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Variationally corrected discrete-basis-set calculation for electron-molecule scattering
in the static-exchange approximation
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We present a method for including a variational correction i» the discrete-basis-set method for electron-
molecule scattering introduced by Rescigno, McCurdy, and McKoy. Our prescription for variationally
corrected partial-wave K-matrix elements is based on Kohn s formula for the variationally stable scattering
amplitude in three dimerisions. The method is applied to e -H, scattering in the static-exchange
approximation, and the effect of choosing different trial basis sets is shown. Our results are in good
agreement with the results of other accurate calculations.

I. INTRODUCTION

In a recent paper' we applied the discrete basis
set method for electron-molecule scattering intro-
duced by Hescigno, McCurdy, and McKoy'"' to e-
N, scattering in the static-exchange approximation.
The method involves approximating the scattering
potential by its projection onto a subspace of dis-
crete basis functions

In our formulation, U is substituted into the Lipp-
mann-Sehwinger equation for the E matrix

E= U+ UG~oE

where G, is the principal-value free-pa, rticle
Green's function. This leads to a finite matrix
equation:

& le le&=&~lfIl/l& Z& IL'l»&~ G.'I&&&& Ele&.
(3)

Applications of the method to date have shown that
useful scattering information can be obtained di-
rectly from the solution of Etl. (3); however, the
accuracy of these results is limited by the lack of
variational stability with respect to errors due to
the difference U —U'. In a calculation for a two-
eenter Gaussian-model potential, Hesclgno 8t Ql. '
obtained significantly improved results by adding
an approximate variational correction. In this pa-
per we present a method for calculating a more ac-
curate correction for variational errors. The
method is applied to e -H, scattering in the static-
exchange approximation.

Our approach follows Kohn's prescription for the
variationally corrected scattering amplitude in
three dimensions. ' %'e obtain a variational formula
of the forrp

assuming axial symmetry for the target molecule.
The trial wavefunctions g'„, t/i', „, and the approxi-
mate K-matrix element E,', , are constructed from
the discrete basis set solution of Etl. (3). The
correction term involves on- and off-shell partial-
wave Born matrix e1.ements of U, U', and E'. The
matrix elements of U are the same as those needed
in the second Born approximation. In this work
matrix elements of the static-exchange potential
are calculated numerically using a single-center
expansion of the target orbita', The matrix ele-
ments of U' and E' are calculated analytically as
discussed in Hef. 1. Two advantages of our pre-
scription are that there is no restriction on the
scattering energy and the scattering boundary con-
ditions are not approximated.

Section II contains a discussion of our variational
formula and the calculation of matrix elements of
U. Section III presents our results for e -H, scat-
tering. in the static-exchange approximation. Scat-
tering in the Z and 0 symmetries is treated for in-
cident momentum of 0.5 and 0.7 a.u. Calculations
are done for several different basis sets to inves-
tigate the convergence of our corrected results
with respect to changes in the trial basis set. Our
corrected results for diagonal phase shifts are
compared with the results of Sehneider' and Tully
and Berry' and with the results of first and second
Born approximations. Atomic units are assumed
throughout unless otherwise noted.

II, THEORY

In the fixed-nuclei approximation the Schro-
dinger equation for an elastically scattered elec-
tron is of the form

[ —,'V' + V(R, r) --,'h']y (R, r) = 0, (5)

where V(R, r) is an optical potential for the ef-
fective interaction between the target and the
scattered electron. The potential depends pa-
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&&j&- = g-+ Go (k) Up-,0 (8)

where U= 2 V,

= e&&'~/(2v} 3 & 2 (9)

and G, (k) is the principal value free-particle
Green's function. In the Fourier-integral repre-
sentation,

where (r k) = P-„(r) and P denotes principal-value
integration, Using the identity

KQ-= Ug-„,

Eq. (8) may be rewritten as

t/) = P-„+Gpo(k)KQ (12)

Thus a method for calculating a basis-set repre-
sentation for the Z matrix leads to an approximate
wave function

$~q= P„+P d3k'g-
(k' Z' k& (13)

with the asymptotic form

g.'-y. -(v/2)' '(k' K k) r 'coskr

as r-~. In Eq. (14)

(k'lK k)'=-(k'lK' k)

(14)

rametrically on the relative coordinates of the
target nuclei, denoted by K The vector sub-
script k indicates the dependence of the wave
function on the direction as well as the magni-
tude of the incident momentum for a nonspheri-
cal target. Imposing the standing-wave boundary
condition leads to the asymptotic form

g-„(r)- [e'"' 2v'(k'lK lk &" 'coskr]/(2v)' ' (6)
A

as r , where k'= kr and we have chosen the nor-
malization

(g. g-„, ) = 5(k —k') .

