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Gauss quadrature generated by diagona|i~~tion of H in finite L bases
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Using the J matrix method, diagonalization of Hp+ V in certain finite L basis sets is showri to generate
a Gauss quadrature of the continuum. Explicit formulas for the corresponding weight function and orthogonal
polynomials are given. This leads to a particularly simple expression for the Fredholm determinant and to the
equivalence of the J matrix and Fredholm equivalent-quadrature methods. Consideration of the asymptotic
behavior of the polynomials for large degree results in a proof of Heller's derivative rule relating the spacing
of pseudostate eigenvalues to the relative normalization of pseudostate and continuum matrix elements, and

providing an alternative to Stieltjes imaging for the solution of the classical moment problem. Applications
include an accurate quadrature of the sum over a complete set of intermediate states in perturbation
expansions.

I. INTRODUCTION

The calculation of the wave function and cross
section for scattering from a potential or a com-
plex target generally presents a more demanding
task than the determination of a single bound state.
Not only do the boundary conditions at large sep-
aration lead to eigenfunctions normalizable only
in the sense of a &functional, but one usually also
desires results at a whole range of energies.
Nevertheless, new methods have recently been in-
troduced which employ the diagonalization of the
Hamiltonian in a finite L basis as. the major com-
putational step just as for the determination of a.

set of bound states, and then extract a good ap-
proximation to the continuum solution by imposing
apprpprj. ate boundary cpnditj. pns. ' "

Qualitatively how continuum information is con-
tained in an &-dimensional L' basis set repre-
sentation of the Hamiltonian becomes clear on
considering the location of the eigenvalues. If the
basis set describes the interaction well, the low-
est few eigenvalues usually correspond closely to
the exact bound states, but the higher roots lie
less close to the higher-energy bound states and
several of the eigenvalues appear at positive en-
erg jes in what should be the continuum. Many work-
ers have used these higher-lying pseudostates'4
in configuration interaction calculations in an at-
tempt to introduce an average effect of the spectral
density of the higher bound states and continuum. ,

Heller et a/. ', made this idea more precise by sug-
gesting that the diagonalization of Hin an & term
L' basis generates a Gauss quadrature" of the
spectral density with the positive pseudostte
eigenvalues directly related to the quadrature ab-
scissas and the change from continuum & function-
al to discrete Kronecker & normalization to the
weights and the weight function. Further work' '

showed that in certain special L' basis sets the
radial kinetic energy operator Hp is tridiagonal,
causing its eigenvalues in the first& basis func-
tions to be directly related to the zeros of well-
known orthogonal polynomials of degree &, and
hence at the abscissas of the corresponding Gauss
quadrature. Armed with explicit knowledge of the .

quadrature generated by the diagonalizatipn of +p
and by careful handling of the singularity in the
spectral resolution of the free Green's function
(H, —E) ', Heller, et al.' were able to obtain a
good numerical approximation to continuum pro-
perties with a finite L' basis. We discuss the
quadrature suggestion and review their work in
See. II.

At the same time, Heller and Yamani' learned
of another way to exploit the tridiagonal structure
pf Hp in the spec ial bas is sets . By trunc ating the
representation of the potential to the first & basis
functions and maintaining an infinite set for &p,
they were able to solve the Schrodinger equation
exactly for the approximate potential with one ma-
jor computational step involving the diagonaliza-
tion of the full Hamiltonian as a matrix in the first
& basis functions. The results of the ~-matrix
method for potential scattering needed here are
given in Sec. III.

In Sec. IV, we use the J-matrix method to find
the Gauss quadrature generated by diagonalizing
the full Hamiltonian in the same basis sets in
which H, is tridiagonal. A comparison of the
quadrature approximations to the spectral resolu-
tion. of the full Green's function and of the identity
with the J-matrix results reveals the explicit form
of the weight function and orthogonal polynomials
which characterize the quadrature. To avoid diffi-
culties encountered by Yamani and Reinhardt'
with the attractive Coulomb potential, we restrict
the analysis to potentials too weakly attractive to
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bind and defer the extension to stronger potentials
to a subsequent paper.

In Sec. V, we use the explicit form of the quad-
rature to investigate the dispersion integral of the
Fredholm determinant, "or Jost function, resulting
in an impressively simple relation between the
quadrature weight function and the spectral den-
sity. Continuing in Sec. VI, we use the large de-
gree asymptotic behavior of the orthogonal poly-
nomials to prove a conjecture by Heller'" relat-
ing the spacing of the pseudostate eigenvalues to
the relative normalization of the pseudostate and
actual continuum matrix elements. This provides
an alternative to Stieltjes" imaging for the solution
of the classical moment problem as well as an in-
teresting formula for the scattering phase shift in
terms of the relative spacing of the eigenvalues of
H, +~ and H, alone.

The simplicity of the results of Secs. IV-VI
leads us to conjecture in Sec. VII that the quadra-
ture idea is valid for arbitrary finite L' basis
sets. In addition, the extensions to potentials with
bound states and to multichannel scattering are
outlined and an accurate quadrature of perturba-
tion sums over complete sets of intermediate
states is discussed.

with P„ indicating differentiation with respect to
It is straightforward to show that the 2+ pieces

of information in the ~» and &» suffice to integrate
a polynomial of degree ~ 2+ —1 exactly.

B. Idea of an equivalent quadrature

Since diagonalizing a Hamilton operator in a
finite L' basis requires determining the roots of
the secular determinant, a polynomial in&, it is
not surprising that there should be some relation
between the pseudostate eigenvalues and the ab-
scissas of a Gauss quadrature of the continuous
spectrum. Heller and co-workers' ' discovered
the correct relation for certain special cases by
comparing the matrix elements of an operator in
a finite L' basis with a quadrature of the exact
continuum elements. We will follow their ap-
proach in examining the spectral representation
of the Green's function (H E) '.-

If & has no bound states, matrix elements of
the real part of the Green's function between two
square integrable states li& and lf& can be written
as the principal value integral

(~l ~ w)i~) ~f ~ '" '" '". y. )

~Pn & Pmi~ p & ="n~n~ ~

a

(2.1)

II. EQUIVALENT QUADRATURE

A. Introduction. Review of Gauss quadrature

A Gauss quadrature can be developed from a
weight function p(x), positive on the desired inte-
gration interval (n, &) with the help of the poly-
nomials orthogonal with respect to p,"

When II is strong enough to bind, a sum over
bound states must be added, but because of diffi-
culties discussed below we will not complete this
extension here.

By introducing a weight function p in some ap-
propriate variable x(E) and taking care to separate
off the singularity at E' =E, Eq. (2.5) becomes

(,.le (E)lf& dEi ( i) & l && If&
dE' p(x')(E' E)-

For an arbitrary p(x), p„can be generated by
Gram-Schmidt orthogonalization of the first ~+1
algebraic moments. In most cases, it is more
efficient, however, to employ the three term re-
cursion relation

&i lE& «If)
p(x)(x' -x)
( lE&«lf&'+

p (x)
P f

X(0)
X ~ X

P„,, (x ) = (A„x + B„)p„(x) + C„p„,(x), (2.2)
(2.6)

where the abscissas are given by p„(x," ) =0, and
the weights by the Christoffel formula:

wq —A„,h„,[P„,(x~fi) p„' (x~P ~)] (2.4)

starting with P, =0 and P, =1, which follows from
the polynomial character and the orthogonality
relation (2.1). The best quadrature of degree & of
the integral of p(x) with a function f (x) then takes
the form.

