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Extremely compact formulas for molecular two-center one-electron integrals
and Coulomb integrals over Slater-type atomic orbitals
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Extremely compact analytical formulas are derived for molecular two-center one-electron integrals and
Coulomb integrals, which occur in linear-combination-of-atomic-orbitals calculations with Slater-type orbitals
(STO's). The derivation is based on the connection of the STO's with the reduced Bessel functions (RBF's)
and makes use of the convolution theorems of RBF's. The final resultsare of asurprisingly simple structure
and are, therefore, especially useful for practical applications.

I. INTRODUCTION

Slater-type atomic orbitals (STO's) constitute an
important basis set for all calculations of physical
properties of molecules and solids, which use the
linear-combination-of-atomic-orbitals (LCAO)
theory. Unfortunately, STO's lead to complicated
molecular integrals rvhich occur in great numbers
in calculations of the electronic structure of mole-
cules and solids. In order to circumvent this dif-
ficulty, Gaussian-type orbitals (GTO's) were in-
troduced and successfully used in such calcula-
tions." However, for problems in which the
long-range part of the wave function and/or its be-
havior in the neighborhood of a nucleus is impor-
tant; it is necessary to use basis sets which des-
cribe the physical situation better than the GTO's
can do. As is well known, STO's are most suit-
abl.e for .this purpose, because they can fulfill. the
cusp condition and decline exponentially at long
distances like the exact solution of the Schrodinger
equation. ' ' This fact is the reason why one needs
many fewer STO's than GTO's in order to des-
cribe a wave function, especially for larger sys-
tems. Therefore, the use of STO's instead of
GTO's can reduce considerably the number of
molecular integrals that occur in an LCAO calcu-
lation, and this fact may be a substantial contri-
bution to the efficiency of such a calculation.
The advantages of the STO's motivated strong
efforts to evaluate the molecular integrals over
these functions despite the great difficulties in-
volved. Until the early sixties, however, multi-
center integrals over STO's could be evaluated
only for certain cases. Even for the simplest
multicenter integrals, namely, overlap integrals,
explicit formulas were only given for the lowest
quantum numbers, and although these formulas
were not val. id for the general case, they were
very involved and complicated. ' Later, a more
systematic investigation of molecular integrals
over STO's led to general and explicit formulas

for all integrals which occur. ' " However, most
of them are highly complicated and represent
"formal solutions" only, which rather often cannot
be used efficiently in numerical calculations.

One also ean consider numerical evaluations of
the necessary molecular integrals. However,
even with modern computers, multidimensional.
integration procedures are too time consuming
and inaccurate. There are indications that only
one-dimensional numerical quadratures may be
sufficiently reliable. "'" This means that one is
forced to evaluate the integrals over non-Gaussian
basis functions analytically.

In this paper we present new anal. ytical expres-
sions for all two-center one-electron integrals and
the (two-eiectron) Coulomb integrals over STO's.
These formulas are obtained by purely analytical
methods and do not require any numerical inte-
grations. They are very compact and surprisingly
simple also for arbitrarily high quantum numbers.
Therefore they are well suited for practical appli-
cations.

All rather old expressions for two-center one-
electron integrals and Co@lomb integrals over
STO's, which are given in the literature, are
much more complicated than the new formulas
derived in the present article. Especially for
higher quantum numbers the use of the older
formulas is very difficult. Because they usually
hoM for special cases only, a special computer
program is required for each case. '4 Further-
more, these old formulas, which are scattered
over the literature and sometimes hard to find,
are often not at all in a form which can easily be
programmed. Therefore we feel that the new
formulas presented in this article meet a real de-
mand and offer a satisfying solution of the problem.
Because of their simplicity, the formulas given
here can be used and coded easily also by the non-
specialist.

In the present article we apply a new method for
attacking the molecular multicenter-integral
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problem which occurs in LCAO calculations with
an STO basis set. The derivations given here are
based on the fact that STO's can be represented by
linear combinations of reduced Bessel functions
(RBF's), as we have shown recently. "'" However,
the r epr ese ntation of a given integral over STO's by a
linear combination of integrals (of the same type)
over RBF's is of great advantage, because multicen-
ter integrals over RBF's canbe evaluated more easi-
ly than those over STO's. This is due to the fact that
for the treatment of the integrals over RBF's the
convolution theorems of RBF's can be utilized.
In this article, these convolution theorems, which
we derived recently, "are used for the evaluation
of the two-center one-electron. integrals and
Coulomb integrals over STO's. The convolution
theorems are applicable also for the evaluation of
the other types of molecular integrals, which are
not yet considered in this article. Therefore the
treatment discussed here establishes the basis of
a new method, which, in fact, is rather promising,
because it does not only provide a systematic ap-
proach to the integral problem, but also seems to
furnish very compact results.