The Schrodinger equation [Eq. (5)] and the stand-
ing-wave boundary condition represented by Eq.
(6) cor respond to the Lippmann- Schwinger equation

where

Hence, a prescription for variationally corrected
E matrix elements is

(k' K k)'=(k'lK k&'+(P-' I
Since

(18)

P dsktr gt P U t

+P d k"(k' K, „, (U —U') k). (22)
jk")(k" j

, In order to separate the dependence of the scat.-
tering on the target orientation and the scattering
angle from the dynamical problem, we expand the
matrix elements of K and U in a series of spheri-
cal harmonics about the center of mass in the
body-fixed frame. For an axiaQy symmetric tar-
get, these expansions have the form

(k' )Is)k&=- —g i' ' (k'l'miKlklet&
k rr~~

(-v'+ U' —k')g-'=0, (19)

Eq. (18) can be rewritten in the distorted-wave
approximation form

(k' K k)'=(k' K k)'+($-' (U- U') P-'& (20)

To calculate the correction term in Eq. (20), we
expand it using Eq. (12)

(y.„', (U U') y~&=(k' (U-U') k&

+(k' (U —U')GOK' k)

+ (k' K'G~~(U —U ~)
l k)

+(k' K'G, (U- U~)G, K lk). (21)
The fourth term on the right-hand side (RHS) of
Eq. (21} is second order in G, . For a sufficiently
accurate trial basis set, we expect this term to be
small compared to the others. Neglecting this
term, and using the Fourier-integral representa-
tion for G, we obtain

(g-„', (U —U') g.)

= Z&k'I ~ & & ~ IKI» &j ik& (15) xy„(k') Pp &k), (23)

(16)

To obtain a formula for variationally corrected
elements of the E matrix, we foQow the method of
Kohn for the full-scattering amplitude in three di-
mensions. ' By applying Kohn's analysis and using
a standing-wave boundary condition, it can be
shown that, to first order,

6(yf lL,
l y„'& = 5(k'lKlk)',

and similarly for U. In Eq. (23} the ket

~kl~&= ij, (kr) r,.(r)&,

where j, (kr} is a spherical Bessel function. Sub-
stituting expansion (23} for U, and similar expan-
sions for U~ and K', into Eq. (22) leads to the fol-
lowing prescription for the variationally corrected
coupled partial-wave E matrix:
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(k'l'm]K] klm&'= &k'l'm IK'lklm&+ &k'l'ml «- U')hakim&

Ik" l" k" l"
P Ctk k k l m U U 2 ]I 2 ' & k l PPg

r"

lk "l" ~k "l"
l——QP dk" k"'(k'l'm]K' „, ' „, (U U')-]klm.

r"
(25)

Evaluation of the terms in Eq. (25) requires partial-wave Born matrix elements of K', U', and U. The
matrix elements of K' and U' are obtained using techniques described in Ref. 1. Matrix elements of U are
calculated as discussed below. The required matrix elements of U are just those needed to evaluate the
second Born approximation:

I „„.. . Ik" l" m&(k" l"m I

(k'I' m]Ki" ]kl m&=(k'l'm~ U(kim& —
k

(26)

(28)

and E, is the corresponding exchange operator.
The nuclear charge is denoted by Z, the nuclear
centers are at +A, and N is the number of occupied
orbitals. In Eq. (28) g, (r') denotes an occupied
orbital. To evaluate partial-wave Born matrix
elements of the static-exchange potential

&k'l'm] U( klm&= &k'l'm
I

U
'

I "lm&
—&k'l'm] U'"'~kim&, (29)