n

ck p x x = ge"» x»&"),
a »=y

allowing us to obtain a quadrature approximation
of degree & in accordance with Eq. (2.3),

dE' (il E (x;)&(E (xq)l f&

p(x) dx „) E(x)) —E

(ilE&(Elf&
p(x)

ck p

(2.7)
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1 cP l (l+1)
2 dy2 2y'2 (2.10)

is diagonalized in the nonorthogonal Slater basis

Q„=(Ar)''e ""/2L 2"'(A.r) n =0 1 . . . f&l —1

(2.11)

(where L'„' ' is a Laguerre polynomiaV' and ~ a
scale parameter) the eigenvalues are related to
the zeros of the Gegenbauer polynomials" C„'' '
(x), which are orthogonal with respect to the
weight function (1 -x')'' ' on x& (-1,1), by

E/-E(x/); E(x) =2A2(1+x)/(1-x) . (2.12)

In addition, they found a similar correspondence
in the oscillator basis

(gr)~+ ls x & /2 I l+ I/2(g2r2) (2.13)

between the eigenvalues of the kinetic energy and
the zeros of the Laguerre polynomials, L„"' ',
orthogonal with respect to x ' ' 2e "

on x e(0, ~),
and where x =2E/~2. Given the weight function and
polynomials, they were able to prove Eq. (2.9) and
perform the principle value integral in Eq. (2. 7).

The first term resembles the elements of the ma-
trix inverse of H E-, denoted by 9(E), in an &
term L' basis,

N

&i[9(E)lf) = 2 ' ', (2 8)g
if

~

&1'/) is the pseudostate, or normalized discrete
L' eigenvector of positive energy Eq. Heller, and
co-workers'' went further to propose that if a
weight function p in a variable & can be found such
that the energy at each abscissa E(x,) equals the
pseudostate energy E&, then the first term in Eq.
(2.V) can be equated to Eq. (2.8). The reason for
the additional factors in the sum in Eq. (2.7) is ap-
parent on realizing that the pseodostates ( +,.) are
normalized to a Kronecker & while the continuum
functions evaluated at the energy 8& are normalized
to a Dirac & function in ~." Thus, solving for a
continuum matrix element yields

l(~i2, &=I, „' (~~) ) l(II2, &l. (2.»

We note that for Eq. (2.9) to be a good approxima-
tion, the L' state ~ i) must be well described by
the &-dimensional L' basis. In addition, the non-
square integrable continuum function

~ E/) is only
represented by the pseudostate

~
+/) in the sense of

a distribution, i.e., as part of a scalar product
with an I,' function such aS

~
i).

For certain special eases, Yamani and Rein-
hardt'0 were able to verify Eq. (2.9) explicitly,
When the kinetic energy operator

In investigating the addition of a Coulomb poten-
tial to Eq. (2.10), they found that the operator

1 rP l (l+1) z
2 dH (2.14)

is tridiagonal only in the basis (2.11),"and for
z' &0 the eigenvalues are displaced to correspond
to the zeros of the relatively recently introduced
Pollaczek polynomials, p„''(2z/&, -2z/& x) "'"
orthogonal with respect to the weight function

p(x) =
222+ x(1 x2)&+ x/2( X'(t+1 iz/y)[2

«xp [(2~ —v)z/&1
(2.15)

where 8 =eos '(x), 12 is the momentum and
x&(-1,1) and is related to E'by Eq. (2.12). %bile
usirig negative values of ~ does not disbxrb the
eigenvalue correspondence in Kq. (2.12), the
weight function (2.15) must then be extended to
negative energies, where it takes the form of
a jump furiction rising abruptly at each of the Cou-
lomb bound states where 1"(1+1 iz/1-2) has poles. '0

Because it is not clear how to establish the ortho-
gonality of the polynomials on this extended weight
function and how to represent the infinite Rydberg
series by the bound pseudostates, we limit the dis-
cussion here to & -0 and to potentials too weakly
attractive to bind in gerieral.

n =0, 1,2. . . , (3.2)

where

(3 3)

(Since the angular momentum is held fixed through-
out the discussion, an indexing of each function
with l is suppressed. )

Since the matrix ~ is of Jacobi, or tridiagonal
form, Eq. (3.2) amounts to a three term recur-
sion relation for the +„, related to that for the
polynomials mentioned in Sec. II, which we desig-

IH. J-MATRIX THEORY OF FOTKNTIAL SCATTERING:
RESULTS

The J -matrix theory' ' exploits the tridiagonal
form of H, by constructing the coefficients for the
expansion of two independent, solutions of the Ho
Schrodinger equation in the bases (2.11) and (2.13).
First a regula, r solution,

S (kr) = g s„(x)g„(r), (3.1)
n=p

identical to the spherical Riccati Bessel function"
for z =0, or the regular Coulomb wave for ~ + 0,
is formed by requiring
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nate as

po =k„Q (x —Ox~), (3.4)

orthogonal on a weight function P, in a variable &

conformally mapped from the energy so that
g(so )

Cx p, («+0 (x jg&(x) = ho ()

&(0)

(3.5)

yielding

s„(x) -s„[~&/&(x)p (x)P/zoo (x) (3.5)

The particular results for zero or nonzero ~ and
the Slater and oscillator bases are summarized
in Table I. Rather than choosing the second, inde-
pendent function

C(k, r) = P c„(x)Q„(r) (3.V)

c„=a [X' '-(x)p (x)]'/'qe (x), (3.9)

where Q'„ is a function conjugate toP„defined by
the principle value integral

x(~ )
q„o(x)

-=dx'p„(x')p„' (x')
sp, (x) (3.10)

tions ill behaved, the coefficients „are chosen
to obey an inhomogeneous version of the recursion
relation (3.3):

Z J„„.c„.=— (3.8)
n& =P 2 S0

The solution C(&) is then regular at the origin, but
still has the same asymptotic behavior as the ir-
regular solution for large &. Although explicit,
readily calculable, formulas for the &„ for each
case are derived in Ref. 3, it is useful to cast
them in a new form as

to be identical with the respective irregular solu-
tion of the Schrodinger equation, which would make
the expansion in the inherently regular basis func-

By subtracting off and readding the avoided singu-
larity at&'=&, Q„' can be expressed in terms of
the Gauss quadrature belonging to p, (Ref. 15)

TABLE I. 4-matrix method results {Befs.2 and 3} for the expansion of free and Coulomb waves in certain L basis
sets. In the oscillator and Slater L basis sets given, the overlap matrix {s«~) and J=(&o E) matrix are symmetric
tridiagonal. This allows analytic determination of the expansion coefficients anpn(x} of the free wave function in each
basis, with p„ the polynomial of degree n in x(E} of the set orthogonal with respect to the weight function p 0 with nor mal-
ization constant ~„and coefficierit of x" k„. In the Slater basis, the results were extended to the Coulomb wave function
for charge z.

