnostics in tokamaks
and to the spectra of certain high magnetic-field
white dwarfs. (Interestingly, a related effect has

also been observed recently' in a solid. ) In the
remainder of this introduction we present a brief
review of some of the relevant previous precision
spectroscopic work on He.

A. Survey of He energy intervals

The energy intervals of He can be conveniently
broken into several categories: (i) The relativistic
fine-structure intervals involving a change of the
Z quantum number within a triplet state; (ii) the
separation between the singlet and triplet terms
of the same principal quantum number n and angu-
lar momentum quantum number L; (iii) electro-
static fine-structure intervals involving a change
in I.for a given n state; (iv) energy intervals
where n and I. change. There are also a few pre-
cision measurements concerning the different Zee-
man parameters and g factors for the He atom.

Historically, the measurements of conventional
optical spectroscopy were of type (iv)." More re-
cently much higher-precision experiments have
focused primarily on the other three categories.
The microwave optical magnetic resonance exper-
iments of Lamb and co-workers, "involving rela-
tivistic fine-structure intervals were the first to
greatly improve on the previously available optical
data. Similar measurements using the molecular-
beam-microwave-resonance technique" have since
led to some of the most precisely measured ener-
gy intervals in He. (For example, the 2'P;2'P,
interval has been measured to precision of -1
ppm. ") These measurements have been the mo-
tivating force behind the extensive and precise
calculations of Pekeris and co-workers, ' whose
calculated energies agree with experiments to
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better than 10 ppm
Level anticrossing experiments (for n = 3-9) of

Miller and Freund' have resulted in a determina-
tion of the singlet-triplet separation for the D
states. Beyer' has extended these measurements
to even higher s (=20). The microwave-optical
resonance experiments of MacAdam et at. ' have
yielded electrostatic and relativistic fine-structure
intervals as well as some singlet-triplet separa-
tions. The electrostatic intervals for P D(n-
=16-18), D-Il (n=6-12) and E G(n-=6) were mea-
sured. Singlet and triplet separations for the D,
I', and G states were also measured for a number
of different n values, along with numerous rela-
tivistic fine-structure intervals. The precision in
some of the MacAdam measurements is of the or-
der of 1 ppm.

All of these experiments have provided a valu-
able test for the Bruckner-Goldstone variational
theory developed by Chang and Poe, ' who have
calculated singlet-triplet separations and electro-
static fine-structure intervals in terms of an in-
verse power series in n with only the odd powers
greater than or equal to 3 contributing. Their pre-
dictions agree with experiment to about l%%uq. The
polarization theories of Deutsch' predict electro-
static fine-structure intervals with a -6% agree-
ment with experiment.

The measurements reported in this work repre-
sent a return to the measurements of intervals of
type (iv), but with techniques capable of much high-
er precision than the conventional optical tech-
niques. We have measured" iritervals such as
O'S-O'P, 7'S-O'P, 8'S-12 'P, etc. with better than
1-ppm accuracy and here we report on one of
these intervals, the 7'$-9'P transition, for which
our analysis is complete. We note that in com-
parison with other precisely measured intervals
these transitions are unique in two respects. (a)
They involve S and P states where the atom is
most rionhydrogenic and thus provides the most
severe test for the approximate three-body the-
ories. (b) The transitions usually involve a change
in the principal quantum number n. To our knowl-

edge there are no theoretical calculations to pre-
dict such intervals, with the notable exception of
the caj.culations of Schiff et al. ' who calculate en-
ergies for S states up to n =15 but for P states only
to n = 5. Seaton's "empirical quantum. -defect for-
malism, which i.s based on relatively low-precision
optical data provides, surprisingly high-precision
values for these intervals.

H. EXPERIMENT

Our experiments were performed using an in-
frared (CO,) laser" to induce transitions between
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FIG. 1. Zeeman tuning curves for the He 7'$ and
some 9 P levels. Shown by arrows are the field posi-
tions where magnetic resonance line shapes were ob-
served. The Zeemah tuning of some 9 D levels is
shown since it is important in the calculation of the
polarizability.

different Zeeman sublevels of the electron-bom-
bardment-excited He atom. The magnetic field
provided the tunability (-13 cm ') needed to sweep
through a resonance as well as allowing us to mea-
sure the Zeeman parameters. What is perhaps
even more important, the magnetic field is the

(

source of the motional Stark field seen by the atom
in its rest frame and is thus the source of the
unique MSE line shape to be discussed in Sec. III.

The experimental apparatus has already been
briefly described in I. In Fig. 1, a schematic ener-
gy level diagram of the He 7'Sand two of the O'P
levels is shown for magnetic fields ranging from
0 to 150 kG. Shown by arrows, along the O'P Zee-
man sublevels, are the fields where the 7'S-O'P
Zeeman sublevel separation frequency is equal to
a CO, laser frequency. Resonance measurements
were made at each of the indicated fields in Fig.
1, by preparing singly excited He atoms in the
7'S state, using electron bombardment, and then
driving the 7'S-O'P transition with a CO, laser
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as the magnetic field was swept. The signal was
detected by monitoring the emission from the 7'S
excited state to the 2'P state at 4024 A, as a func-
tion of magnetic field. For a few of the lines the
9'P-2'S emission was also monitored to yield a
complementary signal.

The magnetic field was measured using a pre-
viously described NMR spectrometer" in con-
junction with a temperature-stabilized Hall probe.
The laser frequency was inferred to the desired
accuracy from available measurements, "by keep-
ing the laser tuned very close to the top (center)
of the gain profile. The laser power was conti~-
uously monitored and when needed, the laser was
returned to the gain center frequency. The gas
pressure was measured on an MKS Baratron gauge
and the excitation electron current was feedback
stabilized to keep it constant.