For a closed-shell diatomic molecule, the sta-
tic-exchange potential is of the form

U= — — +2 2J -K, 272Z

Ir -Al Is+A j

where the Coulomb operator

(30)

and the occupied orbitals

y.(r) =g —U, (r) y,.(r),1

S=P
(3 I)

where I'z(r r') is a Legendre polynomial. Using
Eqs. (29) and (30) in the local parts of the RHS of
Eq. (27) leads to a multipole expansion for the
static potential

we use the single-center expansion method formu-
lated by Faisal' for the static part U', and by
Burke and Sinfailam' for the exchange part U ".
The method involves single-center expansions for
the Coulomb interaction:

00

U"(r) =2 g V„(r)E (r), (32)

rx N [(2s +I)(2s +I)] I
&~(r) =-2& ~'i +Q &.(-I) '

a= 1 s, s'=ma

x (ss' —m, m, ( XO)(ss'00] A.O)(u,'] q„]u,'&,
V&

where
r-

(u, ~,'„]u,,
&

= „, dr'u, '(r')u', .(r')r' (
yX

A"" (35b)

~+i = ~+&
A

dr'u, (r')u, (r')r' ' ',
(34)

(35a)

In these formulas the body-fixed frame is chosen
such that the nuclear coordinates are (0, 0, aA).
The quantity (ss' —m, m, ] AO) is a Clebsch-Gordan
coefficient; N is the number of electrons in shell
o. Using Eq. (32) and the properties of spherical
harmonics we obtain an expression for partial-
wave Born matrix elements of the static potential. :
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2&'+1 '~' 1(k'l'm
( U '(kl m) =2

2)+ 1 g-pg (l'ZOO~ lO)(l'&mO~ lm) —,kk' drn, (k'r) V, (r)n, (kr), (36)

where

R'(n) u,', u,'n, )

&& R "(n). , u,', u', , n, ),

(37}

dr n;(k'r)u, '(r)kk'

r
x~ „rS' s(r')n, ( rk')r'")

0

+r " dr'u, '(r')n, (kr')r' ' . (38}
r

For a o'(m =0) orbital:

A (l', I, m; s, s 'A. )=, (sA.OO
~
l0)

(2s+1)(2s'+1) '~'

where n, (kr) is a Ricatti-Bessel function. As
shown by Burke and Sinfailam, ' the corresponding
exchange matrix el.ement has an expansion of the
form

(k')' lUmSS)k)m)=2 g g A'( ,) )m;s', s', k)
a=I a, s X. =p

The radial function u&' in the single-center ex-
pansion of the target orbital may be expressed in
the form

u;~(r} = r g C, q ( Y, ~(r) ~ p.
& (r) ), (40)

e ~ ' " =4m ge ' i, (2aAr}Y( (A)Y, (r),
(42)

where i, (2o'Ar) is a modified spherical Bessel
function. For an s-type Gaussian we find

(Y, (r)(i(, ,"Oo(r))=&ow4se " ' )i, (2oAr) ,*Y(mA } s

where i), ;(r) denotes a Cartesian Gaussian basis
function:

p;(r) =- p„",(r)

=~„,(x-A„)'(y-A, )'(e-A.)'e-"-"",
(41)

and the coefficients C„are determined by a self-
consistent-field (SCF) calcuiation. In Eq. (41)
N~„ is a normalization coefficient. Expressions for
the radial functions (Y,„(r}~g~",(~}) are obtained
using the expansion

x (s 'A.OO~ I'0)(sXOm~ Lm}

x (s'rom( I'm). (39) and for a p, type:
(43)

2 I+ +1 / — +1
(2l+1)(2l+3

+ ri, ,(2aAr)Yf, „(A)-A,i, (2 oAr) Yp (A)
(2I+ I)(2I-I)

(44)

where A, is the s component of A.

