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Given the shape of a potential barrier ¥ (x), there is an explicit expression in the WKB approximation for
the transmission coefficient for penetration of the barrier. The problem considered in this paper is to find the
inverse relation, determining V(x) from the transmission coefficient. It is shown that the width of the
barrier at energy E can be determined if the transmission coefficient is known for energies between E and
Vmaxo the barrier maximum. Other properties of the turning points can be deduced for potentials which can
be written in terms of a parameter A as V(x) = Vy(x)— Adp(x), if the dependence of transmission
coefficient on A is known. For the specific case of field emission, one can find the potential ¥ (x) from the
energy and field dependence of the transmission coefficient.

I. INTRODUCTION

A common problem in physics is utilizing ex-
perimental results to deduce some fundamental
quantity. An example, for which refined techni-
ques have been developed, is the determination
of an interparticle interaction from scattering,
spectral, transport, and thermodynamic data, '™
One tool often used in the “inversion” procedure .
is the Rydberg-Klein-Rees (RKR) method.!™® In
this method, the width of an attractive potential
V(x) is expressed in terms of its bound-state spec-
trum via
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Here the x; (E) are the classical turning points of
the potential at energy E, V_, is the minimum val-
ue of V(x), and n(E) is the quantum number of a
bound state expressed as a function of energy.
[The equation is derived from the WKB approxi-
mation for the energy levels. The derivative dn/
dE is not precisely specified by an observed spec-
trum E(n) because of the spacing between the
levels. In the tunneling problem, there is no

such limitation.] Another useful relation is satis-
fied in the special case of the vibration-rotation
spectrum of a diatomic molecule, for which the
effective potential is of the form

Vix) = Vx) + 2 (J+1)/2mx? | (1.2)

where x is now the internuclear separation and m
is the reduced mass. One finds'™®
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where A=J(J + 1) and » is the vibrational quantum
number. This relation can be combined with Eq.
(1.1) to deduce the form of the attractive potential
V(x), given the spectrum E(n,).

The problem considered in this paper is the
derivation of an analogous inversion method for
quantum-mechanical tunneling through a barrier.
We consider the one-dimensional case of a barrier
V(x), of the simple form shown in Fig. 1. Al-
though the discussion is one-dimensional, the
applications we have in mind are to three-di-
mensional situations. Many problems (e.g., «
decay) possess spherical symmetry so that an ef-
fective one-dimensional problem results; .others
(e.g., field emission) have translational invariance
in two directions (to a good approximation) so that
separation of variables leads to a one-dimensional
equation.

This subject was treated earlier by Wheeler in
connection with the problem of finding the shape
of a double-minimum potential well from know-

V(x)

x,(E) X x,(E)

FIG. 1. Typical potential, with classical turning
points indicated, for a particle of energy E incident
on the barrier.
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ledge of the bound-state spectrum.! One of our
results is closely related to one of his, as de-
scribed below.

For the tunneling problem, the input to an in-
version procedure is the transmission coefficient
T(E), the ratio of the flux transmitted through the
barrier to the flux incident. We know that in the

WKB type of approximation®7?°
- TE)={L+expl(8m) 2 (B)/m ]}, (1.4)
where

£B)= [ (V) - BV 2ax (1.5)

1

For many applications E << V___, the maximum of
V(x), so that the argument of the exponential is
large. In that case, the one can be neglected in
Eq. (1.4). Here we consider the more general
case, including the region E> V__ - for which the
turning points become complex. The problem is:
given T(E), or equivalently f(E), what can be in-
ferred about V(x)? '

In Sec. II, considering E<V__ , we first de-
rive a relation between x,(E) —x,(E) and the function
f(E). We next treat the case where V depends
linearly on some parameter A so that we have

V(x) = Vo(x) = (x) . (1.6)

In such situations, the dependence of T(E,\) on A
can be utilized to deduce other properties of the
turning points. An example is field emission from
a metal, for which A is proportional to the electric
field at the surface. Then it is shown that x2(E,X)
-x%(E,X) can be obtained from knowledge of
8f(E,\)/81. Regarding the function f as input, we
are then able to compute x; and x, individually.
Thus the barrier shape can be deduced from mea-
surement of the electric field and energy depen-
dence of the transmission coefficient.

In Sec. III, we derive analogous results for the
case E>V . . InSec. IV, weaddressthebound-
state problem described above and derive a gen-
eralization of Eq. (1.3) for potentials in the form
given in Eq. (1.6).

II. INVERSION IN THE REGIONE <V

Our first goal is a result for the width of the
barrier at energy E. One can write

%,(E) —x,(E)
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because the E’ integral is identically 7. We as-
sume that V(x) has only one extremum (a maxi-

mum) between x,(E) and x,(E), as shown in Fig. 1.
1t is easy to change the order of integration in Eq.
(2.1), the domain remaining as the region of Fig,

1 between the dashed line at E and the V(x) curve.
We find
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This is our first main result. Its significance is
that knowledge of the transmission coefficient
[hence, f(E) from Eq. (1.4)] for energies between
E and V_, enables one to derive the barrier width
at energy E, The similarity of Eq. (2.2b) to Eq.
(1.1) for the bound-state problem occurs because
the Bohr-Sommerfeld-quantization condition ex-
presses the quantum number # in terms of an in-
tegral similar to that in Eq. (1.5) but with [E -V
(x)]*/? as the integrand.