The data were obtained by sweeping over a pre-
determined magnetic field range, a large number
of times (10-60 with about 1 min per sweep) and
additively averaging the signal in a Fabritek data
averager. For analysis the data were transferred
onto magnetic tape and to a PDP-11 computer, on
which the line-shape fitting, described in Sec. IV,
was pel formed.

Data was obtained at 10 out of 11 different po-
sitions along the Zeeman sublevels shown in Fig.
1. The reasons why no data was obtained for the
11th resonance (at -92 kG on the nz, =+ 1 branch)
will be given in Sec. IV. The three controllable
parameters that could contribute to spectral line
broadening, laser power, excitation electron cur-
rent, and gas pressure were kept as low as pos-
sible so as to avoid line broadening by them. Mea-
surements indicate that the s1-mA excitation cur-
rent caused -5-MHz halfwidth at half maximum,
(HWHM) broadening, and that the 5-8 mW of laser
power contributed -6 MHz (HWHM). We were not
able to see a noticeable pressure-broadening ef-
fect, however, a calculated estimate of pressure
broadening for the n = 9 state of He is -1 MHz/p, m

of pressure. The pressure in the excitation cham-
ber for all the resonances was approximately 10
p, m

A number of other, uncontrollable, contributions
to line broadening were present in our experi-
ments, including the residual magnetic-field in-
homogeneity and instabiltiy, the states natural
lifetime and the gas temperature. The field in-
homogeneity is a function of the magnet tempera-
ture and thus it is a function of field and the sea-
son of the year, since the coolant water tempera-
ture depends on the season. At about 20 kG the
homogeneity is always better than -+3 6 over a
2-cm length of bore. At 140 kG the inhomogeneity
ranges from -8 G/cm (-11 MHz/cm) t:o -20 G/cm

(-28 MHz/cm) for winter and summer, respective-
ly. The magnet is feedback stabilized to keep
field fluctuations in time under -+1.5 G (~+2 MHz)
for extended periods (hours). Helium atomic state
lifetimes are av'ailable from calculations and the
9'P lifetime (by far the shorter of the two) is re-
ported to be -44 nsec." This lifetime impbes a
natural linewidth (HWHM) contribution of -10 MHz.
However, at the experimental pressures, some
radiation trapping almost certainly occurred,
lengthening this lifetime, and thus reducing the
contribu. tion.

At zero field the largest linewidth contribution,
by far, would be from the Doppler effect. Since the
7'$-9'P resonances were all around CO, laser
frequencies, the Doppler linewidth [Av =

2vo(v, /c)(ln2)' ' at FWHM] for He at room temper-
ature is =130 MHz. We were able to experimen-
tally determine the gas temperature from the line-
width of the resonance at 2 kG, the onl.y resonance
where the MSE is negligibly small. (At 2 kG the
MSE shifts the resonance frequency of a thermal
velocity atom by less than 1 MHz. ) The line shape
obtained at this field was well fit by a Voigt pro-
file, from which both the temperature- and ve-
locity-independent linewidth were determined. The
gas temperature was actually found to be -450 'K.
The actual temperature at a particular resonance
(as determined from fitting the lines with the tem-
perature-dependent MSE line shape, derived in
Sec. III), however, varied from about 460 to 430 K
depending on the electron-gun temperature, mag-
net temperature, and gas pressure. The Voigt
profile also indicated a -17-6 velocity-indepen-
dent linewidth.

An independent measurement of the homogeneous
linewidth was obtained from a Lamb dip, produced
in the 2-kG resonance, when the laser beam was
reflected back on itself through the interaction re-
gion. The origin of the dip can be understood, when
one considers a transition which is nearly satura-
ted by the incident driving laser. Since those
atoms that have zero y velocity can interact with
the laser beam twice (up and down) these atoms
will already have been pumped to saturation. At
some other (v, j, however, the laser can interact
with the -v, atoms in one direction and the +v,
atoms in the other direction so that these atoms
would saturate at a slightly higher incident laser
intensity than the v„=0 atoms.

The width of the dip is just the width of the re-
sidual velocity-independent component in the line
(assumed to be all homogeneous contributions).
The measurement of the Lamb-dip width also
yielded a 17-G =23-MHz (FWHM) homogeneous
contribution. Considering the size of the velocity-
independent contributions outlined above this is a

I
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most reasonable result. At higher fields the ho-
mogeneous widths were found (from the MSE line
fitting) to be somewhat larger, probably due to
the larger field inhomogeneity already discussed.
For all other resonances studied the dominant
line-shape contribution turned out to be due to the
MSE, to which we now turn our attention.

4' of Atoms

III. MSE LINE SHAPE

A. Physical arguments

A derivation of the MSE line shape for the case
where the homogeneous contribution is neglected
is presented in I. It is also stated there that the
line shape for the case where the homogeneous
line shape is included can be obtained by convolu-
ting the derived line shape with a Lorentzian. In
the present discussion we would like to present
a different derivation which includes the homoge-
neous contribution from the start, and arrives at
results identical to those reported in I. First,
however, we present some physical arguments
that indicate the essential features of the MSE
line shape.