II. DEFINITIONS

The unnormalized Slater-type atomic orbital is
written as

The angular momentum quantum numbers I„L,„
and l often appear in certain combinations for
which we introduce the following abbreviations,
where 4 should remind us of the triangular con-
dition:

6/= ~(L, +L2 —/), AL~ = 2(I2+ /-I. ,),

&L, = p(/+L~- L,);
(x(L, ) = o(L, ) = o(/) = —,'(I., + I, + /) = o .

(2.5)

(2.6)

We define some functions which are rel.ated to
Bessel functions. If K„(nr) stands for the modified
Bessel function of the second kind, 2' the product
of (nr)" with K„(ar) has no singularity for r Oi-f
v ~ 0. Therefore the function

k„(er ) = (2/v)" (nv)"K.(nr) (2.7)

is call. ed a "reduced Bessel function. '"' It is re-
lated to STO's because for ~.-~ it decreases ex-
ponentially for an'y real v. It may be mentioned
that k„(av) decreases like r '" for r 0 if v&0.
For half-integer order v, one has

k g, (~) =~'e", (2.8)

(2/)t —p —1)!k„g,(r) =r 'e"
( 1)!(~ ), 2 "r' (2.9)

for natural numbers N =1,2, .. . . The reduced
Bessel function obeys the relationship"

N
( ) ( )N ). Y1YÃ(Q ) (2.1) DNA„(x) = (-1)"k„~(x), (2.10)

with integer N, L,, M. The surface spherical har-
monics Y'~(Q;) are defined in Condon-Shortley
phases. "' For the regular solid spheri. cal har-
monics, the symbol

where the "Bessel operator" is defined by

(2.11)

(2.2)

is used, whereas the irregular solid spherical
harmonics are written as

(2.3)

The integral. over the product of three spherical
harmonics, i.e., the Gaunt coefficient, may be
expressed by Clebsch-Gordan coefficients" as
follows:

= [(2/+1)(2I, +1)]'~'[4v(2L, +1)] '~'

&& C(/, L„I,; 0, 0)C(/, L, L,;m, M ).

(2.4a)

The Gaunt coefficient vanishes if the triangular
conditions are not satisfied. They are given by

~ L~ - L2 ~

~ / ~L„+L2, m = M2 -M„

L, +L, +/, even. (2.4b)

The following recursion formula" holds for all v:

x'k, g, (x) =k„,g, (x) —(2v+1)k„„g,(x) . (2.12)

It is practical for numerical purposes. The k,
should not be confused with the spherical Bessel
function, which for integer / is defined by k, (ur)
= (2/)))' (nr) '

K~, ( r(r).

We need nonscalar functions whose angular
dependencies are given by spherical harmonics,
and whose radial dependencies are related to the
reduced Bessel functions. Therefore we introduce
functions 8"„z(ar) define, d by

8„"1,(n r) = (nr) k„(ur) 1'1,(Q",)

=k„(o(r)gjf(o. r) . (2.13)

The order v is arbitrary. However, in this paper
we restrict ourselves to (positive or negative)
half-integer order v. For half-integer order v
=N- &, it is advantageous to define

&„~(ar)=[2"'~(N+L)!] '(ar)~k„,k(nr)Yg(Q-, ) .
(2.14)
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(2n)!!= 2 x 4 x 6 x ~ ~ ~ x (2n) = 2"n!,

(2n + 1)!!= 1 x 3 x 5 x ~ ~ ~ x (2n+ 1)

= (2"n!) i(2n+ 1)!,
0!!= (-1)l! = 1!!= 1 .

(2.15)

(2.16)

(2.17)

With the help of the I' function the Pochhammer
symbol" is defined by

The definitions Eqs. (2.13) and (2.14) differ from
definitions which we used in previous -work. The
relationships between the different definitions are
discussed in Appendix B.

Furthermore, the following symbols and abbrevi-
ations wil. l be applied. The double factorial func-
tion is defined by

lecular integrals over STO's can readily be ob-
tained as simple sums of the corresponding inte-
gral. s over B functions. If the formul. as for the
integrals over B functions are known, it is easy
to write down the corresponding integrals over
STO's. Therefore it is sufficient to consider mo-
lecular integrals over B functions only. The re-
duction of molecular integral. s over STO's to the
corresponding integrals over B functions is ad-
vantageous, because a lot of integrals over B func-
tions have-a very clear and simple structure as
will be shown in the following sections.