This result is closely related to one found by
Wheeler.! Thus, Eq. (2.2b) can be obtained by
partially integrating his Eq. (85) and substituting
into his Eq. (89).

As a specific example of Eq. (2.2), consider the
case of a parabolic potential (a good approximation
for most potentials for energy near the maximum),
V(x)=V, . — @%% From Eq. (1.5) we find

F(B) =7V - E)/202, (2.3)

so that Eq. (2.2b) gives x, —x,=2(V,,, —-E)*/?/q,
as expected. The vanishing of f as E~V_,, must
occur in general. It corresponds to a transmission
coefficient of 3, according to Eq. (1.4); this per-
mits clear identification of the upper limit in Eq.
(2.2) from the input data. Deviations from the
linear dependence of f on E will occur for energies
sufficiently far below V.  for the parabolic ap-
proximation to fail,

Further information can be derived if the po-
tential can be written in the form of Eq. (1.6).
We do not assume that A¢(x) is either a perturba-
tion or an external field term (although these are
special cases). An example that does not fall into
either category is a decay, for which A¢(x)
«l(I+1)/4, the angular-momentum contribution
to the effective potential for radial motion. Now
the reasoning is
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This relation, our second main result, is useful
in evaluating V(x) from f(E,)), provided the func-
tion ¢(x) is known.

As a straightforward and potentially useful appli-
cation of Eq. (2.4), we consider the case of field
emission. Here V,(x) of Eq. (1.6) is the one-
electron potential due to the ions, most generally
calculated self-consistently to include screening.®
The field-dependent term usually considered for
thisproblemis Fex = A¢(x), where Fisthe electric
field at the surface. From Eq. (2.4) we have

¥%E, F) —x4E, F)

<o [ )

(2.5)

When combined with Eq. (2.2b) for x, —x,, this
relation is capable of yielding the individual values
x, and x,. Thus, measurement of the transmission
coefficient, which yields f(E, F) as a function of
energy and electric field, cé.n, in principle, deter-
mine the barrier shape completely.

III. INVERSION IN THE REGION E > V.

max

The program described above uses only the
transmission coefficient for energy E<V_,. to
find the potential. It is interesting to see what
information is available from values of T(E) for -
E>V_... The conventions for evaluating f(E) are®
to use the branch of [ V(x) - E]*/2 which has argu-
ment near zm, with x,=b, —ib,=x* and b,> 0. The
function f vanishes for E=V_, and monotonically
decreases with increasing E above the barrier.
With these conventions, the argument proceeds as

in the case E<V__ , but the manipulations involve

complex variables. As a first step one writes -

xz(E) -x,_(E)
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Here, V(x) is understood to have a small imaginary
part, E is chosen real and greater than ReV, and
the argument of the square root is near zero. We
conjecture that, for the class of potentials we

- 3[
E][V(x)_EI]}l/z T T -, or  (E'-E)/Z -
(2.4)
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deal with, the order of integration can be changed
with the same limits occurring as in Eq. (2.2a).
Then we have
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The factors in the denominator can be rearranged,
%5(E) —x,(E)
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where the argument of (E — E’)!/? is zero and that
of [V(x) — E’]*/2 is near 37. The x integration is
now seen to be related to df /dE; the result is

2 E g dE'
x(B) -0y (B)= - - f,, d_—g' E-EVE
(3.1)

Note that the left-hand side is 2i Imx,=2{b,. In
the case when V(x) can be written as in Eq. (1.6),
one obtains similarly

%5 (EN) 2% E af(E ’ 7\) dE'
dx=— 2L f : .
'[x E) pla)de=- 2 v o (E-E)?

1 max
(3.2)

For the case of the parabolic barrier considered in
Sec. II, one obtains Eq. (2.3) in the E>V_, region
as well. It may be possible, as in the field-emiss-
ion case described in Sec. II, to find a ¢(x),

which yields the individual turning points through
Egs. (3.1) and (3.2). This would provide a line

in the complex x plane, mirror symmetric about
the real axis, on which V(x) is known. By Taylor
expansion about the intercept on the real axis,

one could deduce V(x) along the real axis and
provide information about the form of V(x) with

x real from data for E>V_,,. There are, thus,
two independent approaches tofinding V(x) from
knowledge of f(E,)), one depending on values of f
in E<V_.. and the other depending on values in

the range E>V . .
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IV. BOUND-STATE PROBLEM

The method used above applies also in the bound-
state problem and it leads to a generalization of
Eq. (1.3). For a potential well V(x), the quantum
number » in the WKB approximation is given by

((nz—v*+ Z)EH’J F[E- V)]V ax. (4.1)

*1

This equation defines the function n(E); the eigen-
values occur when » is an integer or zero. Equa-
tion (1.1) may be easily derived by a procedure
very similar to that used in Sec. II. If V(x) can be
written in terms of a parameter A as in Eq. (1.6),
manipulations similar to those of Sec. II can be
performed with Eq (4.1), leading immediately

to

1/2 E an dE'
[ e (2)"n [ 3

=‘( ) f | (eE aﬁ),(/gk) ?E]'E)Ilfz :
(4.2)

This supposes that V(x) has only the one extremum
at V... This specializes to Eq. (1.3) when one
treats the potential of Eq. (1.2). Equation (4.2)
could also be used for image-potential-induced
surface states of insulators.’® In this problem the
potential A¢(x) would be that due to an electric

field, which produces a linear Stark effect.®!*
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