We start by considering a normal Doppler-
broadened line shape (a. Gaussian), a.s shown in
Fig. 2. Since the Doppler frequency shift and the
atomic velocity parallel to the direction of obser-
vation are linearly related, 6 v = (v,jc)v„the hori-
zontal axis in Fig. 2 can be interpreted as repre-
senting either v, or Av. (Here the laser propa-
gates in the y direction, v, is the absorption line
center frequency, and Av is the frequency offset
from line center due to the Doppler shift. ) The
vertical axis represents either the number of
atoms with a given veloc'ity v, or the number of
atoms absorbing light at a given frequency v,

When an absorbing atom is in a region containing
magnetic fields, another velocity-dependent fre-
quency shift arises besides the normal Doppler
shift. This frequency shift is due to the interac-
tion of the atomic motion with the magnetic field.
As the atom moves through the field with some
velocity v, in its own rest frame it sees not only
the magnetic field B, but also an electric field
given by F = (1/c)(v&&B). Since all atoms and mol-
ecules (including the hydrogen'atom in a mag-
netic field) have zero permanent dipole moments,
perpendicular to the magnetic field, "the atom or
molecule will respond to the "motional electric
field" in second order only. The frequency shift
of a transition by the MSE will therefore be given
by

Zv = (o.(hc')(v„'+v', )B',
where we have assumed that B is along the z di-

—2.0 —I.O ~~CO
0

Vy DV

v, (s~),
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1

FIG. 2. Gaussian distribution showing the strength
and direction of the motional Stark effect as a function
of velocity.

f(v, ) = (v,(c)v, + (e(hc')B'v,'.
Finding the minimum of f(v, ) is equivalent to find-
ing the minimum of the dashed curve in Fig. 2.
Thus we find the cutoff velocity, that is, the value
of v, for which f(v, ) is a minimum is given by

v,
'"""= cv,h(2n B'—

and the frequency shift at that point is

rection and n is one-half of the difference in po-
larizability of the states involved in the transition.

Although the MSE is a two-dimensional problem,
that is, the frequency shift depends on the motion
of the atom in the plane perpendicular to the mag-
netic field, several aspects of the resultant line
shape can be inferred by considering motion only
in the direction of the propogation of the light.
Thus we set v, equal to zero and consider the min-
imum motional Stark shift experienced by an atom
with a given v, . The arrows in Fig. 2 indicate the
frequency to which a group of atoms with velocity

v, are shifted due to this effect. The dashed curve
is drawn to indicate the frequency at which an ar-
bitrary velocity group will absorb (emit). We can
then immediately see from Fig. 2 that there must
be a frequency cutoff ~v,„'fff that is, a frequency
below which no atoms can absorb light. If we were
to allow each atom to have some velocity in the x
direction this would not change the position of the
cutoff since any atom with v„c0 would absorb at
even higher frequencies than the cutoff frequency.

Mathematically one can write the net frequency
shift (with v„=0) as
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b v~~~off f(vy ) = —voh /4nB

vp v cutoff

(4)

which is identical to that given in I."
A number of significant observations can be

made on the basis of Eq. (4) and Fig. 2. First we
note that at the cutoff frequency v,„„«wecan ex-
pect an abrupt, discontinuous rise in the line
shape. This is due to the fact that there are a
finite number of atoms with the cutoff velocity,
v,
'"""and v„=0,and all of these atoms will con-

tribute at the cutoff frequency. Second, we point
out that at this sharp, discontinuous cutoff only
those atoms with v„=0can contribute since all
atoms with j v„l& 0 will have a MS shift that is
greater than the shift for v„=0.Third, we can
see that the cutoff frequency will be either above
or below line center (v,), depending only on the
sign of e, and it approaches v, rapidly as eB gets
large. Since even for moderate values of nB' the
cutoff occurs very close to line center v„the line
shape is called sub-Doppler. As a last point it is
interesting to note that the cutoff frequency is
temperature independent. That is, it occurs at
the same distance from line center in frequency
space, independent of the width of the Doppler
curve with which one starts.

Based on Fig. 2, and the arguments just pre-
sented we cannot say what the line shape will look
like beyond the cutoff frequency. It is, however,
clear that for large enough values of a the line
shape will decay at a slower rate than the original
l3oppler profile. This occurs because the fast
moving atoms get shifted much farther from the
center frequency v, by the MSE since the frequency
shift goes as the square of the velocity. Also, the
absorption or emission of a single velocity group
whose width in frequency space was only the ho-
mogeneous width has now been drastically broad-

ened due to the motion in the x direction. As we
shall see, this expectation is correct, and the line
decays as a slow exponential with an exponent pro-
portional to (v'Oo. B'/c') ', where v, is the thermal
velocity (v, =2hT/M) and T is the temperature.

The inclusion of a homogeneous contribution in
the line-shape analysis does not significantly alter
the line shape as long as the homogeneous width
is small (b,v„&b,vD &AvM~E). In fact, as we will
show, the homogeneous contribution shows its ef-
fect most notably on the sharp cutoff, which ac-
quires a finite slope proportional to the homoge-
neous width.