III. CALCULATIONS AND RESULTS

The truncated static-exchange potential U' is
calculated in two steps as described in Ref. 1. The
first step involves a SCF calculation for the oc-
cupied target orbitals. We use a standard basis
set of contracted Cartesian Gaussian functions, re-
ferred to as the target basis. In the second-step
matrix elements of the static-exchange potential,
defined by Eq. (2V}, are computed over a set of un-
contracted functions, i.e. , the scattering basis.
For a closed-shell, homonuclear diatomic, ihe X
matrix is block diagonal in the symmetries 'Z„

In this work we consider scat-
tering in the Z and II channel. s. To investigate the
convergence of the scattering basis, we have cho-
sen several basis sets for each symmetry. The
basis set calculations are carried out using stand-
ard molecular-bound-state programs.

In the SCF calculation for the a'~ occupied orbital,
we used a (10s5P,} set of primitive Gaussians con-
tracted to [Vs5P, j. on each nucleus. The exponents
and contraction coefficients for this basis are
those of Huzinaga" and are listed in Table I(a).
The quadrupole moment of H, in this basis is
0.4V8 a.u. In our investigation o f scattering basis
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TABLE I. Basis sets.

Center b Exponent
Contraction
coefficient'

(a) Valence & basis set

1.
2.
3.

5.
6.

(ooo)
(000)
(oo o)
{000)
(000)
(ooo)

v. (ooo)
8. (ooo)
9. (000)

1O.
11.
12.
13.
14.
15.

{000)
(o o1)
(001)
(001)
(001)
(0 01)

{0,0, + 0.7003)
{0,0, + 0.7003)
(0,0, + 0.7003)
(0, 0, + 0.7003)
(o, o, + o.voo3)
(0, 0, + 0.7003)
(0,0, + 0.7003)
(0,0, + 0.7003)
(0, 0, + 0.7003)
{0,0; + 0.7003)
(0,0, + 0.7003)
(0, 0, + 0.7003)
(0, 0, + 0.7003)
(0,0, + 0.7003)
(o, o, + o.voo3)

1685.517
249.958 4
55.658 34
15.274 3
4.862 8
1.731 6
0.668 05
0.274 37
0.11698
0.041 133
4.8
2.53
1.33
0.701
0.369

0.004 227 3
0.035 026
0.192 038 9
0.833 376 4

1.
2.
3.
4
5.
6.
7.
8.
9.

10.
11.
12.

(ooo)
(o oo)
(ooo)
(ooo)
(000)
(ooo)
(ooo)
(000)
(ooo)
(ooo)
(000)
(000)

(0, 0,0)
(o, o, o)
(0, 0, 0)
(o, o, o)
(o, o, o)
(o, o, o)
(0, 0, 0)
(o, o, o)
{0,0, 0)
(o, o, o)
(0, 0, 0)
(o, o, o)

1.0
0.5
0.25
0.15
0.09
0.054
0.03.
0.02
0.01
0.005
0.002
0.0006

(c) Z sy~~etry basis set of diffuse two-center Gaussians

1.
2.
3.

5.
6.
7.
8.
9.

10.
11.
12.

(o oo)
(ooo)
(o0o)
(00 0)
(000)
(000)
(000)
(o oo)
(000)
(ooo)
(00 1)
(001)

(0,0, + 0.7003)
(0,0, + 0.7003)
(0, 0, + 0.7003)
(0,0, + 0.7003)
(0, 0, ~ 0.7003)
(0, 0, a 0.7003)
(0,0, + 0.7003)
(0,0, + 0.7003)
(0,0, + 0.7003)
(0, 0, + 0.7003)
(0,0, + 0.7003)
(o, o, + o.voo3)

G.027
0.0169
0.010 6
0.006 63
0.004 14
0.002 58
0.001 61
0.001 01
0.000 631
0.000 394
0.194
0.102

(d) ~„symmetry basis set

1.
2.
3.
4.
5.
6.
7.
8.
9.

1G.
11.
12.
13.
14.
15.