Basis set

Snn'

Osc illator

{gy)&+ i —A'2/2L l+ i/2(g2~2)

g„„,r(s+i+ 3/2)
2zr{n+1)

Xr(n+l + 3/2)(2n+l + 3/2-x)
4r(n+1}

) r(n+i+3/2)
4I'(n}

2@A'

P„~)&+ i/-Xr/2L2i+i(gy)

l (n + 2l + 2)
A 1 (n+ 1)

2{n+l + 1)6nn& ~n-i n~ (n+ 2l + 2)~n+i, n'

-A, r{n+2l + 2} «(n+ )1+)- z/ki sng; where«=oosg2(1-~)I (n+ 1)

A, r(n+2l +2)
4{1-x}I'(n)

(E —~'/s) /% +~'/s)

1-x2

Charge

po

Polynomial

-x l+i/2 (sine}2'+ i

Gegenbauer

z
(2 sing)2'+~

~
I'(i + 1-iz/k) I'

«exp(2g —«)z/k}

Pollaczek

Pn
0

kon

L&+i/2
n

1)n{2&)i/2r{n +
r(n+l + 3/2)

r(n+l + 3/2)
I (n+1)

(-1)n
I'(n + 1)

pl+ i
n

2 r(l +1)l (n+3.)
I'(n+2l +2}

mI'(n+2l +2)
2(n+l +1)I'(n+1)2"r'(l +1)

2nr(n+l + 1)
r(n+1) r(l +1)

~„'+'(«; 2zg, 2zg)
(m/2}'/'r (n+ 1)

r(n+ 2l-+ 2)

I'(n+ 2l + 2)
(n+l +1+2zjX)I'(n+1}

2"l"(n+l + 1+2zg)
I'{n+1)I'(l + 1+2z+)
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(,)
po (x') —po (x) po (x)p *~"~ d»' p„(x')

p„' (x) f "~"' &' p(x')
(x) i )x»j»j (3.11)

where

P„'('»", ) =0 for j =1,2, . . . , & .
The quadrature of the nonsingular integral above
is exact, since the integrand contains pp times a
polynomial of degree less than 2&.l5 This form
for the g„will prove useful in conjunction with the
dispersion correction term in Eq. (2.V).

Given the &„and &„, the standing wave, or prin-
cipal value, wave function for scattering by a po-
tential can be expanded in the basis set (2.11) or
(2.13),

is given as

N-Ea N 1 N-leN N+ N l

leN 1 N loN N+ N-l
(s.is)

(see Table 1 for J„,, „for each case). Combining
the recursion relation for s„and c, (3.2 and 3.8)
with Eqs. (3.16a) and (3.18) yields a simplified ex-
pression for ~N,

R„(x)= k/[2(9„, ~ „,J„,~ „c„+c,)J„,„].
(3.19)

4~(k, r) = g R„(»)y„(r) .
n=p

(3.12) From Eq. (3.17) it is clear that

R„(xj ) =0 for g =1, 2, . . . , N, (3.20)

(3.13)

By approximating the potential through a trunca-
tion of the basis set expansion to & terms

N=. l N=l

2 I e.&(e.li i @;&(e.i.

where

xj —= x(Ej), (3.21)

where Q„ is biothogonal tp Q„such that

where

(3.14a)

which is suggestive of the location of the abscissas
of a Gauss quadrature at the energy eigenvalues.
In order to construct the matrix elements of the
full Green's function, Heller4 introduced a second
function, independent of +~,

(3.14b)

the coefficients ~„can be determined exactly for
the approximate potential by requiring

(II, +V„,-E)„.R (») =0, m =0, 1, 2, . . . .
~ =0

(3.16)

I (k, r}= g I„(x}hatt„(r},
n=p

(3.22)

analogous to C(k, r) of Eq. (3.7), which is regular
at the origin but approaches the irregular solution
of the Schrodinger equation with the truncated po-
tential at large r. Similar to Eq. (3.8) for the c„,
theI„obey the recursiori relation

The result is

R„(x}=s„+tannic„ for +-ItI —1, (3.16a.)

k(l + tan'5) 5„,
p + ttPP tttt tt

n 0

and are given by

(3.23)

R„(»)= —Q„„,(E)J„,~ „R„(x) for n ~ N —1,

(3.16b}

with

1„=&„—tan&&„ for &~&- l, (3.24a)

&„„,J„„„I„+[k(1+t an'&) /2R] I„, .
(3.24b}

N

g Q ttj tt t
nn'

J
(3.1'7)

The matrix elements of the full Green's function
can then be written as

an element of the inverse of the &x & matrix of
+0++app —@ expressed in terms of the matrix of
eigenvectors I"„~ and the eigenvalues E, obtained
from the diagonalization of Hp+ ~app in the first
& basis functions. The tangent of the phase shifts

~„'„t = »m (4„i (II, + V,» —(K +Ic)] 'i P~ &

=Q~„, + 2 j R„R„./[k(1 + tan'5)]

where

(3.26a)
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2R„&f„&/[k(1 +tan'6)] for s,~N —1

~
Q„„y2R„R„.j /[R k(1, tan 6)] for I ~H —1

1017

(3.25b)

The ~-matrix method owes its computational ef-
ficiency to the ability to perform the hardest part
of the calculation, the determination of the matrix
&„, and eigenvalues E, in Eq. (3.17), before choos-
ing an energy, with relatively little effort required
to complete the formation of the wave function and
tangent of the phase shift at each energy. Evidently
all the physics of the potential, that is the dynam-
ics, is contained in ~ and E,, while the remain-
ing factors of s„and &„ only insure the asymptotic

'

form appropriate to &„ that is, the kinematics.
In what follows we, above all, will exploit the
exactness of Eqs. (3.16), (3.18), and (3.25) for
scattering by the truncated potential (3.13}.

IV. QUADRATURE GENERATED BYHo + V

A. Introduction

Equations (3.20) and (3.21) reveal a correspond-
ence between the energy eigenvalues of H, + Vapp ln
an &-dimensional basis and the zeros of the &th
energy-dependent expansion coefficient &N of the
continuum wave function. This suggests a relation be-
tween R„(x)and a polynomial of degree N in x having
the same zeros, in analogy to Eq. (3.6) for s„ in terms
of theP'„. Following this suggestion in an analysis of
the zeros of the other ~„ immediately below and then
of the spectral resolution of the identity and of the
Green's function. in Secs. IV 8 and IV C, we will char-
acterize the quadrature generated by the diagonal-
ization of H, + V„, completely.

From the basis set form of the Schrodinger
equation (3.15), we can extract the location of the
zeros of R„(x) for n~N —1 as follows. Separating
the sum over ~' into two parts and considering
only those components with m~& —1, Eq. (3.15)
becomes
n-

(H +V,» E) iR r(x}—= —6 „,J„,~ „R„(x},
tft =0

(4.1)

for ~ =0, 1, . . . , & —1, with the eigenvalues of the
matrix & + &ftpp @ at

Etl E (xN) (4.4)

for j =1, 2, . . . , + and + =&, &+1.. .. This corre-
spondence can be extended downward one more
step by noting that for n Ã —1 Eq. (4.1) becomes

N-2

(H +V,» -E} ~R (x}= —(H +V,» —E) „,

B. Spectral resolution of the identity

The principle value, or standing wave functions,
are complete when there are no bound states and are
so normalized that'e

2
"

dE%~(k, r)4~(k, r')
w k [1+tan6(E}] (4.5)

Taking the appropriate matrix element in the basis
functions ann using Eqs. (3.12) and (3.14) yields
the orthogonality relation

2 ~ " R„(x)R„(x}s„i
7r ~, k [1+tan'& (E)] (4.6)

For +' &, this can be simplified considerably by
noting that the R for ~-&—1 in Eq. (3.16a) obey
the recursion relation (3.2) and (3.8) for the &„
and &„. Then, using the explicit forms of s „.and
~ „.given in Table I, it is straightforward to show
that

"R~-,(x) (4.»)
for ~=0, 1, . . . , & —2, and hence that Eqs. {4.2)
and (4.4) also hold for n N —1, but not for smaller
n.

