PHYSICAL REVIEW A

Retardation effects and the vanishing as R ~ « of the nonadiabatic R ~

VOLUME 18, NUMBER 3

SEPTEMBER 1978

mteractlon of the

core and a high-Rydberg electron

Edward J. Kelsey
Department of Physics, New York University, New York, New York 10003

Larry Spruch
Department of Physics, New York University,* New York, New York 10003
and Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138
(Received 17 April 1978)

An electron in a high-Rydberg state will experience the Coulomb R ~! potential and the polarization R

—4

potential. For R large compared to ay/a, where a is the fine-structure constant—ay/a is very large—it will

also experience a retardation polarization R
nonrelativistic R
retardation (or, better, vacuum fluctuation) effects.

I. INTRODUCTION

Recently the authors used standard time-ordered
perturbation theory to calculate the leading retar-
dation correction to the energy levels of a high-
Rydberg state of an arbitrary neutral atom or
positive ion'; the outer electron is effectively in
a hydrogenlike state with high » and ! quantum
numbers. The energy shift can be expressed as
the expectation value of an operator which is pro-
portional to R™®, where R is the separation of the
outer electron and the nucleus. We are concerned
only with » and ! large, and therefore only with R
large. The R™® term arose from two-photon
graphs. The contributions from the two instan-
taneous photon graphs, from the one instantaneous
and one transverse photon graph, and from the two
transverse graphs were labeled M,,, M,,, and
M ,,, respectively. Expressions for these contri-
butions are given by Egs. (I-Al), (I-3.4), and
(I-3.14)." The expressions were evaluated only
through terms of order RS,

It was pointed out that each of the three expres-
sions also contained terms of order R, The R™®
contributions from M,,, which involve only the
static Coulomb interaction and are independent of
the speed of light ¢, have been known for some
time,? and represent the static quadrupole polar-
ization potential and the leading (dipole) nonadiaba-
tic potential. This term dominates at small R. At
large R, however, it will be shown below that the
contributions of M,, and M, exactly cancel the
nonadiabatic R™® component of M - By large R,
we mean,! for a neutral atom, a transit time com-
parable to a characteristic period, that is, 2R/c
= 2ma,/(e?/%). We are thus in the region R/a,

Z ic/e?, a region which has no meaning within the
context of nonrelativistic physics, a domain de-
fined by the limit ¢ = .

=% potential. We' licrc show that at very large R the
~¢ nonadiabatic potential which it experiences beyond a few Bohr radii is cancelled by

II. CALCULATION

We use a prime on M to denote the component
for which the operator behaves as 7,5, where we
are now using 7, rather than R for the separation
of the outer electron and the nucleus. As noted
above, M, is known and is written

Mj= - sae*(nlry®ln)+ My, (1)
where

M’IIB = 3aoﬁnonadez<n '756 'n> ’ (2)
and where, in turn,

[{1s IF, lw)|®
nonad 3 Z Egu

a, is the static electric quadrupole polarizabil-
ity of the ionic core.
M,, is given to sufficient accuracy by

u e’n_ [k ~2e* [{IsIF, lu)|?
177 %% me ) B — 3 E,-E,

where
Q=(nle™%:p,(B.7)/7n).

(3)

Q, @

~ In our previous analysis we approximated the en-

ergy denominator by 1/E,, and obtained an »;°
contribution. We now go one step further and write

(Equ— E) " ~Eq o+ E,/E2, . (5)

Using the second term, we have
Byonadlt-
Myp=Lomdl [ popq. v (6)

The integral over dF is trivial. We then insert an
exponential cutoff in  space in order to be able

to interchange the order of integration over T, and
k without introducing a divergence. As discussed
in I, this step is neither subtle nor dishonest, but
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a matter of convenience which enables us to write
the contribution to the energy shift as the expec-
tation value of a potential (The potential behaves
as 7,°, and the expectation values of 7;° for hydro-
genlike states are known.?) We find

M;T= (_4/ﬂ)ﬁn0nadeza0<n iI/Tg ,n>5 (7)
where
I=lim [ dkk2e™,(kr,). (8)
A->0 Y0

The integral over % and the subsequent limit as
goes to zero are straightforward to perform. We
obtain the result

Mip=-2M}g. ©)

The extraction of the »;® term from M ,,, given
by Eq. (I-3.14), is relatively complicated. We.
follow the precedure used in I for obtammg the
73> term. After we have integrated over # and kr,
we have

4 w
MTT=ﬁBnonadezao'/; dk

« f Tk k7 (0 (2, (k)i (e,

+72(k73)ja (R 77,) | In). (10)

Once again we employ exponential cutoffs on
both % -and £’ in order to interchange the order of
the integration of 7, and #’ or k. Subsequent in-
tegrals and limits are straightforward. We obtain

M’TT= 3Bnona.deza;<n ll/’l’g In) ’ (11)

which is identically equal to the nonadiabatic term
in M4, Our final result is, therefore,

M+ My p+ My = (nl—aqe2/2r§ In). (12)

The terms in g8,,,, vanish identically! Reverting
to the notation R, the R™® contribution to the inter-
action is

V(R) =-ae?/2R°. (13)

Since the nonadiabatic correction vanishes iden-
tically, it is natural to seek a simple explanation,
but it may be difficult to do so in the present case
since in some sense it is a higher-order term that
vanishes, for the R™ term does not vanish. A
possible alternative attack might be a dispersion
theoretic approach,* which has been used to obtain
the R™ term for the interaction of a charged parti-
cle and neutral polarizable system, if it could be
extended to include a charged polarizable system.

A further comment on the distinction between
small R, where a nonrelativistic theory can be
meaningful, and R larger than a distance which is
proportional to ¢, where nonrelativistic theory is
meaningless, may be useful. We give a simple
form of a potential, undoubtedly different from the
physical potential, which also has this behavior.
Consider the expression

= 3eza0'8nonad 1
v(R)= RS <1+ (aZ’R a0)> :

v(R) behaves as R™® for R/a,<« 1/aZ?, but vanishes

- to order R for R/a,>»1/aZ®. Similarly, as was

shown by Casimir and Polder,® at very large se-
parations the Van der Waal-London R"® interaction
between neutral atoms does not exist when retar-
dation is taken into account.®
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