IV. OVERLAPINTEGRALS

A. General aspects

(a)„=a(a+1)~ ~ ~ (a+N- 1)

= I'(a+N)/I'(a), (a)R =1. (2.18)

Due to Eq. (3.3), the overlap integral of two
STO's with scaling parameters n and )6, respec-
tively,

III. SLATER-TYPE ORBITALS AND REDUCED SESSEL
FUNCTIONS „dr X,,s, (&r)X ', ,()6(r —R)) (4,1)

As we have shown previously, "an s-type STO
can be represented by a (finite) linear combination
of reduced Bessel functions according to

can be represented by a finite sum of correspond-
ing overlap integrals S. over B functions which are
defined by

(-1)"'n!
(2q- )!(2 -2q)!! (3-1) S'„,"„'.;(a, S, R)= f drBr","z,(ar)

xa,",(a r), (3.3)

R(N- l}, for N- I even,

I R(N- I+1),
It is clear that with the help of Eq. (3.3) all mo-

(3.4)

The summation index q runs from minq to maxq
=n with

for n even,
minq =

1

~ R(n+ I) for n odd. 3.2

If both sides of Eq. (3.1) are multiplied by a solid
spherical harmonic and the substitution N =n+ L
is made, we obtain for STO's with integer N&I +1

(-1)» ' ~(N - I)!2"~(l+p)!
~~~~ (2P N+l)! (2N--2l-2P)!!

x&', , ,(P( -R)) ~ (4.2)

This overlap integral should be distinguished from
the convolution integra, l, which differs from the
overlap integral by a parity factor (-1) '. In a
previous paper, "we already gave closed-form
expressions for these convolution integrals,

'

to
which we must refer for details of the derivation.
In the present paper, we do not denote the convolu-
tion integral, but the overlap integral Eq. (4.2)
by 8, because the latter is more important in
quantum mechanics. The details are clarified in
Appendix B.

B. Equal scaling parameters

For equal scaling parameters n =P, the overlap
integral Eq. (4.2} is given by the following surpris-
ingly simple linear combination of B functions:

Sr 'r'(a, a;R)(=dra (-() I (B 44 )I,,M ))m)g(-()' ( )By rr r I l-l i( R). a
1

(4.3)

The overlap integral of two B functions which
are centered at the same origin, i.e., for the
case R =0, may easily be obtained from the gen-
eral formula Eq. (4.3) by using the orthogonality
relation of the spherical harmonics" and the iden-

bty

&», g, (O) = &I,~,&»,,(4v) '"(2N —3) l!/(2N)! l . (4.4)

The resulting summation over t can then be per-
formed with the help of Vandermonde's theorem. "
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%e obtain

, (2L, + 1)!!(2N,+2N, +2.L~ - 1)!!
stable in the case a»-P as we!1 as It=0. Such a
formula will be derived iri Sec. IVD.

D. Nearly equal scaling parameters

~L~, L2~Ng, N2 ' (4.5)

C. Unequal scaling parameters

The coefficients

x Q C~,'~,'g(p, N)Bp ) ~, (aR)
t~o
~+I,

r C",,",', , (~, ()))). , . (()R")). .
~0

(4.6)

C ' '
( (3) —(-1) ' ' 4))'a (p/c)} '

~[1-(P/~)'] ' '

(-)2- ()Xz+ t, ) &+ &)) ) (8/p) +1
(c(IP)' —1

(4.7)

are closely related to the Jaeobi polynomial. s
P~„"'~.'4 This formula for the overlap integral,
should contain the formulas Eqs. (4.3) and (4.5)
as special cases. However, this cannot be seen
because for c(-P, as well as for R- 0, it contains
undeterminate expressions like e —~ or 0/0. For
the same reason, the last formula Eq. (4.6) be-
comes numerically unstable if a and P become
nearly equal. . For practical applications it is,
therefore, advantageous to have another represen-
tation for the overlap integral which is numerically

For unequal scaling parameters o. Wp, the over-
lap integral Eq. (4.2) is also given by a rather
simple linear combination of B functions according
to

S~&~ ~2(()( P R) = Q(L, M (L~M~~lm)(-1) 2

The following equation, which can easily be ob-
tained from standard literature, "makes it pos-
sible to expand a function B,"z,(ar) as an infinite
series of functions B~ 1(Pr) times powers of
[1—(~/0)']:

(P +(I + L'(
B„i(c(r)=(~/0)" "'g

~
~ [1-(a/p)2]'~0(P

XBf„,~(Pr) for P~a.
(4 6)

This provides the possibility of representing all
overlap integrals over 8 functions with different
scaling parameters by a series of overlap inte-
grals over B functions with equal scaling param-
eters. %e obtain

S ' '( k R) =( ie) '

(P+N, + L,)

~
[1-(~/P)']'

0~0

x S„",~p» (P, P; R) for P - a .
(4.9)

r

This series converges very rapidly for o.=P.
Therefore one needs only a few terms, i.e., inte-