,„(v)= ~vH/2m[(v —v,)'+ (hv„/2) ) (5)

which is the well-known Lorentzian line-shape
function with Av„the homogeneous linewidth
(FWHM). To obtain the line shape in the presence
of the Doppler effect and MSE we substitute for
v —v, (—=hv) in Eq. (5), the velocity-dependent res-
onance condition,

v —[v,v /c+ nB (v'„+v, )/hc'] = 0

and integrate the result over a Maxwell-Boltzman
distribution of velocities. (This procedure is
identical to the method used in obtaining the Voigt
profile, which is a combination of homogeneous
and Doppler contributions). Thus we obtain

B. Line-shape derivation

Let us now proceed to derive the spectroscopic
line shape of a thermal distribution of atoms in the
presence of a homogeneous magnetic field. The
three mechanisms that will contribute to the line
shape are the homogeneous contribution, the Dop-
pler shift, and the MSE. We start by writing the
characteristic response of an atom (a damped
resonant system) as

I hv„exp(-[(v,'+ v,'+ v, )/v, '] jdv„dv,dv,

jv —v (I+ v, /c) —nB'(v', + v, )/hc )'+ (6v„/2)'

The v, integration can be easily performed to yield a factor of (n'~'v, ). Let us now translate coordinates to
u and v and define a number of quantities which will help in simplifying Eq. (6). Thus

u —= v, /v, +hcv, /2v, o.B',
v=- v„/v, ,
a' = (hc'/o. B')(nv + h v,'/4n B'),
yv—:hvoc/Q B vo q

y~=hEVHC /QB vo

y =—hc'2 v/o. B'v', ,

[The y's just defined possess physical significance;
y~ is the ratio of the Doppler shift to the MS shift
for an atom with speed vp while y~ is the ratio of
the homogeneous width (FWHM) to the MS shift
for a vp atom; y is the frequency offset from line
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center in units of the MS shift for a v, atom. ]
Using these definitions we can rewrite Eq. (6) as

g(b, v) = (y„hc'/2v'v', n B') exp(- yD/4)

x duexp —' u -yDu

dv exp(- v')
„(b'—u' —v')' + y'„/4

If we now change from rectangular to polar coor-
dinates, one of the integrals can be manipulated
into the form of a, modified Bessel function I,(P).
Therefore letting

that it is really an integral over a product of three
functions; I,(P), an exponential, and a Lorentzian.
For the case where the Lorentzian is a sharp func-
tion [compared to I,(P) and the exponential, i.e. ,
just about a.ll physically real situations] the in-
tegral will be finite only when the integration in-
cludes the region of y space where the Lorentzian
lies. Since the Lorentzian is always peaked at
y =0, the integral will be zero if -xo&0, it will
vary as -x, goes through zero, and becomes a
constant for -x, & 0. Under the assumption that
the Lorentzian width is narrow a.nd neither I,(P)
or the exponential vary much over the Lorentzian
width, they can be pulled out of the integral. Then
the integral reduces to

and

u= xsin0, v= x cos0, u +v =r2 2= 2

(y'+ y', /4) '
dy = (4/y'„)[tan '(4X./y'„)+ 2 v]

XO

dudv=y drd0

we obtain

g(Av) = (y „bc'/2w'von B ') exp(-yD/4)

r exp(-r ')
(&' —r ) +y. /4

&A fl

x d8 exp(yDr sin8) .
0

The 0 integral is a modified Bessel function of
order zero

1I (P) -=— d8 exp(P sin8)
277 0

so we can rewrite Eq. (9) as

g(bv) = (y„hc'/vvonB') exp( —y~/4)

(9)

which is identical to Eq. (6), given in I, and is the
source of the sloping cutoff. Since the integral
contributes to the line shape only over the region
where the Lorentzian lies, for other values of
Av, the integral is just a numerical constant, and
the line shape is dominated by the exponential
outside the integral, which is the source of the
long exponential tails. It can be shown, that in
the limit of no MSE, Eq. (11) reduces to a Voigt
pl of lie.

If the spectral line is not swept out in frequency
space (for lack of tunable laser, for example) but
rather by Zeeman tuning the resonance over a
fixed (laser) frequency, Eq. (11) needs to be triv-
ially modified to obtain the line shape g(AB).
(The experiments in which these line shapes were
observed are actually field swept. ) The modifica-
tion consists of replacing Av in Eq. (11) by

r exp(-r ')I, (y~r)

o (~' —r')'+ (yyg/2)
hv = p.,g, (B—B,) = p,,g,bB, (12)

A final simplification of Eq. (10) can be obtained
by defining

x= t' 2
xo 5

p g x xp

and therefore

dx=2t &'y dg =dx ~ .

This results in

g(Av) = (y„hc/2vvonB') exp[ —(yD/2+y)]

I,(y~(y + x,)'I') exp(-y)
y'+(y /2)'

which is our final result for the MSE line shape.
An examination of the integral in Eq. (11) shows

where p is the Bohr magneton and g, is an effec-
tive g factor as determined by the linear Zeeman
effect for the levels involved in the resonance.

1

IV. MEASUREMENT OF THE 7 S-9 P TRANSITION

A. MSE line-shape-fitting parameters

In order to determine the size of the MSE we
must obtain a value for n, the effective polariz-
ability for the states involved in the transition.
To do this we use hydrogenic wave functions and
calculate the matrix elements (4, Ix I 4,). We
find that the Stark-shifted energy for a state with
quantum numbers (n, l, m, ) is given by



NOTIONAL-STARK-EFFECT SPECTROSCOPY: 7 S-9 P. . . 1109

3nea, ' n'- (I+ 1)' (l+m + 1)(i+m + 2) (I-m + 1)(I-m +2)
4 (2l+ 3)(2l+ 1) E, —E „,„E,—E

(13)

2n =—-o'(upper state) + o. '(lower state) . (14)