Now sure that the &„ have the desired zeros for-
&- & —1, we turn to the spectral resolution of the
identity to find the corresponding polynomials and
learn about the weight function with respect to
which they are orthogonal.

with the help of the tridiagonal form of (Ho+ V»
-E) for m and ~'-& [se'e Eqs. (3.3) and (3.13)].
Thus at the zeros of R„(x}

2dE ~ dxR(x)
m o' =

~&/o(x)go ko

and hence

(4.V}

R„(x~)=0

for g =1, 2, . . . , + and + =N, N+1,
Equation (4.1) is an eigenvalue equation,

S

(H +V,oo
—E")„R ~ (x", }=0.

m

(4.2)

(4.3)

g(ao }

&o& X"&(x)[1+tano6(E)] (4.8)

where n„, ko, and X(x}are given in Table I as well.
This is to be compared with the orthogonality re-
lation for the sought-after polynomials p„(x) on the
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weight function" pzpp(x} generated from H, + Vpp .. known quantities.

g(ca }
5„„.=— dx p, (x)p„(x)p„i(x) .

n .g(p)
(4.9)

[R~(x)/&4'~(x)]'
X'&(x) [1+tan'5(E)] (4.10a)

Since, by Eq. (4.4), the zeros of p„(x) and R„(x)
coincide, we are led from Eqs. (4.8}and (4.9) to

I

R„(x)=a„(X'~2(x)p,p~ (x)

x [I+tan'5(E)]]' 'p (x) for &)& (4 10)
I

in close analogy to Eq. (3.6) for s„(x). Because as
8-~ +"-8 and &„-~„.choosing the constant ~„ in
Eq. (4.10) to be the same as in Eq. (3.6) normalizes
the P„(x) to approach P„(x}as E-™.Inserting Eq.
(4.10) in (4.8) and comparing with Eq. (4.9) then
yields @„=&„'for &~ &. Since ~„and &„obey the
same recursion relation for &-&, the P„obey the
recursion relation for the P'„ for +-&, and can
hence be written as

With the weight function and polynomials of degree
& -& —1 determined, there remain only the poly-
nomials of lower order. . They can be obtained,
however, by a variety of well-known methods from
p (x) p and p 15 18~ 19

C. Spectral resolution of the full Green's function

We now propose to apply our knowledge of the
quadrature generated by &0++Ipp to learn how to
handle singular integrals by considering the spec-
tral resolution of the Green's function"

dE' 4'~(k', r)%'~(k' r')
k'[1+tan 5(E')](E'-E)

0

(4.12)

n

P„(x)=k„][(x -x~ ) for n) E, (4.11)

when there are no bound states. The matrix ele-
ments in the basis Q„are then

where k„ is determined by p„(x)-po as E-~. In
Appendix A, we verify that the ratio of R„(x) to
R„(x) really is a polynomial of degree & —& and
that Eq. (4.10) holds for n =N Ias wel-l.

Since the E; are generated in solving the ~-
matrix equations, Eq. (4.10}can be used as an
expression for the weight function in terms of

dE 'R „(k')R„.(k ')
7r k'[1+ tan'5(E')] (E' —E) ' (4.13)

Transforming the integration variable to x, in-
troducing the weight function in numerator and
denominator and subtracting an appropriate factor
to simplify the singularity at & =8, as we did in
Eq. (3.11), yields

wk J,
& i

'P x'I'(x')P, (x')(I+tan'&(z') x'~'(x)P+~(x)[1+tan'5(El]}

2R„(x)R„i(x)P "~ ~ dx' papp (x')
k [1+tan'5(E)] pp, „(,& x' —x (4.14)

when &&, the greater of & and &', is larger than &,
consideration of Eq. (4.10) for R„and the remarks
in Appendix A on the structure of R„ for +- N —1
reveal that the integrand in the nonsingular integral
above is p, „( ) multiplied with a polynomial of
degree ~ 2&& —1, and hence that a Gauss quadrature
of degree && will be exact." With an eye toward
comparing the result with the equally exact J-
matrix expression, we perform this quadrature,
whose abscissas lie at the zeros of R„) (x'),
yielding

2R„(x)R„.(x)
k [1+tan'5 (E)]&p,p, (x}

( "&"' dx'p (x')

( ) x x f

(4.15)

where ", is the Christoffel weight" appropriate to
the quadrature of degree, +& and I denotes the
principle part of the given integral. Comparison with
the exact J-matrix expression in Eq. (3.25b) implies

R„(x) "~") d 'p„,(x')

~n.
for I) fq. (4.16)

x~ -x)

Using Eq. (4.10) for R„(x), this means that&„(&)
can be written as

l„(x)=a„(X'~'(x)p, ~(x)[1+tan'5(E)]]'~'q (x)

(4.17)

with q„(x) defined as
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P * dx p))»(x )P)) (x )
)7„x f

sp))pp(x} ( )
' ' x x (4.18)

in close analogy with Eqs. (3.6) and (3.9)-(3.11)
relating the &„and +„.

When && is ~N —1, the discussion in Appendix
A shows that the integrand in the nonsingular inte-
gral in Eq. (4.14) for the Green's function is p,»
(x ) multiplied with a polynomial of degree -2&- 3,
and hence a quadrature of degree & will be exact.
With the help of E q. (4.16), this yields

2Xil2(x)

dispersion correction term in Eq. (2.7). However,
the J-matrix method improves on a quadrature
in the first & basis functions to give a smooth ap-
proximation to all the matrix elements in a com-
plete basis by incorporating the solutions of the
&p Schrodinger equation sh ifted by in phas e.

D(E) —= det[(H, —E) '(H —E)], (5.1)

V. FREDHOLM DETERMINANT

Now we can apply our knowledge of the J-matrix
quadrature to lear n about the spectral density.
This is best expressed in terms of the Fredholm
determinant, or Jost function'6

r))j r))'.j w j k»- P»- ) (xj @»(xj)
(E;—E)k»k»-,

2 R„(x)R„(x}I„(x)
k(I+tan'&(E)}R»(x) ' (4.19)

By expressing R„(xj}in terms of R„,(xj}and dR»/
dx through Eq. (3.16b), the sum in Eq. (4.19) fur-
ther simplifies with the help of Eq. (4.10) and the
explicit forms of x(E), &„, and k„ in Table I to

~
( ) p r~r„,jwjk» P», (xj}P»(x,).

(Ej -E) k»k»-,

2R„(x)R„l(x)I„(x)
k [1 + tan'() (E)]R»(x} (4.20)

which is equivalent to the ~-matrix result in Eq.
(3.25b) if the weights obey the Christoffel formula
(2.4) with A», =k„/k„„ in agreement with Eq.
(2.2).

In addition, the &-matrix result (3.25b} can be
seen to be equivalent to a quadrature representa-
tion of the Green's function in accordance with
Eq. (2.7).

Expressing the standing wave normalized R„(x)
as a matrix element with the outgoing or incoming
wave-energy & functional normalized eigenvector
IE) as

( i ) ( i, )
2R„~ (x)R„i (x)
&k(1 +tan'&) (4.21 }

and using Eqs. (4.10) and (4.1.7) for P„and (f„al-
lows us to write Eq. (4.19) as

9„„.(E) = g j ~ (ni E(x,))(E(x,)in')
j 1 p j xj

+»(ni E&(EI n') e (x)/p, (x). (4.22)

Equating the first term above with the first term
in the &-matrix result (3.25b) verifies the normali-
zation relation expressed in Eq. (2.9), while the
second term above gives a compact form to the

P " dE' ImD(E')
7( o

E' —E (5.2)

Transforming first from E' to x', introducing the
weight function, and then removing the singularity
at E' =E yields an expression equivalent to that of
Heller and co-workers, "

~ ljJ'2

ReD(E) = 1+
nk

dx'p, (x')
«(p) x —x

k' ImD(E') k ImD(E)K"(X')ll (X') X "(~))l(~)),
ImD(E) '( ) p, (x')dx'P
v p,(x),(,)

x' —x (5 3)

which is the ratio of a regular solution to the full
Schrodinger equation, obeying the same boundary
conditions as the free solution at r = 0, to the
physical wave function, regular at the origin and
asymptotically equal in magnitude but shifted in
phase from a free wave at large r.~ The phase of
the determinant is the negative of the phase shift
and its magnitude gives the density of the full con-
tinuurn states compared to the free states. "

In their article, Heller et al. ' developed a
smooth approximation to D(E) with the quadrature
generated by diagonalization of (Ho —E}in the
basis set (2.11) for s waves and z =0 and with a
correct treatment of the singular integral, on
which ours in Sec. IV is modeled. Yamani and
Reinhardt" extended the analysis to general angu-
lar momentum, both basis sets (2.11) and (2.13)
and all z. We follow their approach here, with a
slight modification which reveals a close connec-
tion with the J-matrix method and, when coupled
with the results of Sec. IV, leads to a particularly
simple form for D(E) in terms of p, (x).