(100)
(1 oo)
(100)
(100)
(1oo)
(1 00)
(100)
(100)
(100)
(1 00)
(1 00)
(100)
(1oo)
(100)
(100)

(0,0, + 0.7003)
(0,0, + 0.7003)
(o, o, ~ o.voo3)
(0,0, + 0.7003)
(0,0, + 0.7003)
(0,0, + 0.7003)
(0,0, + 0.7003)
(o, o, + o.voo3)
(0, 0, + 0.70.03)
(0,0, + 0.7003)
(0, 0, + 0.7003)
(0,0, + 0.7003)
(0,0, + 0.7003)
(0,0, + 0.7003)
(0,0, + 0.7003)

15.274 3
4.862 8
1.731 6
0.668 05
0.274 37
0.11698
0.041 133
0.027 0
0.0169
0.010 6
0.006 63
0.004 14
0.002 58
O.OG1 61
0.001 01

{Pqs) in Eq. (40.
Coordinates of basis function center(s).
Contraction coefficients refer to SCF target basis set only.

{b) Z~ symmetry basis set of diffuse single-center Gaussians

sets, we have primarily studied. the Z symmetries
since these dominate the scattering cross section
at low energy. One of the Z'basis sets Table I(a),
consists of the same (Ios5Pz) sets of primitives
used in the SCF ca1.culation. Two other basis sets
were formed by augmenting this basis with diffuse
functions placed either at the center of mass or at
the nuclei. One of these basis sets consists of
sets (a) and (b) in Table I, the other consists of
sets (a) and (c). A fourth basis set consisting only
of the (los) part of the SCF primitive basis (func-
tions 1-10 in set (a), Table I) was also tested. For
0 channel scattering, we chose basis sets consisting
of seven and fifteen P„-type Gaussians centered at
the nuclei (functions 1-7 and 1-15 in set (d), Ta-
ble I). Our techniques for calculating the matrix
elements (klm (X'Ik'l'm) and (klm (

U'( k'l'm)
using Eqs. (15) and (23) are described in Ref. l.

In the calculation of exact partial-wave Born
matrix elements of the static-exchange potential,
we included six partial waves (1= 0, 2, . . . , 10} in

the single-center expansion of the H, a, orbital.
This expansion is sufficient to converge the quad-
rupole moment to within two parts in 10' of the ex-
act value for our choice of target basis. The ra-
dial integrals occurring in the multipole expansion
of the static potential, and in the direct and ex-
change potential partial-wave Born matrix ele-
ments, are computed using Simpson's rule quad-
rature. Most of the computational effort in this
procedure involves the exchange Born matrix ele-
ments since these require a two-dimensional nu-

merical quadratur e. Fortunately, the partial-
wave expansions occurring in these matrix ele-
ments are quite rapidly convergent. The cutoffs
for these partial wave sums were chosen to con-
verge the exchange matrix elements to one part in
10'.

The third and fourth terms in our variational
correction formula, Eq. (25}, involve a principal
value integration with respect to k". These inte-
grals are evaluated using a Simpson's-rule quad-

. rature except in a small region around the singu-
larity. In this region the coefficient of (k —k "} '
in the integrand is approximated by a Taylor series
expansion and the integral is treated analytically.
The sum over /" in these terms converges rapidly
for low scat;tering energy. In this work me in-
ctuded l" up to five and obtained convergence to
three significant figures.

Variationally corrected K matrix elements are
shown in Table II for the basis sets described
above. Table II also shows the corresponding un-
corrected matrix e'ements. The effectiveness of
our correction formula is indicated by the consis-
tency of the variationally corrected K matrix re-
sults for different basis sets. In contrast there
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TABLE D. Varia'tionally corrected K-matrix elements.

k=0.5
Born

correction
Non-Born

correction" &rr m

0-= 0.7
Born Non-Born

correction correction

000

02

33

g d

C 6

D f

A
B
C
D

A
C
D

A
C
D

A
C
D

—1.529
—1.472
-1.540
—1.563

-0.29(—2)
1.74(—2)
2 32(-2)

-2.89(—2)

1.98(-2)
1.87(—2)
6.02(-2)

-0.05(—2)

4.46 (—1)
4.68 (—1)
4.49(—1)

5.73(—3)
1.70 (-2)
2.41(—3)

1.50(—3)
1.13(—2)
1.3(—5)

—1.545
—1.498
-1.512
—1.552

1.44(—2)
1.46(—2)
1.36(-2)
1,15(-2)

1,71(—2)
1.74(-2)
1.54(—2)
1.78(-2)