grals of the type S„'„'(P,P;R}. However; it is
even possible to use this series expansion not
only if n= p, but for larger differences of the
parameters, because the overlap integrals, which
constitute the terms of the expansion„can be
evaluated very easily with the help of the simpl. e
formula Eq. (4.3).

The formula for the "one-center limit" 8 =0 for
the. ease of unequal scaling parameters can be ob-
tained from Eq. (4.9) by inserting Eq (4.4). T.he
resulting series may be written as a hypergeomet-
ric function4'.

S„,"»'(o., P;0)=(a/P) ' ' S„,'»,'(n, c(;0),I;QV, +L, +1,N, +N, +L,, +,N, +N, +2L, +2; [1-(o/p)2]}, p~~.

(4.10)

Obviously, the formula for the case P &n can be
obtained from Eq. (4.9) by interchanging
N„N2, L» I „o., R with N~, N„ I.2, L,„P,-R on the
right-hand side (rhs) of Eqs. (4.9) and (4.10) and
by taking the eompl. ex conjugate of the result.

V. KINETIC-ENERGY INTEGRALS

Also with the help of Eq. (3.3) the kinetic-
energy integrals over STO's can easily be expres-

sed as linear combinations of integral. s of the type

rr,"„,*(a, pi R) = fdrrr„', z, (ur)(--,'a)

xB„",', (P(r -R)}. (5.1)

The latter integral Eq. (5.1) can be reduced to a
sum of two overlap integrals by, means of the rela-
tion
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ar, I, o'r = &~, i o'r +or-l, I, o' r

(5.2)

numerical. purposes:

A «» L(u, R) = 4»u 'g B,",«„L(uR) .
e~0

(6.5)

Therefore one obtains

r»,"«,'(u, P; R) = - (-' P') [S«,"»', (a., P; R)

(5.3)
The identity Eq. (5.2) is immediately obtained if
the radial part &„of the Laplacian 4 is expressed
by the Bessel operator according to

a„=r'D,'+ 3D„. (5.4)

J I

d r x.",~(ur) ~; ~~
x"",'(Pr) (6.1}

This, of course, is also the potential at the point
Ã which is generated by a charge distribution
X„"„(ur)X„",„.(Pr) The p.roduct of two STO's can
be written as a l.inear combination of STO's ac-
cording to

VI. NUCLEAR-ATTRACTION INTEGRALS

The two-center nuclear-attraction integral over
STO's with a one-center charge distribution is
given by

This is easy to obtain from Eq. (6.4) if one uses
the relationship

QL(u r) = [(2I —1)ll] '(P/u) +'Q B~ L L(P r),
P~0

(6.6)

which we derived in Ref. 16.
If 8 =0, the nuclear attraction integral becomes

2»» L(u, 0) = 2»~u 25L 05» o(2N —1) ll j(2N) l l .
(6.7)

This follows from Eq. (6.5) if the expression Eq.
(4.4) for the B function with vanishing argument is
inserted into Eq. (6.5). By doing so, one realizes
that the remaining series represents the following
hypergeometric function'3, E,(N+ —,', 1,N+ 2; 1)
which immediately leads to the expression Eq.
(6.7) for the one-center nuclear attraction integral.

The two-center nuclear attraction integral over
STO's with a two-center charge distribution is
given by

v- 1 ~v»»1u Px. .(ur)x', '(Pr) =(, )'. '-~ =pf dFX (mr)X:'", ,, , (p(r- )),H (6.6)

I,m A. p, A. 'p, '

xv+p' 1~ l((u+P)r)t
(6.2)

with the X„"„(ur}being defined by Eq. (2.1). Here,
the coupling r'ule for spherical harmonics" has
been applied. If, as with Eq. (3.3), each STO of
Eq. (6.2) is represented by B functions, the inte-
gral Eq. (6.1) is reduced to a linear combination
of integrals of the type

xg, (a, R) - fdr (~ r -R~) 'a"„,(aT) . (6.3,)

—Z B."-L.L (~H. (6;4)

This finite expansion has numeric@1 advantages for
inedium-sized and large 8,, whereas for 8-0 the
fol.lowing second relationship is more suited for

For this integral we can give two equivalent rep-
resentations. The first one is a simple linear com-
bination of irregular solid spherical. harmonics
8z, and B functions, which is given by

4», L(u, R) = 4mu 2[(2I —1)I l QL»(uR)

and, therefore, represents an overlap integral.
which has been treated in Sec. IV.

VII. COULOMB INTEGRALS

A. General aspects

Molecular Coulomb integrals are two-el. ectron
integrals

xB»' L (Pr,). (V.3)

If in Eq. (7.3}we perform the integration over
r„ this basic Coulomb integral may be written

(7.1)
which contain only one-center charge distributions

+gskj ~ g~ g ~ N»

~»g, »,
' (rl) x«g ~ L((urk)xjpj L'(u rl)

(7 2)
With the help of Eq. (3.3}they can be reduced to
the "basic Coulomb integral"

c„'; „,*(., p;R)= fd ., fd .a„-,-
x () R+r, - r, )) '