Because the Fredholm determinant is analytic
in the upper half of the complex k plane and
D(-k) =D(k), the real and imaginary parts are
related by the dispersion relation"
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On performing a quadrature of degree N, the
quadrature of the second term in the first integral
can be combined with the second pxinciple-
value integral and considerably simplified with the
help of Eqs. (3.6), (3.9}, and (3.11) to give

vk p('x, )X 'i'('x, )('x, —x)

rmD(Z)c„(x)
s„(x)

(5.4)

(5.6)

Further simplification can be introduced by ex-
pressing the weights in terms of Eq. (3.11) evalu-
ated at x=x,' and returning from x to the variable

ReD(E)R„(x)
s„(x)

ReD('E, }ff„('x,) dE
(5 ~)

(E 'E, )s„'(' —)xdx
where the prime on s„ indicates differentiation vrith

with respect to x. Eq. (5.7) is now in the form of a
quadrature of Eq. (5.2) without first removing the
singularity, giving a rational fraction in E, ex-
pressed as a I aurent series of residues at its
poles. Heller et al. ' showed that this approxima-
tion is nothing more than Eq. (5.1) for D(E)
evaluated as the ratio of the determinants of the
N x~ matrix representations of H —E and H, —E:

Ddddd(E } [ E OE
j 1

which holds exactly for 7 truncat'ed to the N-di-
mensional representation V',». For the oscillator
basis, where E i,s just a constant times x, this is
clearly equivalent to

(5.8}

D,„„(E)= P„(x)/P „'(x) . (5 9i

For the Slater basis (2.11), it is necessary to check
that A„-s„as E-~, or x-1, and hence that
p&(1) =p'„(1), to show that Eq (5.9) hold. s there

Since the phase of D(E) is —5(Z), it follows that

lmD(Z) = —tan5(E) ReD(Z),

allowing the second term in Eq. (5.4} to be com-
bined with the right-hand side. Then, using Eq.
(3.16a) to express s„+c„tan5 as B„nad tan(E,'. ) as
R„(x',)/c„(x',) .yields

ReD(E)R„(x) X '~'(x)
s„(x) wk

' wR„(' x)' gkReD('Eg)

as well.
Combining Eqs. (5.9) and (5.V) gives

ReD(E}= s„(x}P„(x)/8~(x)P'„(x), (5.10)

while a subsequent check of the integrand in the
first integral in Eq. (5.3) reveals that the in-
tegrand was p, (x) times a polynomial of degree
2N - 2, making the quadrature exact. ,

With the help of Eqs. (3.6) and (4.10) this can
be simplified further to

ReD Z = ""' ~~'™
p ~,(x)[1+tan'5 (E)])

or using Eq. (5.5), that

ID(&) I'=P.(x)/p, (x).

(5.11)

(5.12)

While something like this form is to be expected
from the interpretation of the magnitude squared
of the Fredholm determinant as a ratio of the
density of states, "we find its simplicity par-
ticularly appealing.

VI. SPACING OF THE PSEUDOSTATES AND THE
HELLER DERIVATIVE RULE

P„(x)= sin(n+ 1)8/sin8, (6.1)

where x= cos8, which have the weight function
p(x) = sin8 on xd: (-1,1) and are the zeroth-order
polynomials for the Slater basis (2.11) with f =0
and Z = 0 in the J-matrix method.

Arranged in increasing order, the abscissas

A. Introduction: Heller's conjecture

So far, in the analysis of the spectrum of H, by
Heller, and co-workers'" and in the above analysis
for H, + V, knowledge of the exact continuum states
in the special basis sets (2.11) and (2.13) was used
in a comparison with the pseudostates to show the
validity of the equivalent quadrature idea through
explicit construction of the appropriate weight
function and orthogonal polynomials. Extending
equivalent quadrature to arbitrary L' bases de-
mands a way of constructing the necessary qua-
drature para, meters such as the normalization
factor w, /p(x~)dE/dx. , in Eqs. (2.9) and (4.22) and
an interpolation of the dispersion correction fac-
tor q„/'P„directly from the pseudostates. Although
this task can be approached in terms of the
classical moment problem with the Stieltjes imag-
ing" technique, we will follow a conjecture of
Heller'" based on the spacing of the pseudostate
eigenvalues.

In looking for a simple method of obtaining the
normalization factor in Eq. (2.9) directly from
the quadrature abscissa. s, Heller" found an in-
teresting relation to hold for the Chebyschev
polynomials, "
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are located at

(n) j+ 1
x)" =-cos m, j=1,2, . . . , n,n+1

while the weights are given by Eq. (2.4) as

(6.2)

x dX= x dx

X (n)~ (n)

p(x (n)) (6 6)

sin' (6.3)
Qn the other hand, changing variables in the in-
tegral from x to $ =j yields

Heller noted that if the abscissas in Eq. (6.2) are
considered as a continuous function of their num-
ber as x(g) with

x dx= x
a ((a )

n

= Z /(* ) IIq—) . (6.9)

x(j) =x, , (6.4)

then the derivative of x with respect to ( at $ =j,

dx '

m j+Isin 1T

d$
) / n+1 n+1 (6.5)

is related to the weights as

dx ze'."'
.i

d$,. p(x",.)
' (6.6)

The same method works on the Chebyschev poly-
nomials of the first kind" as well. Moreover, if
we consider the energy eigenvalues as a function
of this numbering parameter $, we obtain for
Z/= E(x,)

di ~,.(n) dE
d$ / p(x/ ) dx

(6.7)

which is just the factor in Eq. (2.9) relating the
continuum state of energy E,. to the corresponding
pseudo state.

Heller then conjectured that Eq. (6.7) should
hold for any Gauss quadrature. Although Yamani"
demonstrated the validity of the conjecture for
several known weight functions numerically and
we found it to give results comparable to Stieltjes
imaging" as the last step in solving the classical
moment problem in a calculation of the total
photodetachment cross section of 8,"only the
Chebyschev polynomials exhibit the closed rela-
tionship interpolating the abscissas as a function
of their number as in Eq. (6.2), which made the
proof straightforward. In fact, without the existence
of such a unique interpolation, the rule conjectures
about the drivative of a function known at n points
and hence is not really precisely enough posed to
be proved or disproved.

That Eq. (6.7) is plausible for any quadrature,
however, can be seen from the following argument.
Consider the quadrature of an integral of some
function f(x) obtained by introducing the weight
function p in both numerator and denominator,

Comparison of the two approximations in Eq. (6.6)
and (6.9) suggests that the derivative rule must at
least hold asymptotically for large n.