In writing Eq. (13) we have assumed that only
states with the same quantum number n give. a
significant contribution to o. . This is a very rea-
sonable approximation for the m = 9 states, since
the energies of the n = 10 terms are far removed.
The hydrogeriic approximation used in obtaining
Eq. (13) can also be shown to be very good. (If one
extrapolates the Bates-Damgaard coefficients"
to ni* = 9.002, and uses nr*, —ni* = -0.014, one finds
that the correction to the hydrogenic matrix ele-
ments is much less than 1% of the hydrogenic'val-
ues. ) Also, the energy differences appearing in
Eq. (13) are generally known with an accuracy ex-
ceeding a few percent from conventional spectro-
scopic and more recent precision measure-
ments. " Thus n' can be reliably calculated with
a precision exceeding 2%-3%, which is sufficient
for accurately fitting the observed spectral line
shapes. Recently, we have also been able to test
the accuracy of our polarizability calculations with
a direct experiment. This was accomplished by

We use Eq. (13) as the definition of the polarizabil-
ity o. ', and define 2a to be the difference in polar-
izability of the states involved in the transition,

placing Stark plates inside the excitation chamber
(electric field along +x direction) and measuring
the shift of the 7'S-9'P resonance (at -2 kG) as
a function of applied electric field. The calcula-
tions agreed with experiment to -5%, which was
also the experimental uncertainty in the measure-
ments.

Because the energy denominator in Eq. (13) is
field dependent 0. ' cannot be assumed to be a con-
stant in a magnetic resonance experiment. Thus
the MSE will generally grow due to the B' de
pendence of the motional electric field and it will
al.so grow or diminish due to the Zeeman turiing
of the interacting levels. " The Zeeman tuning
contribution becomes particularly important near
anticrossings of the interacting levels. Two such
anticrossings occurred in the 9'P state between
the O'P+, —9'D+, and 9 'P, —9'D, sublevels as
indicated in Fig. 1. Calculated values for
(n'v,'(2c')8O, the shift (in kG) of the resonance
field of a thermal velocity atom, due to MSE, are
listed in Table I for the eleven transitions indicated
in Fig. 1. The effect of the anticrossings on 6'
are clearly large. The Table also lists the ratios
of the MSE shift to the Doppler frequency shift
for a v, (thermal velocity) atom, using the cal-

TABLE I. Calculated values of the shift (in kG) of the resonance field of a thermal velocity
vo (T =400'K) atom, from the line center (Bo) due to the MSE. Also listed are the ratios of the
MSE shift to Doppler shift for a &0 atom (&0 =3 x10 Hz). The magnetic fields Bp used in the
calculation corresponds to the observed (except at 91.5 kG) resonance fields. Equations (1)
and (13) were used in the calculation with values for the energy denominators in Eq. (13) taken
from Martin. ~3

B, (kG) s (9 P) (kG) &vMg (7~S) (kG) "Ms (kG) ~ MSE/Doppler~

118.428
83.810
52.564
23.974
2.468

27.068
50.071
71.663
91.500

111.152
129.238

-0.173
0.569
0.129
0.027

&0.001
0.051
0.256
1.059

—-77
-2.302
-1.593

-0.016
-0.008
-0.003

&-0.001
&-0.001
&-0.001
-0.003
-0.006
-0.010
-0.014
-0.019

-0.157
0.577
0.132
0.027

&0.001
0.051
0.259
1.065

«-77
-2.288
-1.574

1.7
6.3
1.4
0.3
0.0
0.6
2.8

11.6
&800

24.9
17.2
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TABLE II. Parameters used in fitting the observed line
shapes. The quantity &&Ms is the shift of the resonance
field of a thermal velocity (&p) atom, due to the MSE. It
is calculated from Eq. (1) and contains both thte tempera-
ture T and the parameter G.' (one-half of the effective
polar izability of the transmission).

Laser line
(10-pm branch) Bp (kG) Av~ (kG) T ( K) EvMs (kG)

200 G

FIG. 3. Observed and calculated magnetic resonance
line shape with a Sp of 27.068 kG (on the m& =+ 1 branch
of the 9 P state). The averaging time for obtaining the
line shape was 7 min, with 5 mW/cm2 of R30(10-pm
branch) laser power. The excitation electron current
was 1 mA and the gas pressure was 15 p, m. The cal-
culated line shape assumed a temperature of 440K, a
velocity-independent homogeneous width of 25 G and a
motional Stark shift for a vp atom of 56 G.

R20
R22
R24
R26
R28
R30
R32
R34
R36
R38
R40

118.428 + 5
83.810 + 15
52.564+ 5
23.974+

gp

2.468~ 2
27.068~ 4
50.071+ 4
71.663
Complicated

111.152+
8

129.238+ 4

0.028 470
0.020 435
0.018 445
0.018 460
0.017 450
0.025 440
0.024 440
0.026 435
spectrum; not
0.030 430
0.010 454

&-0.262
0.627
0.147
0.031
0
0.056
0.285
1.158

analyzed.
-2.459
-1.786

culated a's and typical temperatures and frequen. -
cies (T = 400 K, v, = 3 x 10"Hz).

An experimentally obtained resonance at 27 kG
on the I,=+1 branch of the 9'P state is shown in
Fig. 3. Also shown in the figure is a theoretical
fit based on Eq. (11) of the previous section. Con-
sidering that the laser power, gas pressure, and
excitation electron current were all minimized,
the signal to noise in this resonance (averaging
time -7 min) is very good. Unfortunately the sig-
nal to noise is not so good for all the resonances.
This is due to the very broad lines that one ob-
tains when working in a region of high eB . Since
the total number of atoms participating in the res-
onance remains the same, the integrated intensity
in the line must also remain constant. Thus for ve-
ry large n, this leads to such a large line broad-
ening that eventually the signal completely disap-
pears for practical purposes.