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L, LC„', „',(n, p;R) = dr, A„', z, (, (}(,R+r, )B„' z,,(pr, ) 2

(7 4)

which is a convolution product of ar3 function and
a nuclear attraction integral as defined. by Eq.
(6.3). We shall show that this integral can be re-
duced to the convolution integrals of B functions,
which we evaluated recently, "making any further
integration superfluous. Again, the results are
very compact.

B. Equal scaling parameters

The integrand of the Coulomb integral in Eq.
(7.4) contains the nuclear attraction integral A.

We now substitute this nuc1.ear attraction integral
by the series expansion in terms of B functions
as given in Eq. (6.5). Then, with the help of Eq.
(4.2), this leads to the following expression which
gives the basic Coulomb integral Eq. (7.3) as a
series of overlap integrais:

P-0

(7 5)

For the case a=P this infinite series can be
further simplified, if we express the overlap inte-
gral S in Eq. (7.5) by the formula Eq. (4.3). A
rearrangement of the summations yields

C„'„'(n, n; R) =(4w)'(}. '(-1) ' Q(LMRI L2M, llm) (-1)' g BN,, „R,„z,,4z, , „,,(o)K).
y ~ ge 0

(7.6)

Now, if we consider Eq. (6.6), it turns out that the infinite series over q represents an irregular solid
spherical harmonic g( (nR), from which a linear combination of B functions is to be subtracted. Therefore
we obtain

L, I
c„,'„,'((}.

2 u; R) =(4w)'(x '(-1) 'Q (L,MRIL, M, lls(') Q (-1)' I(2l-1)!(3}(nR)- Q B,".,~, ( R(x)];
t a

0&t &~l, 0&q &N, +N, +I., +I.,+1-t. (7.7)

This is a simple linear combination of nuclear attraction integrals as given by Eq. (6.4). A further simplift-
ication is possible if we use"

(7.8)

With this identity, it follows that
Nj+ N2+ Ly
~L ~ j.-t 4l - j. ~g

1 . gq ) ) AR = . 1 BN+.N+L. +.Q y g+g g ~

e~0 C~ 0
(7.9)

Hence the basic Coulomb integral containing B functions with equal scaling parameters a = P finally becomes

C}(,",g,'((}', (}.; R) =4vo('(LRMRI L]M}l L, +L„'m) Ag,.+, , ~,„,(o., R)

We obtained this result by simplifying the series
expansion of Eq. (7.5) with the help of Igqs. (4.2)
and (6.5). However, this method does not work in
the case (} 22 p, which will be treated in a different
manner in Sec. VIIC.

C. Unequal scaling parameters

Again we start from Eq. (7.4) and substitute the
nuclear attraction integral A. by an appropriate
series expansion. But now we use the finite -ex-
pansion given by Eq. (6.4). This yields

C", ', (a, d;R) =dra'(24 —1)ttfdrB (a(R+r )}B r(d'r )'
Nj+ Lj

—4ra * Q fdrBr(a(R+r , )}B,r', (dr ).
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In this form, the CouLomb integral is given by the
difference of two integrals which are divergent
in the ordinary sense. If each of these two inte-
grals is considered as a distribution, they may be
evaluated individually. Then by' subtracting the
two results from each other, it is possible to ob-
tain the correct value of the original. Coulomb inte-
gral.

This method of using the theory of distributions
has the great advantage that it makes it possible
to derive the simple finite expansion for the Cou-
lomb integral, given in Eq. (7.13). However~ for
the sake of shortness, the procedure of applying
the theory of distributions to the molecular in-
tegral problem cannot be elaborated here but
must be discussed elsewhere. ' Although, there-

fore, some details of the tferivation will be omit-
ted here, an independent proof of the results,
which does not use the theory of distributions,
will be given in Appendix A.

The formulas for the overlap integrals Eqs.
(4.3), (4.5), (4.6), and (4.9) remain formally cor-
rect if N, assumes the values N, =q —L,, for q
wP, ]., 2, . .. . For q- 1,&-1, these relationships
are to be interpreted as formulas for distribu-
tions. This makes it possible to evaluate the
second "integral" of Eq. (V.11).

The first "integral" of Eq. (7.11), which contains
an irregular solid spherical harmonic and a J3
function, represents also a distribution. Its eval-
uation yields

(21,, —1)tl f d rBr (n,(R+'r, ))R„',(()r, )

8 + I2- t

(()/R) ' 4r() ( 1) g g'(L 24 IL 44 llm)( 1) (2( 1)(l))P(()R) Br jr(()R))
I; a 0

(7.12)