4.27(-1)
4 40( ])
4.27(—1)

7.46(—3)
7.08(—3)
7.31(—3)

5 52(-3)
5.08(—3)
5.58(—3)

4.39(—2)
-3.5(-3)
-2 11(-2)
-6.06(—2)

—1 6(—3)
-2.9(-3)
-2.9(-3)
-7.52(-3)

-5.0(-4)
-1.3{—3)
-3.98(—2)

1.66(-2)

-4.1(-3)
—1.08(-3)
—3.52(—3)

3.58(—3)
-8.53(-3)

5.42(-3)

4.20(-3)
—5.08(—3)

5.57(—3)

2.78(—2)
—2.16(-2)

7.2(—3)
7.16(—2),

1.89(—2)
1.1(—4)

—7.31(—3)
4.79(-2)

—2.22(-3)
—2.0 (—5)
—5.02(—3)

1.75(-3)
—1.52(-2)
—1.73(—2)
—1.81(—2)

—1.86(-3)
1.38(—3)

—5.20(—4)

—1.75(-4)
—1.10(—3)
-5.1(-6)

—3.241
—3.576
—3.531
-3.459

—8.02(—3)
8.57(—3)
9.59(—3)

-1.27(—1)

6.68(—2)
6.47(—2)
4.64(—2)

-4.65(—3)

8.78(—1)
9.09(—1)
8.83(-1)

2.08(—2)
2.69(—2)
9.37(—3)

1,03(—2)
2.39(—2)
9.9(—5)

-3.327
—3.596
-3.646
—3.588

6.06(—3)
5.08(-3)
6.77(-3)

—1.41(-2)

3.61(-2)
3.74(-2)
3.83(—2)
3.97(—2)

8.64(-1)
8.70(—1)
8.52(-1)

1.49(-2)
1.50 (-2)
1.35(-2)

8,81(-3)
8.32(-3)
9.24(—3)

—2.93(—3)
—7.31(—4)
—1.57(—2)
-4.94(-3)
—9.67(—3)
—3.06(—3)
3.07(—3)

—2.79(-2)

-2.27(-2)
—2.39(—2)
—8.38 (—3)

3.39(—2)

-3.93(-2)
-3.57(—2)
—4.18(—2)

1.76(—3)
5.79(—3)
7,19(—3)

1.00(-4)
.—1.33(—2)

9.20(—3)

—8.29(—2)
—2.00(—2)
-9.79(-2)
—1.24(—1)

2.38(—2)
-4.21(—4)
—5.89(-3)

1.41(—1)

-7.94(-3)
—3.36(—3)

2.66(—4)
1.05(—2)

2.48(-2)
—3.07(—3)

9.98(—3)

—7.64(—3)
—6.08(—3)
—3.04(—3)

—1.38(-3)
—2.25(—3)
—6,6 (—5)

111 E~
F h

22 E
F

1.15(—1)
1.15(-1)

1.43(—2)
1.11(—2)

1.08(-1)
1.08(-1)

1,11(—2)
1.12(-2)

—5.06(—3)
-5.69(-3)
—3,13(-3)

8.4(—5)

—2.46(—3)
—1.12(—3)

-6.0(-5)
5.5(-6)

2.41(—1)
2.36(-1)

4.66(-2)
3.76(—2)

2.19(-1)
2.19(-1)

2.70(-2)
2.76(-2)

—2.41(—2)
-1.61(—2)

-1.71(-2)
-8.86(-3)

1.99(—3)
—3.37(-4)

-2.39(—3)
—1,10(-3)

Second term on RHS of Eq, (25).
Terms three and four on RHS of Eq. (25).
Basis set (a) in Table I.
Basis sets {a) and (b) in Table I.

Basis sets (a) and (c) in Table I.
Basis functions 1-10 in set (a), Table I.

g Basis functions 1—7 in set (d), Table I.
"Basis set (d), Table I.

is considerable variation in the uncorrected re-
sults for nondiagonal and higher partial-wave ma-
trix elements. Table II shows the total variational
correction divided into the Born part (the second
term on the RHS of Eg. (25) and the non-Born part
(the sum -of terms three and four). These results
show that in general neither the Born nor the non-
Born term dominates the total correction.