It was this thinking which led us to examine the
large n behavior in looking for a natural inter-
polation function and hence to a provable formula-
tion of the derivative rule for the classical ortho-'
gonal polynomials in terms of their large n be-
havior and that of the conjugate functions qn. In
Sec. VI B, we use the asymptotic form developed
in Appendix 8 to carry out the proof on the P0 of
Eq. (3.4) for the d-matrix method for 2 =0 as an
example, reserving the paraQel demonstration
for z c0 to Appendix B. An extension to the J-
matrix polynomials, P„, of Eq. (4.10) in Sec. VIC
then reveals a particularly interesting relation
between the relative spacing of the eigenvalues of
H, and those of H0+ V and the scattering phase
shift.

B. Derivative rule for the H0 quadrature

The polynomials, P"„, given in Table I for H, in
the oscillator basis and the Slater basis for z =0
belong to the family of classical orthogonal poly-
nomials. " In Appendix B, it is shown that for
these classical polynomials q'„+ ip'„can be
written as

8„(x)e'"'
ln Pn (p@1/2)1/2 1 (6.10)

[Im(8„)cosmic+ Re(8„)sinmf]
P))

(p Xl/2)1/2 t
0

]Re(8„)cosmic —Im(8„) sinmf]
In (p~l/2)1/2

(6.11a)

(6.11b)

It is easy to see that the zeroes of p'„.occur at the

where p, and X are given in Table I and (=m —~
= cos '(-x), m =n+ l +1 for the Slater case but
g = 2(x)'/', m = (n+1+ 1/2)'/2 for the oscillator case
and 8„approaches a constant in x with phase (--,'l(/)
for large n, if x is not too close to the endpoints.
Splitting Eq. (6.10) into its real and imaginary
parts yields for p'n and q'n
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solutions of the equation

tanm $(x) = — " = - tan arg[8„(x)],
1m[6„(x)] (6.12)

tan P(x)v =p„'(x)/q„'(x), (6.14)

making it clear why P is an integer at each zero
of p„', and from the form of q„'in Eq. (3.10), only
at the zeros of p„'for xz(a, 5).

/he derivative rule (6.6) then follows from the
differentiation of $'(x),

(6.15)

which, using sec'8 = 1+tan'8, becomes

[q'.p."-p~."]
dx [w(p'„'+ q'„')] (6.16)

This' can be evaluated at a zero of p0„with the
help of Eq. (3.11) for qo(x) as

d t' p„" p, (x,.) (6.17)0
x~,. ~6', x=x;

which is fully equivalent to the desired result (6.6).
Note that the validity of this derivative rule does

not depend on the choice of weight function or any
particular asymptotic form; it merely follows
from the definitions of $'(x) in Eq. (6.14) and of
the conjugate functions q'„ in Eqs. (3.10)-(3.11). In
fact, one can argue that we have only found a func-
tion with the required value and derivative at each
of n points, and have not really proved anything
significant at all. We shall see below, however,
that this choice of an interpolating function sug-
gested by the asymptotic form of p'„ is a natural
one with some desirable properties.

which means that for large n, where argQ„
--,'Em, the zeros become evenly spaced in the
variable &.

Now a simple trick suffices to number the
zeros in po determined by Eq. (6.12). We in-
troduce a function g'(x) into Eq. (6.12) as

tan[mt' —$'(x)m] = — ", (6.13)Im[Q„(x)]

such that when p(x) is an integer, p'„has a zero
just as in Eq. (6.4). g'(x) should then increase
monotonely from 1 to n as x increases from' xy to
x„so as to keep the argument of tan[mg(x) —$'(x)m]
in Eq. (6.13) within a constant range of width m.

Naturally, there is a different function P(x) for
each n, but we suppress that dependence here.

Before showing that $'(x) so defined satisfies
the derivative rule (6.6), it is useful to simplify
Eq. (6.13) and thereby free the choice of $'(x)
of any dependence on the asymptotic form for
large n. Solving Eq. (6.13) for tan($'n) gives

In particular for the classical orthogonal poly-
nomials, we note in Appendix B that p„and q„
satisfy the same second order differential equation
such that their Wronskian has a simple form and
allowing Eq. (6.16) to be rewritten as

d$ W„

[vp,X(p„o'+ q„o')] ' (6.18)

where W„ is a positive constant. Since pp and X
are both positive throughout the interval of in-
tegration, $'(x) increases monotonely for xc(a, b),
and hence p(x) and x(g') are single valued. For
large n and x not too near the endpoints, Eq. (6.18)
gives the even spacing d$'/dx=m/v consistent with
the asymptotic form of Eq. (6.11a).

As might be expected from the long range of the
Coulomb potential, arguments about the a.symp-
totic spacing must be modified for the Pollaczek
polynomials. We discuss the appropriate modi-
fication in Appendix C, and turn now to the J-
matrix polynomials P„, developed for the full
Hamiltonian in Sec. IV.

C. Derivative rule for the II quadrature

Combining Eqs. (3.16a), (3.24a), (4.10), and
(4.17) for R„and I„with Eqs. (3.6} and (3.9) for
s„and c„, the polynomials p„and conjugate func-
tions q„ for the full Hamiltonian can be written in
terms of p„and q„ for II, as

p„= (po/p~py) [p„cos6+qq sln6],

q„= (p, /p, ap)'~'[q„'cos6 —p„' sin6],

(6.19a)

(6.19b)

or equivalbntly

q +fp. =(Po/P. ) e (q. ~fp, )

=D(E T fE)(q„k fp„), (6.20)

tan(&(x)m) = p„(x)/q„(x) .
Equations (6.14) and (6.19) imply that

tan[&(x)w) = tan[ad'(x)~+ 6].

(6.21)

(6.22)

Clearly the same argument that led from Eq. (6.14)
to (6.17) verifies the derivative rule for $(x) as
well. Furthermore, since at high energies the
phase shift 5 vanishes and the spectral density of
the full Hamiltonian approaches that of H„and
hence the arguments of the tangents in Eq. (6.22)
coincide, we can write

&(x) = t'(x) + 6/m. (6.23)

using Eq. (5.12) for the Fredholm determinant. A
comparison of Eq. (6,19a) with Eq. (6.11}reveals
that the zeros of p„are shifted by 5 from those of
p„. Indeed, if we define a numbering parameter
((x}for the zeros of P„just as in Eq. (6.14) implic-
-itly as
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Like Eq. (5.12) for the Fredholm determinant,
expression (6.23) for the relative spacing of the
eigenvalues of H and E, is so simple that it im-
mediately reveals the nature of the finite J'
representation of the continuum. Evidently, $(x)m
plays the role of a phase shift in the discrete
representation, advancing by m as the energy
passes through each pseudostate eigenvalue, just
as the actual phase shift starts in accordance with
Levinson's theorem at n, m,

"where n, is the num-
ber of bound states. 'Thea the actual phase shift
is obtained by subtracting this pseudostate phase,
$(x)v, from the phase, $'(x)v, for H, .

Equation (6.23) shows the correct qualitative
behavior as E-0 for the extension to potentials
with bound states as mell. Since the zeros of the
classical polynomials, P~, lie within the interval
(a, b) corresponding to positive energy, $' must
vanish as E-O, and hence by Levinson's theorem"
[5(0) =n, w] that $ should go to the number of bound
states as E- 0. This is not quite correct, how-
ever, because the number of actual bound states
of tt pp is an upper bound to ' the number of nega-
tive energy pseudostates, which is what g really
numbers. Hopefully, if n is large enough, all the
bound states will be represented, but here is an-
other aspect which must be investigated in the
extension to stronger potentials.