Inserting the two formulas Eq. (V.12) and Eq. (4.2) into Eq. (7.11), we find immediately the following finite
series for the Coulomb integral:

-4v2 Ll 2 N2+ L2- t
C„,"„2(n, p; R) = — (L2M, (L~M, ~lm) (-1)' (-1) (2l -1)ll82 (pR) — Q B, g g(pK)

C0
N~+ Lj

g S,",, ',,(n, p;R).
0 ~ 0,

(7.13)

For the case n =P this relationship reduces to
Eq. (7.7) which we already derived by another
method.

D. Nearly equal scaling parameters

«Eq. (V.13), the Coulomb integral is given as a
sum of nuclear attraction integrals A and overlap
integrals 9, which are defined by Eqs. (6.3) and
(6.4) and Eq. (4.2), respectively. Although this
formula Eq. (V.13) is true for all values of n and

P, it is advisable to insert those formulas for A.

and S which are most appropriate for certain
ranges of n and P, as it was discussed in the fore-
going. Especially for the case n=P, i.e., if n
and P are different but nearly equal, the overlap
integrals S„'2' „",(n, P; R), which are contained in
Eq. (V.13), should be calculated with the numerical-
ly stable formula Eq. (4.9). This formula remains
also correct if N, becomes negative and 8 is con-
sidered as a distribution.

However, if the overlap integrals S, given by
Eq. (4.9), are inserted into Eq. (7.13), one can
even achieve a further analytical simplification.
Then, we can rearrange the resulting double
series and obtain

N +Ij

C&0

Nj+ I~
&:~,, r, r. ~ .r(PR)

[1—( /P)'j'&. . ., , „,(PR)

for p~n . (7.1,4)

If this expression is used to replace the last sum
on the rhs of Eq. (7.13), we obtain the following
formula for the Coulomb integral:

C„,"„',(n, P; R)

&& [1—(nip)']'S -'r, ,', g, (p O' R)

for P&n . (V.15)
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Hence, the Coulomb integral with different scaling
parameters a and P is represented by a corres-
ponding Coulomb integral with equal scaling param-
eters, from which a series of overlap integrals S
is to be subtracted.

If the series expansion of Eq. (7.5) is inserted
into Eq. (7.15), we obtain after a few manipula-
tions the following formula for the Coulomb inte-
gral:

C,", „",(a, P;R) =4xa-'(P/a) ' (a/e)'
Ej+ Lg+ 1 0= Ng+ Lg+ j p (1 (a/P)

x [1-(a/P)']'S, '. .'„(P,P;R) for P-a. (7.16)

The above given formulas hold for all P~ a. Of
course, the formulas for the case a ~P can easily
be obtained if one uses the symmetry relation

C„,'«, (a, P;R)=C„,'»,' (P, a;-R). (7.17)

The convergence of the infinite series contained
in Eqs. (7.15) and (7.16) is determined by the
powers [1-(a/p)']', where t =q -p ~0. Therefore
the convergence is very good for nearly equal
scaling parameters, and in this case (a~P) the
formulas are especially useful for numerical cal-
culations.

VIII. SUMMARY

For the benefit of the user who is not interested
in details of the derivations but only in the applica-
tion of the final formulas, we summarize a few
aspects of practical interest.

For each type of integral considered in this
paper we have found several representations, each
of which has numerical advantages for certain
ranges of the scaling parameters a and P. For
the overlap, kinetic energy, and Coulomb integrals,
the equation numbers which locate the appropriate
representation for each case are listed in Table I.

The two-center nuclear attraction integral is
expressed by the finite sum of $ and B functions
given in Eq. (6.4), which becomes numerically
instable for eR 0. In this case, i.e., if 8 is very
small, Eq. (6.5) should be used.

The formulas given in this paper contain only
well-known special functions and coefficients,

namely, only Jacobi polynomials, '4 spherical
harmonics, '8 reduced Bessel functions (RBF's),
cf. Eq. (2.7), and Clebsch-Gordan coefficients. '9

Except for the RBF's, there exist standard corn
puter programs'~" which make it possible to cal-
culate these functions quickly and easily. The
RBF's can easily be calculated by an upward re-
cursion using Eq. (2.12). Functions Bg z, with
negative indices N can be obtained by using the
propertyK„=E „of the modified Bessel functions
of the second kind.

IX. CONCLUSION

In the present article we give analytical evalua-
tions of molecular two-center one-electron inte-
-grals and Coulomb integrals, over STO's as well