Table III compares our variationally corrected
diagonal phase shifts, 6r =tan 'Err, with the
static-exchange results of Schneider' and Tully
and Berry. ' The results shown are for the (10s5P,)
Z basis set (set (a), Table I) and the (7p, ) II, basis
set (functions 1-7 in set (d), Table I). The error
estimates in Table III correspond to the observed
differences in the corrected results for different
basis sets. The size of these differences is gen-
erally greater than the numerical uncertainty of
our calculation. Part of this error is due to our

neglect of the last term on the RHS of Eq. (21). As
Tab1.e III shows, the agreement between our re-
sults and the other calculated results is very good.
The largest discrepancy occurs for the do phase
shift (l=2, m=0) for which our result is 50% larger
than the other calculated values. This discrepancy
may be due to the use of slightly different target
wave functions in the three calculations. Table III
also shows our results for first and second Born-
approximation phase shifts. These results show
that the first Born approximation is valid for @-
wave phase shifts at 3.40 and 6;67 eV scattering
energies. , The second Born approximation is accu-
rate f or the Pn phase shift and gives significantly
better results for the Pv phase shift than the first
Born approximation. Both levels of Born approxi-
mation give poor results for the s-wave phase
shifts. The accuracy of the corrected da phase
shift is verified by the Born results.
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TABLE IH. Diagonal phase-shift results.

0 0 0.5
O.V

1 0 0.5
0.7

2 0 0.5
0.7

1 10.5
0.7

2 1 0.5
0.7

Correc ted
phase shift '

2.14 +0.02
1.86 + 0.02

0.40 +0.02
0'.71 +0.02

G.017+0.002
0.036 + 0.002

0.108+ 0.002
0.215+0.002

0.011+ 0.002
0.027 + 0.002

Reference 6

2 122
l.797

0.3891
0.7005

0.0101
0.0333

0.1043
0.2138

0.0108
0.0278

Reference 7

. 2.174

0.368
0.688

0.012

0.108
0.216

0.009

1.256
1.249

0.178
0.310

0.018
0.038

O.G76

0.156

0.011
0.026

Second
Born

1.503
1.445

0.323
0.558'

0.0181
0.0384

0.1184
0.2368

0.0117
0.0297

~6&~=tan K~&&, Z phase-shift basis is set (a), Table I; H phase-shift basis ia set (d),
Table I, functions 1—V.
Born approximation.
Second Born approximation, defined by Eq. (26).

d Error estimates reflect the variation of corrected results for different basis sets.

IV. DISCUSSION AND CONCLUSIONS

The results show that our method for computing
a variational correction to the elastic scattering K
matrix significantly improves the accuracy of our
basis set results. The accuracy of the method ap-
plied to e -H, ,scattering in the static-exchange
approximation is confirmed by (a) compari. son with
the results of Schneider' and Yuiiy and Berry, ' (h)
the stabii. ity of our corrected results against
changes in the trial basis set, and (c) comparison
with first and second Born-approximation results
for higher partial-wave matrix elements.

An advantage of the present method: of obtaining
variationally stable scattering results is that it
may be applied at any scattering energy. In a
previous paper, ' we argued that our uncorrected
basis-sets results are approxi. mately variationally
stable at eigenenergies of the basis-set representa-
tion of the Hamiltonian. The argument for vari. a-
tional stability at eigenenergies is valid only at
low-scattering energy since it depends on an ap-
proximation of the boundary conditions for a non-
spherical potential. The difficulty of treating non-

spherical potential-boundary conditions appears to
be inherent in all eigenvalue methods for varia-
tional stability developed for spherical potentials.

Table II shows that higher partial-wave E ma-
trix elements and nondiagonal matrix elements are
most improved by the variational correction.
These matrix elements are small in the present
case, but are probably larger for most other sys-
tems of interest. Hence, we expect the variational
correction will be important in basis-set calcu1.a-
tions for scattering from larger targets. The cal-
culation of variationally corrected E matrix ele-
ments for e -N, and e -CO, scattering in the stat-
ic-exchange approximation is in progress.
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