The derivative of Eq. (6.23) with respect to the
energy,

VII. DISCUSSION

By knowing the exact wave functions from the
J-matrix method, we were able to determine the
weight function and polynomials orthogonal on it
for the Gauss quadrature generated by the dia-
gonalization of JJ, + Vapp in a Slater and an oscil-
lator basis. It is now clear that, the equivalent
quadrature Fredholm determinant and J-matrix
methods are essentially equivalent, yielding the
same result from the same appropriate treat-
ment of the potential a.nd exact treatment of 00.
In addition, the simplicity of Eq. (5.12) for the
magnitude of the Fredholm determinant and Eq.
(6.23) for the phase shift emphasizes the useful-
ness of Gauss quadrature of the continuum as a
theoretical concept as well as a numerical method.
In considering only scattering by potentials too
weak to have bound states, however, we have
limited the possible applications too strongly.
We will now outline how this and other restric-
tions can be lifted by future work.

Incorporating bound states into the quadrature
scheme should present no insurmountable ob-
stacles. Since bound states occur at poles" in
the outgoing scattering wave function at positive
imaginary k, we expect the coefficients of the
outgoing wave, 8J(1 -itsn6) to have singularities
there. Heller' has shown this to be true, with
the bound states of V,pp located at the poles of
8„/(I —itan5), or at

d$ d$' 1 d5
dE dE m dE

(6.24)

contains additional information about the adequacy
of the finite basis in representing the details of
the continuous spectrum. In the neighborhood of
a resonance at E„ofwidth I'= w/~d5/dE~s=s, the
phase shift 5 rises sharply through n, ' meaning
that the pseudostates must bunch near E„. If the
total number of basis functions is too small, there
may not be enough pseudostates, making the cal-
culated resonance wider than F. On the other hand,
causality arguments limit the rate of decrease of
the phase shift with respect to the momentum k to
d6/dk & -g), where S is the approximate size of
the scatterer or the approximate range of the
potential. " By Eq. (6.24), such a decrease can be
described with d$/dk still positive only if d)0/dk
&md. By taking p large in Eq. (6.16) with the help
of the asymptotic form of P„and q„ in Eq. (6.11),
this can be written as m&/dk &S~ while using the
specific form of g(x) and x(Z) for the two basis
sets then reduces the relation to m & ~ 35), or that
2n must be larger than the variable in the basis
sets (2.11) and (2.13) when r reaches out to the
range S of the potential.

Since at the bound-state energies the standing
mave reduces to the bound-state function, this
means that the singularity is entirely in the ap-
proach of tan5 to i. A glance at Eq. (4.10) for
9„ in terms of the polynomials p„ indicates that
then p,~ (x) must have simple poles at the bound
states, which in turn leads via Eq. (5.12) cor-
rectly to simple zeros in the Fredholm deter-
minant. " The means that the weight function mill
have to be extended in domain to negative energies
to include a sum of weight factors times 6 func-
tionals following the approach of Yamani and
Reinhardt in defining the attractive Coulomb
Pollaczek weight function and polynomials to
describe the Rydberg series. The quadrature
generated by the diagonalization of H, + Vip will
then approximate a sum over perhaps infinitely
many bound states and an integral over the con-
tinuum with a finite sum over pseudostates. The
conditions under which this quadrature is exact
and the treatment of the type of singularity which
appears in the full Green's function a,nd which
leads to the dispersion relation between q„and
P„ in Eq. (4.18) will have to be investigated.
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It is a valid criticism of the J-matrix method
that although the Slater and oscillator basis sets
(2.11) and (2.13) are convenient for calculation,
fixing the scaling factor at one value for all n
restricts the basis set too strongly, meaning that
unworkably large basis sets will be needed to
treat interesting systems. That a scattering cal-
culation at all energies requires a global represen-
tation of the spectral density' and is thus less.
amenable to optimization of parameters than a
bound-state calculation is only a partial rebuttal.
A possible generalization to arbitrary basis sets
might take the following form. One would start
with the separate diagonalization of IJ and JJ,
in the same N basis functions and then numerically
interpolate the spacing of the eigenvalues to ob-
tain monotonically increasing functions $(E) and
('(E) analogous to those discussed in Sec. VI.
Since in an arbitrary basis the more appropriate
variable x is not known, or may not even exist, E is
the most natural choice, with p(E) dE playing the role
of p(x) dx. Assuming they are generally applicable,
Eq. (6.23) then gives the phase shift 6(E) as v times the
difference of the spacing functions $(E) and
('(E), while by Eq. (6.7) d(/dE evaluated at an
eigenvalue E~"i gives the factor w~~ /p(E~~), con-
verting pseudostate into continuum matrix ele-
ments. With Eq. (6.14) this would allow an ap-
proximation to perturbations sums over a corn
piete set of intermediate states such as for the
full Green's function of the form

& ~8 (E)i & EJ —E tan[)(E)wjj t

(7.2)

where (iiE) (E~f) must be interpolated numeri-
cally from (lid, )(P,. i f). This scheme appears
promising because of its simplicity and its known
validity in the special basis sets (2.11) and (2.13),
but the several assumptions must be proved for
general bases and special techniques deVeloped
to carry out the inherently tricky numerical dif-
ferentiations to make it reliable.

Finally there remains the generalization to
.multichannel scattering. Evidently a two-dimen-
sional quadrature is required to deserj. be the
scattering of a projectile from a target having a
set of bound and continuum states. %e applied this
idea without detailed theoretical support to the
two-electron photodetachment of H by treating
one electron with the J-matrix method with z =0
and the second by equivalent quadrature with z =1
as a rough guess at the asymptotic conditions ap-
propriate to a scattering theory of the three-body
Coulomb system. ' A proper treatment for short-
range forces must be equivalent to the Fadeev

formalism, "while no correct formulation is as
yet known for three particles interacting with the
Coulomb force. Perhaps the quadrature concept
will show .a way to approach this problem.
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APPENDIX A: VERIFICATION THAT THE p ARE
POLYNOMIALS

Lemma 1. p„(x)R„(x)/R„(x)= m„, for n (N- 1,
where mN, is some polynomial of degree (N-1.

Proof: Using Eqs. (3.16b), (3.17), and (4.11)

PNRn g ~ nJ N-1 i
1

'~'
(x x )

j=l
Focusing on the oscillator basis and using the ex-
pression in Table I we find

(A1)

P„R„r(N+ l+ —,')
2.r(~) j=1 k&j

(A2a)

This is clearly a polynomial. of degree &N- i.
For the Slater basis, we obtain

p„R„„r(N+21+ 2)
~r(lv')

X ~nj~N-1 j 1 Xj X Xk

(A2b)

&n =&NTnN-1 —~sr -1TnN ~ (A4)

where

nm ( N-j. N/ )( n m n m)' (A5)

which is also clearly a v„,. Since R„,(x) has the
desired zeros, this means that Eq. (4.10) holds
for PN, as well

Lemma Z. R„(x)/R„(x)= v„„for n) N Proof:
Using Eq. (3.16a) for R„and (3.18) for tan5

~N 1 N8N 1 N 1(SnC~ —CnSN) + SnCN 1 —CgSN 1

N-1 N~N-1 N 1 N+ N-1

(AS)

The denominator in Eq. (AS) is easily expressed in
terms of R„by Eq. (3.19), and the numerator can
be simplified with the help of Eq. (3.16a) for
BN 1 yielding
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nn 1 n-1 m

~n-X,.
= c&~nm + c ~n-1 m &

(A6)

where c and c' are constants (see Table I). Hence
Eq. (A6) is a three-term recursion relation for
the T„starting with a constant at n =m+1, or
T„ is a polynomial of degree n -rn —1. Since
R„/R„, is linear in x from lemma 1, this means
that R„ in Eq. (A4) is R„ times a polynomial of
degree (n —1V).