as B functions. The results are extremely com-
pact and simple, and they are remarkably well
suited for practical applications. This fact is
even more astonishing if one considers the formu-
las given so far in literature. Especially Coulomb
integrals were investigated by various authors. "3

However, most of the published formulas are ex-
tremely complicated and utterly unhandy for nu-
merical as well as for analytical applications.
This is true not only for the Coulomb integrals,
but even more so for the molecular exchange in-
tegrals. Because of this reason repeated efforts
by various investigators have been made in the
past in order to evaluate improved analytical ex-
pressions for thes. e molecular integrals over
STO's. Parallel to this development, partly be-

TABLE I. Equation numbers for the definitions and for the numerically stable results of
different types of integrals with various sealing parameters & and P of the STO's.

Overlap
Integral
Kinetic energy Coulomb

Eq. (4.2)
Eq. (4.3)
Eqs. (4.6), (4.9)
Eq. (4.9) .

Eq. (5..1)
Eqs. (5.3), (4.3)
Eqs. (5.3), {4.6), (4.9)
Eqs. (5.3), (4.9)

Eq. (7.3)
Eqs. (7.6), (7.10)
Eqs. (7.13), (7.15)
Eqs. (7.15), (7.16)
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cause of the same reasons, the use of Gaussian-
type orbitals was favored. Ne feel that the hither-
to published formulas for molecular integrals
over STO's became so unsatisfactorily complicated
because the relationship of STO's to B functions

."."t x' ""..' & .~, therefore, a certi|n
regular structure of the formulas based on proper-
ties of the B functions was not discovered.

As given by Eq. (3.3), sn STO can be repre
sented by a linear combination of B functions.
Therefore, an integral over STO's is given by a
linear combination of integrals over B functions.
However, the B functions have some extraordinary
properties like, for instance, their behavior under
convolution" and translation. "' In the present
article, the convolution theorems are used for the
evaluation of the two-center one-electron integrals
and Coulomb integrals. These integrals can again
be used for an analytical treatment of the more
complicated exchange integrals. 4' Therefore, the
systematic use of the B functions establishes a
new approach to the molecular integral problem
which, in our opinion, may contribute to an es-
sential improvement of the util. ity and applicability
of STO's in molecular LCAO-MO calculations.

STO's form a complete basis of the space
La(dl'). " The B functions are related to the STO's
by the linear combination Eq. (3.3). Therefore,
the basis of B functions can be obtained. from the
STO basis by a linear transformation which is
represented by a triangular matrix. This means,
because the B functions are also linearly indepen-
dent, that the B basis is also complete in L'(61')."
Therefore it is possible to use B functions in an
LCAO calculation from the very beginning without
relying on STO's.4' Furthermore, the complete-

g.ess of the B functions makes it possible to rep-
resent two-center charge derisities by a linear
combination of one-center charge densities. This
offers the possibility to represent all multicenter
integrals, which occur. in a nonrelativistic LCAO
calculation, in terms of the integrals which are
treated in the present article.

APPENDIX A: AN INDEPENDENT PROOF
FOR THE COULOMB INTEGRAL

Two essential results for the Coulomb integral,
defined by Eq, (7.3), are Eq. (7.13), which we call
(a), and Eq. (7.16), which be call (b) now.

Both (a) and (b) can be obtained from Eq. (7.11).
Formula (a) follows from Eq. (7.11) with the help
of the theory of distributions as discussed in Sec.
VII C. Formula (b) follows from Eq. (7.11) by
classical methods as will be shown in this Appen-
dix. The equivalence of (a) and (b) was shown in
Sec. VII D. Hence, if we derive (b) from Eq. (7.11),
this consideration also verifies (a) and, therefore,
adds to our discussion another proof for (a). This
is desirable because we could not discuss in all
details the derivation of (a) which was given by
using the theory of distributions. On the other
hand, the applit;ation of the theory of distributions