When fitting a line such as shown in Fig. 3 one
needs to specify as many of the four free param-
eters in Eq. (11) (a, B„T,Av, , ) as possible. In
our He experiments we were interested in obtain-
ing accurate values for the field position of the
center of the resonance B„andthus to obtain the
best possible values we needed to fix the effective
polarizability a, the gas temperature, and the
width of the velocity-independent component of the
line shape which we always assumed to be Lo-
rentzian.

As already discussed, the polarizability o. is
ca.lculable from Eq. (13) to a sufficient accuracy.
The other two parameters, however, the tempera-
ture and velocity-independent width could only be

constrained to lie within a fairly narrow range as
determined from the low-field Voigt profile and
I amb-dip measurements. The fact that we could
not accurately specify the temperature did not
effect the determination of B„however, since the
cutoff field (frequency) is temperature indepen-
dent. In fact, the temperature most seriously af-
fects the exponential tail, and thus can be deter-
mined from fitting the tail. Similarly the homo-
geneous width does not significantly affect the
value of the cutoff field or for that matter the line
shape a.s long. as the MSE is large. Its effect shows
up as a slope at the cutoff portiori of the line and
can be determined by fitting the slope.

In Table II we list the fitting parameters for all
the observed resonances, alo'ng with the values of
B, obtained from the fitting. The indicated errors
for B, are an estimated sum of the effects of mea-
surement and fitting uncertainties. With the ex-
ception of, the 1].S.428-kG resonance, the values of
0, used to fit the observed line shapes are the
same as the calculated values listed in Table I.
[The actual quantities (nvoBO/c ) appear to be
different in the two tables since the temperature
used in Table I was assumed tobe 400 K for all
the resonances. ] The line-shape fitting was per-
formed by assuming a calculated n, and varying
T and hv~ until a good fit was obtained. Once a
"correct fit" was found, all the parameters (in-
cluding n) were varied to see how much effect they
have on the goodness of the fit and on B„the field
at line center obtained from the fit. In. all the ob-
served line shapes, only one set of values for the
four parameters (B„e,T, Av„)were found to give
a "good" fit. In the -118-kG resonance no rea-
sonable combination of o. and T provided a good



fit. However, even in this resonance a cutoff was
mell defined and B, could be easily obtained with
a fair amount of confidence. For all the other res-
onances the experimental and theoretical line
shapes showed good agreement.

As mentioned before we did not obtain any data
for the 92-kG resonance on the m, =+ 1 Zeeman
sublevel. When we looked for this resonance a
rich and complicated spectrum (with features over
more than a 5-kG range) was observed which has
not as yet been fully interpreted. We believe that
the complexity of this resonance is due to two re-
lated factors. Since the resonance mould occur
very close to a 9'P-9'D anticrossing, n is very
large and the signal would tend to wash out (for the
reasons outlined above). What is more, near an
anticrossing, the levels do not tune even approxi-
mately linearly with field, thus contributing a
complicated nonlinear broadening component to
the line shape.

(20)aS, =hv„,+ aE,
where +Ez = +E~z+ AEQz+ 2EHzis the total Zeeman
energy difference between the two levels. For the
7'S-9'P transition in, =0 for both levels and hm,
in the transition is +1. Thus in Eq. (16) there is
no relative Zeeman shift due to w, and we obtain

The use of hydrogenic wave functions in Eq. (18)
can be shown to be justifiable" if one substitutes
n*=n-5 for all the n's occurring in Eq. (19),
where 5 is the angular-momentum-dependent quan-
tum defect. " There also exist terms that are
proportional to B' and higher-order terms in the
field B, which can be calculated, by taking into
account the off-diagonal terms in the diamagnetic
Zeeman Hamiltonian" HQz with the selection rules
that only states with El=+2, 0 and Lm, =0 are
coupled.

The zero-field energy separation between the
two levels involved in the transition can now be
written as

B. Zero-field separation and Zeeman parameters

of the 7 'S-9 'P He levels
~Lz= &0&gi ~ (21)

Hz= p,,g, (B 8)+ p,,gi(B L)+P«, (15)

where H« is the diamagnetic (quadratic) term. The
first two terms in Eq. (15) merely represent the
linear Zeeman effect. For those situations where
the linear Zeeman eigenvalues can be evaluated in
the decoupled term formaliSm (complete Paschen-
Back effect) we obtain

= poB( gq m q
+gz m g),

where we have used primes to indicate effective
g values which include some well-known relativ-
istic corrections. "

The quadratic contribution has been previously
evaluated" to yield

P«= (e'/2m c') jX(r)[',
where A(r) is the vector potential (A =—,

' B x r} in
the Coulomb gauge. Equation (1V) reduces to

E«= (e /8mc )B (r sin'8)

which can be easily evaluated using hydrogenic
wave functions to yield

e'B' I'+ 1+m', —1" 4m'c' (2I-1)(2I+3)

(18)

x —,
' n'[5n'+ 1 —3l(I+ 1)]. (19)

In order to obtain zero-field separations from the
magnetic resonance data one must be able to spe-
cify the Zeeman tuning coefficients involved in the
transition. In general the Zeeman tuning of a par-
ticular level can be represented by a Hamiltonian
of the form

where g' = 0.99986 = 1 —m /M (all the other rela-
tivistic corrections to g' are much smaller and
are neglected) and we can use the currently ac-
cepted value of p.,=4.66860x10 ' cm '/G. " The
difference between the quadratic terms of the
7'S(m, = 0) and O'P(m, =+I) states can be evaluated
using Eq. (19}. If we use 5 =+ 0.14 for the
'S state and 5=-0.012 for the 'P, in the quantum
defect corrections (n* =n —5), we obtain

~«= (6.46984 —1.84054) x10 "B' (cm '), (22)

where B is measured in gauss.
We have used Eq. (20) to fit the 10 measured

magnetic fields at the known laser frequencies"
to a Zeeman tuning curve and have obtained em-
pirical values for the quadratic and fourth-order
coefficients as well as the zero-field separation
of the '7'$-9'.P transition. The fitting was per-
formed, using a general polynomial least-squares
fitting program on a PDP-11 computer.