APPENDIX 8: PROPERTIES OF q„FOR THE CLASSKAL
AND POLLACZEK POLYNOMIALS

1. Classical orthogonal polynomials

Clearly T =0. Using the recursion relations for
c„and s„(3.&) and (3.3) it is straightforward to
show that T „„(x)=Z„, „/Z „„,a constant (see
Table I), and that

weight functions and other parameters for each,
as well as for the Gegenbauer special case of the
Jacobi polynomials of interest for the 4-matrix
method in the Slater basis (2.11), are listed in
Table II.

It is straightforward to show the the conjugate
functions q„(x) defined by

q„(x) =-
P ' dx'p(x')P„(x')

sp(x), x' —x (B3)

also satisfy the differential equation (Bl), where-
upon it follows that the %ronskian of q„and P„ is
of the form

q„P„' —P„q„' =W„/(pX) .
(See Table 11 for the constant W„.)

The general trend of the asymptotic behavior of
the q„and p„also follows from the differential
equation (Bl), for the function P„(&)= p' 'X' P„(x),
where &'(x) =X ' ', satisfies the differential equa-
tion

The classical polynomials are special in that
they obey the second-order differential equation P."(&)+(~ -R(K)]P.(f)=0 (B6)

&(XpP.'), ~ pdx

and the Rodriguez formula

P„=LI/g„p)]D "(pX"),

where A.„and K„are constants. 'There are really
only two kinds: the Jacobi polynomials, for which
Eq. (Bl) is the hypergeometric equation, and the
I aguerre polynomials, for which it is the con-
fluent hypergeometric equation. The particular

if P„satisfies (Bl). The specific values of g, the
n-dependent parameter m, and R(&) are given in
Table II for each case. A look at these values re-
veals that for n large and x not too close to the
endpoints, m' & ~R(f) ~', and hence that P„and
similiary p'~'X'~4q„(x) approach linear combina-
tions of cos(m g) and sin(mg). Incidentally, it is
clear from Eqs. (3.6) and (3.9) that the s„and c„
of the J-matrix method obey Eq. (85).

Given the choice of m and P as the natural asymp-
totic parameters, the specific forms for p„and q„

TABLE II. Parameters for the classical orthogonal polynomials (Ref. 15). The weight function p(x) and integration
limits for the variable x are listed for the two major types of classical orthogonal polynomials, Jacobi and Laguerre,
and for the Gegenbauer special case of the Jacobi polynomials. In addition, the parameters are given for expressing the
polynomials in terms of the Rodriguez formula p„=(K„pi td"(pX")/dx" and for the simpiified differential equation P„"iK)
+ Im -&(f)lP„(&)= 0 satisfied by P„(f)=p ~ X 4p„(x) useful in determining the large n behavior of the polynomials. The
Wronskian with a second solution of this equation is given by the constant +'„.

Polynomial

(a, b)

p(x)

X(x)

Jacobi

(1-x) (1+x)

1-x2

Gegenbauer

(-1,1)

(1 x2)2X-i

1-x2

(o,

x

Laguerre

(-2)"n t

n+ (o,'+P+ 1)/2

cos '(-x)
n2-1/4 P -1/4

4 cost(t /2) 4 sin2(t'/2)

2 '~+'I'(n+ n+1)I'(n+P+1)
1(n+1)r(n+ 0. +P+1)

(-2)"n tI'(~) I'(n+A, + 1/2}
r(Z + 1/2) r(n+ 2X)

cos '(-x)
A, (A, —1)
sin2(&)

7|4' ~I'(n+2A, )

r(n+1) r'P. )

[n+ (+ 1)/2li/2

n2 1/4
16

I"in+ e+ 1)
r(n+1)
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follow from the integral representation of

1 " dx'p(x')p„(x')
m p(z), (x' —z)

whe~e f„(x+ie) =q„sip„U. sing the Rodriguez
formula (B2), the integral can be integrated by
parts n times to yield

.(z) = ~! ' dx 'p(x')X(x')"
xR„p(z), (x' —z)"" (Bv)

which is now in the form of the integral represen-
tation of a hypergeometric equation for the Jacobi
ease and a confluent hypergeometric function for
the Laguerre, giving f„ in the form

f (x+ie) = 8 (x)e' ~/(pX' ')' ' (B8)

and with the help of certain linear transforma-
tions, q„and P„as well. The particular functions
f„, q„, and p„ for each case are listed in Table
III, with the formula for 8,„ for the Gegenbauer
polynomials resulting from an additional quadra-
tic transformation. When n is large, standard
methods can be used to show that G„approaches
the constants listed in Table III as well.

As a by-product, this development of the con-
jugate functions q„extends the formulas for c„of
Yamani and Fishman' to noninteger /. By evalu-
ating q„ in Table III for the Qegenbauer case for
t=A. +1 and the Laguerre case for /=a+-,' and
using Eq. (3.9) for c„, it follows that the factor

. s„tan(ml) must be added to the formulas for c„in
Ref. 3 when l is not an integer.

(B11)

2. Pollaczek polynomials

The Pollaczek polynomials ' ' '" arise from
the introduction of two extraparameters a and 6 into
the three term recursion relation for the Gegen-
bauer polynomials so that

(n+ 1)p„„—2 [(n + A + n)x+ k ] p„+ (n+ 2 y —1)p„,= 0,
(B9)

starting with Pp = 1 and P y 0 They are ortho-
gonal on the weight function

I

p(x) = 2'" '/w e"~' "(sin8)'~ '
~

I'(X+ it) ~, (B10)

where t=(Iacos8+k)/sin8 and x=cos8, and are of
interest in relation to the Coulomb Hamiltonian
(2.14) with X = t+ 1 and ia = -5 such that t = -z/k.

Although they obey no differential equation, the
P„and be written in terms of hypergeometric
functions as

n+2k. —I
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f„(x+i&)= q„+ iP„='G„(x)e' ~/(pX' ')'i', (B12)

where m = n+ A. ,

j./2
g ( 1)1l 1 (m+ h) -i(x-1) r/2-sp

~r(m+1-a)~

and

(B13)

6p = -i ln(2 sing) + argI'(m+ 1 —it) —argI'(A. —it) .
(B14)

When n is large and x not too close to the end-
points -1 and 1, Q,„goes to a constant like the

Using the definition of the conjugate functions q„
in Eq. (B3) or f„ in Eq. (B6) and considerable
effort paralleling Szego's proof of the orthogon-
ality of the polynomials, it can be shown for. a

Gegenbauer polynomials, but with the additional
phase —5~.

Restricting our attention to h = 1+1 and i = —z/k,
we can see the effect of this extra phase on the
quadrature representation of the spectral density.
The third term in Eq. (B14) contains what is gen-
erally known as the Coulomb phase shift, "while
the first two terms must be involved in building up
the divergent phase, ln(2kr), "in S(r) in Eq. (3.1).
For z &0, the eigenvalues are all pushed to higher
energies by the repulsive Coulomb potential,
while for z &0 the eignevalues are displaced
in the other direction so strongly that a few are
removed from the interval (—1, 1), consistent
with the existence of bound states with an attrac-
tive Coulomb potential and with the failure of the
proof of the orthogonality of the polynomials and
of Eqs. (B12) and (B13) for a &

~
b~. That 6p be-

comes infinite as F.- 0, corresponding to the in-
finite number of Coulomb bound states, while the
number of bound pseudostates remains small, is
another aspect of the representation of the bound
states by pseudostates still be be explained.
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