for the derivation of (a) was necessary because
(a) could not be obtained otherwise; it is rather
hopeless to derive (a,) from (b), whereas (b) can
be obtained from (a).

In order to derive (a) from Eq. (7.11)we must
remove the "cancelling singularities" jn the inte-
grand of Eq. (7.11)before we can perform the inte-
gration over r, . This is possible with the help of
Eqs. (4.8) and (6.6).. Then, in Eq. (7.11), the
Singular parts of the integrands may be written

(Al)

This expression does not contain any singularities.
However, the removal of the singularities was
only possible by representing the integrand as an
infinite series, which also produces an infinite
series in the result. If we introduce Eq. (Al) into
the integrand of Eq. (7.11), the integration over
r, can be performed with the help of the convolu-
tion theorem Eq. (4.3). After a rearrangement of
the resulting terms we obtain the same result as
given by Eq. (7.16).

APPENDIX B: LIST OF SOME NOTATIONS

For the evaluation of the molecular integrals
discussed in this article, thb reduced Bessel
functions (RBF's), which play the role of basis
functions. , as well as their overlap integrals, are
of central importance. For a future extension of
the method discussed in this articl. e, it is advis-
able to use a flotation for the RBF's and their over-
lap integrals which is particularly suitable for a
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concise representation of molecular multicenter
integ rais.

In previous work, the RBF's and their overlap
integrals were used in another context and denoted
in a way which differs slightly from the notation
used in the present paper. Because, however,
some of the results given in our previous article"
are the basis for the derivations given in the
present paper, it seems necessary to clarify the
situation in order to avoid confusion.

In the present article, the nonscalax seduced
Bessel function

of the k„ function. This notation has advantages if
the functions k„(m")1~»(nr) with arbitrary v are
used as LCAO basis functions in molecular calcu-
lations.

It may be noted that in this article as well as in
previous papers"'" the |regular solid sPhemcat
/atonic without modifying factor4' is denoted by
Nz, . whereas the )rregular solid sphencal harmonic
without modifying factor is denoted by 3f. accord-
ing to Eqs. (2.2) and (2,3).

In the present article, the pverlaP integral

[2»' ~(N + L) I] '(cer)~k» g, (nr) I'»~(A", ) (81)
d r B»j g (nr)B» g (p(r —R)) (87)

is denoted by

B»» ~(nr) (82)

as stated in Eq. (2.14), whereas in our foregoing
paper44 the same function Eq. (81) is denoted by

is denoted by

(89)

whereas in the foregoing article4' the convolution
integral

~»- u2 ~ i(n r) ~ (82) (89)

(ar)~k„(nr) Y'1»(Q;) =$„(nr)gl, (n r)

is denoted by

B„"~(nr)

(84)

(85)

as stated in Eq. (2.13), whereas in our previous
work4' the same function Eq. (84) is denoted by

B„",(nr) (86)

The index v describes the order of the RBF as
given in Eq. (2.7).

For integer N, the first index N of the B„" I,
function defined by Eq. (2.14) differs from the
order (N- —,') of the S» ~, function by ——,'. The
omission of this quantity simplifies the formulas.

Fop noninteger v, the first index v of the &"„,1.
function defined by Eq. (2.13) equals the order v

The definition Eq. (2.14) is only used for integer
N, because only in this case the factorial function,
which is contained in the factor of the nonscalar
reduced Bessel function Eq. (81), is well defined.

In the present article, the function

was denoted by the same symbol as given above in
Eq. (88).

If relationships among convolution integxals are
investigated, an abbreviation for the quantity Eq.
(89) is advantageous, because for the convolution
integral one has

~j. 12. L2, L~+
S»,.», (n, P;R)~„„g -—S», », (n, P;R) (810)

Lj'~2 . ~ L2, Lj+
S»& ~ »2 (ni Pi R)overlap S»2, »~ (ny P R)overh'p

(811)
It is clear that

(812)

Of course, the formula which is obtained by the
analytical evaluation of the integral Eq. (89) ex-
hibits the same symmetry. ~'

For PgerlaP integrates one has the less symmetric
relationship
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