In Table III we list the empirical zero-field ener-
gy interval and Zeeman tuning parameters, as well
as earlier experimental and theoretical values for
these quantities. The errors indicated with the
measurements are for one standard deviation. It
was gratifying that when the linear coefficient was
allowed to be a variable in the fit we obtained a
value for it (also listed in Table III) which is very
close to the presently accepted physical constant. "
The other coefficients and the zero-field energy
did not change significantly +hen we allowed the
linear coefficient to float.

In an attempt to obtain calculated values for the
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TABLE III. Zero-field energies and Zeeman parameters for the 7~S- 9~P interval. The numbers in the first row of
this table were obtained from a polynomial fitting program using the values of Bo listed in Table II, and fixing the linear
coefficient to be po. The numbers in the second row are for the linear coefficient fixed at g po while in the third row all
the coefficients including the linear Zeeman coefficient were obtained from the fit.

&Eo {cm ~)

980.7978 + 0.0002
980.7979 + 0.0002
980.7978 + 0.0002
980.75 (From Ref. 13)
980.7987 (Based upon
quantum-defect theory~7)

Linear Zeeman
(cm /G)

[4.66860 x10 ']- fixed pg
[4.667 95 &&10 1—fixed g'Pe
(4.668 27 + 0.000 13) x 10

Quadr', tic Zeeman
(cm '/G')

(4.645+0,009) x10 ~&

(4.639+0.009) x10 &&

(4.642 +0.007) xl0 &&

(4.629 x10 ) Calculated
from Eq. (22)

Fourth-order Zeeman
(cm '/C4)

(4.8+0.5) x10 "
(5 3~0 5) x10
(5 0+0.4) x10

+30.0

+20.0—
(A
V)o +l0.0
(3

cL 0X
(LJ

cf. —IO.O
O
LLI

+ —20.0

pl)(

x M = +

~ M

-30.0
0

I

40 SO
a (kG)

120 }60

FIG. 4. Hesiduals (theory minus experiment) ob-
tained from fttting the observed magnetic resonance
fine-center positions to a Zeeman tuning curve. The
zero-field energy and Zeeman tuning coefficients used
in the theory were those listed in third row of Table
III.

higher-order terms included in AE», we have
diagonalized the matrix of (Hx), using as a basis
the set of states for whichrn, =+1 and I.=1 —8,
for fields ranging from 0 to 140 kG. As before
the calculations made use of the hydrogenic ap-
proximation. The energy eigenvalues for the O'P
state obtained from the diagonalization, were fit
to a polynomial in J3. %e found that the series
converges quite slowly and all even power terms
up to 10 are required for a good fit.

The residuals (defined as the field calculated
using the coefficients listed in Table III, minus
the experimentally observed field) for the data
points used in fitting the Zee~an tuning curve of
the 9'P state, are shown. in Fig. 4 as a function
of magnetic field. The fit was not significantly
affected if any one of the ten data points was left
out, and as can be seen the scatter does not seem
to be systematic. The fitting procedure definitely
indicated the need for terms of even order greater
than 2. The data, however, did not allow us to

distinguish between different higher-order terms.
A best fit was obtained by allowing a B' term to
exist and the coefficients for this term are listed
in Table III. The calculated coefficient for the
fourth-order term, which was obtained from the
diagonalization described above, is -25% higher
than the experimental coefficient. However, if in
the fitting of the calculated eigenvalues we only
allowed terms up to fourth order, the calculations
yielded a fourth-order coefficient within a few
percent of the empirically obtained one. The best
values for the empirically obtained energy and
Zeeman parameters are AEp 980 7979+ 0 0002
cm ', quadratic coefficient= (4.640+ 0.009) x 10 "
cm '/G', and fourth-order coefficient = (5.1+ Q.5)
x10-"cm. '(G4.

Finally, we point to the great improvement in
the value of AE, over the previously measured
optical value. " As we have already pointed out
the relative precision of our experiments is high
because the energy intervals measured are large
(-1000 cm ' corresponding to CQ, laser frequen-
cies). Thus a small relative uncertainty in the
tuning magnetic field is a much smaller relative
uncertainty in the total transition frequency being
measured. The fact that AE„asdetermined from
Seaton's quantum-defect theory, "gives an inter-
va) that is much better than the previous spectro-
scopic value is rather surprising. The general
accuracy of using Seaton's quantum defect theory
in energy interval calculations has been previously
noted. ' The agreement between the calculated and
measured quadratic coefficients is also surpris-
ingly good. A new value for the quantum defects
5 for the 'S and 'P states must await a number of
other precision measurements of n'$-pg'P intervals
now under way.

