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An electron in a high-Rydberg state will experience the Coulomb R ' potential and the polarization R
potential. For R large compared to a+a, where a is the fine-structure constant —a+a is very large —it will

also experience a retardation polarization R potential. %'e' 4--rc show that at very large R the
nonrelativistic R ~ nonadiabatic potential which it experiences beyond a few Bohr radii is cancelled by
retardation {or, better, vacuum fluctuation) effects.

I. INTRODUCTION II. CALCULATION

Recently the authors used standard time-ordered
perturbation theory to calculate the leading retar-
dation correction to the energy levels of a high-
Rydberg state of an arbitrary neutral atom or
positive ion', the outer electron is effectively in

a hydrogenlike state with high n and l quantum
numbers. The energy shift can be expressed as
the expectation value of an operator which is pro-
portional to R ', where R is the separation of the
outer electron and the nucleus. We are concerned
only with n and l large, and therefore only with R
large. The R ' term arose from two-photon
graphs. The contributions from the two instan-
taneous photon graphs, from the one instantaneous
and one transverse photon graph, and from the two
transverse graphs were labeled M», M», and

M&&, respectively. Expx'esslons for these contri-
butions are given by Etls. (I Al), (I-3.4), and
(I-3.14).' The expressions were evaluated only
through terms of order R '.

It was pointed out that each of the three expres-
sions also contained terms of order R '. The R '
contributions from M», which involve only the
static Coulomb interaction and are independent of
the speed of light c, have been known for some
time, ' and represent the static quadrupole polar-
ization potential and the leading (dipole) nonadiaba-
tic potential. This term dominates at small R. At
large R, however, it will be shown below that the
contributions of M» and M» exactly cancel the
nonadiabatic R ' component of M». By large R,
we mean, ' for a neutral atom, a transit ti.me com-
parable to a characteristic period, that is, 28/c
a 2ttag(ee/5). We are thus in the region 8/ae
& hc/es, a region which has no meaning within the
context of nonrelativistic physics, a domain de-
fined by the limit e- ~.
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We use a prime on M to denote the component
for which the operator behaves as r, ', where we
are now using ~, rather than R for the separation
of the outer el,ectron and the nucleus. As noted
above, M,'~ ls known and is written

Mt't= —sot e (n Iree In)+ass,
where

(2)

and where, in turn,

e~ [ (1s i rt i u) i'
'---=3 Z E'

N ON

e, is the static electric quadrupole polarizabil-
ity of the ionic core.

M» is given to sufficient accuracy by

e'S
t d k ~ 2e' [ (1s lr| lu) is

tr=2ttsmc J k ~ 3 Ee„-Es

(3)

(4)

M' = '" dekew'm

The integral over dk is trivial. We then insert an
exponential cutoff in k space in order to be able
to interchange the order of integration over r, and
k without introducing a divergence. As discussed
in. I, this step is neither subtle nor dishonest, but
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q -=(n Iet"."P,(k Ss)/e In).

In our previous analysis we approximated the en-
ergy denominator by 1/Eo„and obtained an r, '
contribution. We now go one step further and write

(Ee„-E,) '=Ee'„+ E,/E',„.
Using the second term, we have
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I = lim — dkk'e j~, (kr, ) .
)t -+0 0

(8)

The integral over k and the subsequent limit as X

goes to zero are straightforward to perform. We
obtain the result

~l T —2MIIg '

The extraction of the r,' term from M», given
by Eq. (1-3.14), is relatively complicated. We.
follow the precedure used in I for obtaining the
r, ' term. After we have integrated over k and k',
we have

a matter of convenience which enables us to write
the contribution to the energy shift as the expec-
tation value of a potential (The potential behaves
as r, ', and the expectation values of r, ' for hydro-
genlike states are known. ') We find

M', =( 4/n)P„„„e'a,(n II/r,'In),

The terms in p„,«vanish identically. Reverting
to the notation R, the R ' contribution to the inter-
action is

V(R) —= —o.',e'/2R'. (13)

Since the nonadiabatic correction vanishes iden-
tically, it is natural to seek a simple explanation,
but it may be difficult to do so in the present case
since in some sense it is a higher-order term that
vanishes, for the R ' term does not vanish. A
possible alternative attack might be a dispersion
theoretic approach, ' whiCh has been used to obtain
the R ' term for the interaction of a, charged parti-
cle and neutral polarizable system, if it could be
extended to include a charged polarizable system.

A further comment on the distinction between
small R, where a nonrelativistic theory can be
meaningful, and R larger than a distance which is
proportional to c, where nonrelativistic theory is
meaningless, may be useful. We give a simple
form of a potential, undoubtedly different from the
physical potential, which also has this behavior'
Consider the expression

x dk'k' (nI[2j (kr j)(k'r )
0

M„+M„+M;,=(nl o.,e2/2r6In). (12)

Once again we employ exponential cutoffs on
both k and k'' in order to interchange the order of
the integration of ~, and k' or k. Subsequent in-
tegrals and limits are straightforward. We obtain

M'rr 3P„,«e'a, &n
——I1/r,' In), (11)

which is identically equal to the nonadiabatic term
in M~~. Our final result is, therefore,

R' 1+ (aZ'8/a )) '

v(R) behaves as R ' for R/a, «1/oZ', but vanishes
to order R ' for R/a, »1/o!Z . Similarly, as was
shown by Casimir and Polder, ' at very large se-
parations the Van der Waal-London R ' interaction
between neutral atoms does not exist when retar-
dation is taken into account. '
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