V. MSE IN HOT PLASMAS AND STARS

For the MSE to be a large or the dominant line
broadening effect one requires large magnetic
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fields and high temperatures. Since the MSE line-
width is proportional to T (rather than T'~' as it
is for the Doppler width) at any given magnetic
field it eventually becomes the dominant .effect as
T is increased. Two natural places, other than
our experimental apparatus, immediately suggest
themselves as possible candidates for large (and
indeed dominant) MSE broadening: magnetically
confined hot plasmas (tokamaks) and collapsed
stars that have trapped their small initial fields in
their collapse (white dwarfs and neutron stars)

In this section we will briefly point to the rea-
sons why we believe this previously ignored ef-
fect is dominant in some of these cases. The em-
phasis in these applications shifts from the Dop-
pler-free portion of the line to the broad exponen-
tial tail. Another important difference between the
considerations presented in this section and the
He experiments is that here we are concerned with
optical-uv emissions rather than infrared absorp-
tions, but due to the high temperatures in the case
of stars and plasmas the MSE dominates the Dop-
pler effect even at these short wavelengths. Where
possible we present some very rough order of
magnitude calculations for these two examples.

A. Magnetically confined plasmas

Since we are most famihar with Alcator, the
MIT tokamak, we shall refer to it specifically even
though the same arguments apply to any other high-
field tokamak. Alcator operates at a magnetic
field of -VO+ 10 kG. Since our previous experi-
ments and calculations involved the polarizability
a' of the 9'P(m, =+ I) state of He we will consider
it as a specific example. For higher-lying states
of He' the MSE becomes even more prominent while
for lower (n&5) lying states it tluiekly disappears.
(It is a negligible effect for transitions from states
with n ~4). In view of the n' dependence in cI.', this
is not surprising. A line width of -2 ~10" Hz is
calculated for the He 2'S-9'P emission from Al-
cator. The parameters used in this calculation
are listed; in Table IV. The estimated 5-eV tem-
perature is a reasonable value for neutral atom
temperatures near the waQ of Alcator A." We
find, as shown in Table IV, that the MSE is about
ten times bigger in this case than the Doppler ef-
fect. (In calculating the linewidth of the asymme-
tric line we have merely set the linewidth equal
to the MSE shift of a v, atom. )

A few comments about the results listed in Ta-
ble IV are in order. First, we emphasize that the
ratio of linewidth to transition frequency is very
large and easily resolvable with a standard dis-
persive element. Second, we point out that since
the linewidth is proportional to temperature rath-

TABI E IV. Estimated MSE parameters for Alcator.

Transition: 2 8-9 P in He
Wavelength: 3258 A=9.2 xlot4 Hz

Neutral temperature at wall: 5 eV= 58000 K
Doppler width of line at zero field: =2 x10 Hz

Doppler width/transition frequency: =2 parts in 105

Magnetic field: =70 kG
Motional stark shift of avo atom
at T ~400'K (see Table I): -1.4x109 Hz =1 kG

Motional Stark shift of a vo atom
at T = 5.8 x 104 K: = 2 x10&& Hz

Linewidth of asymmetric line. =2 x10~~ Hz

Asymmetric width/ transition frequency. =2 parts in 104

er than the square root of temperature it pro-
vides a much more sensitive temperature probe
than one would get from a normal Doppler profile.
Lastly, whether one intends to measure the tem-
perature from it or not, it shouM be kept in mind
that the linewidth of neutral Rydberg state emis-
sions from a plasma can be very wide, and the
width often attributable to the MSE.

There is a fair amount of evidence" that the
neutrals inside the hot plasma come to thermal
equilibrium with the ions very rapidly through the
process of electron-exchange collisions. Thus,
if one were to measure the temperature of such
neutrals one could use it to determine the ion
temperature. Actually there are two places in a
tokamak where one would expect to find a sub-
stantial number of neutral atoms: (i) close to the
wall, where the temperature is somewhat lower,
and (ii) near the region where an energetic neutral
beam of atoms is injected in order to heat the plas-
ma. Thus, a neutral-temperature measurement ob-
tained from a MSE broadened linewidth would yield
(if performed with spatial resolution) the ion-
temperature profile near the wall as well as time-
(if time-resolution spectroscopy was used) and
spatially resolved temperature variations in the
injected beam of heating neutrals.

B. Stars

It is weQ known that certain white dwarfs pos-
sess fields as large as 100's of kG. ' Very large
linewidths as well as "anomalous" partial continua
radiation have been observed from some of these
objects." Although precise analysis of line shapes
would be very difficult due to uncertainties in the
knowledge of the appropriate velocity distribu-
tions, and the homogeneity and direction of the
field, in such high magnetic fields the MSE prob-
ably plays a dominant role and cannot be ignored
in spectral interpretations. In fact, if the MSE is
large enough it could be the source of the observed
partial continua by broadening lines into each
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other. Finally, we note that a MSE broadened line=
width could be used to estimate the magnetic field
at the source provided one determines (or as-
sumes) a source temperature. Of course, largely
inhomogeneous fields can also give rise to large
linewidths, but the fact that Zeeman shifts of some
spectral lines have been measured indicates that
at least in those cases the emission emanates
from fairly homogeneous field regions.

VI. CONCLUSIONS

We have analyzed the effect of the motional Stark
field on the emission line shape of an atomic tran-
sition. It has been shown that the new line shape
acquires a Doppler-free edge as well as a very
broad tail. The Doppler-free edge has been used

to determine the 7'$-9'I' energy interval in 'He
with a precision better than 1 ppm. The data has
also provided measurements of the Zeeman pa-
rameters of 'He up to fourth order in the field B.
The broad tail has been shown to be possibly im-
portant in other systems such as hot plasmas and
white dwarfs. Further work on 'He should provide
accurate values for He quantum defects, while the
application of the MSE to plasmas and white dwarfs
should prove to be useful and important.
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