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Calculations of cross sections for elastic e-N, collisions have been performed for impact energies from 0.01
to 1.0 Ry using model exchange potentials based on a free-electron-gas approximation in order to evaluate
the utility of such local potentials in low-energy electron-molecule scattering. A body-frame fixed-nuclei
formulation of the collision problem is used which treats the molecule as rigid and does not allow for
electronic or vibrational excitation. Coupled integro-differential scattering equations which incorporate
exchange rigorously are derived and the simplification of the nonlocal exchange potential to an approximate
energy-dependent local potential is described. An initial study of e-H, collisions is reported in which results
obtained with various model exchange potentials are compared to those of exact static-exchange calculations.
Cross sections for the e-N, system obtained using the model exchange potentials (with and without
polarization) are reported and compared with measured cross sections and'the results of other theoretical
studies. For both systems, good agreement with more rigorous treatments of the exchange can be obtained.

I. INTRODUCTION

The behavior of cross sections for low-energy
electron-molecule collisions is principally deter-
mined by three types of interactions': (i) a
static interaction, which arises from the electro~
static Coulomb forces between the scattering
electron and the constituent particles of the target
molecule; (ii) an exchange interaction, which re-
flects the requirement that the electron-molecule
system wave function must be antisymmetric un-
der pairwise electron interchange; and (iii) a
long-range induced polarization interaction, which
is due to the distortion of the target by the exter-
nal electric field of the scattering electron. Of
the three resulting contributions to the electron-
molecule interaction potential energy, the first,
the static term, can be calculated to any desired
degree of accuracy from ab initio molecular wave
functions for many-electron targets.? The third
type of interaction, polarization, has been rigor- -
ously studied to date only in the context of e-H,
scattering.3* For other systems, a semiempiri-
cal adiabatic polarization potential® based on a
simple asymptotic form is commonly employed.®~2°

The importance of the effects of the remaining
interaction, electron exchange, on the scattering
of low-energy electrons by homonuclear mole-
cular targets has been well known since the work
of Massey and Ridley'! in 1956. In a static-ex-
change calculation based on the variational method
of elastic e-H, cross sections these authors
showed that for electron impact energies below
15-eV exchange increases the s, phase shift,

making it approach 7 more rapidly as energy de-
creases and therefore substantially lowering the
cross section. Subsequently, Carter et al.'?
reached the same conclusion for e-H, collisions,
although their treatment of exchange and their
model, spherically symmetric potential field
were highly approximate. Recent studies have
also demonstrated the importance of exchange
effects in electron collisions with strongly polar
molecules,?!??

In the last decade, several approaches to the
problem of treating exchange in low-energy elec-
ron-molecule collisions have been developed.
Ardill and Davidson® introduced exchange into
the laboratory frame, close-coupling formalism
of Arthurs and Dalgarno,? leading to a set of
coupled integro-differential equations. Inthe con-
text of a distorted wave solution of these equa-
tions of e-H, cross sections, these authors noted
the importance of exchange to the j=0-;"'=2
rotational excitation cross section.

The first exact treatment of low-energy e-H,
scattering was the close coupling calculation of
Henry and Lane,” who not only solved the rele-
vant set of coupled integro-differential equations
to obtain static-exchange cross sections, but also
included a highly accurate polarization potential,®
obtaining results in very good agreement with
experiment.’® Analogous calculations on the ¢-H,
system were performed by Hara; again, good
agreement with experiment was obtained when
exchange and polarization were taken into account.

The coupled scattering equations including ex-
change for electron scattering from a general
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many-electron linear target were formulated in
the body frame by Burke and Sinfailam,'® who
performed calculations for low-energy e-N,
scattering. Unfortunately, these authors used a
static potential which was far from converged,?:1¢-¥
thereby inaccurately representing the electron-
molecule system and producing unconverged
cross sections. Recently, Buckley and Burke’
have repeated the study of Burke and Sinfailam,
bringing the cross sections closer to true con-
vergence. Finally, the application of the static-
exchange close-coupling formulation to electron
"collisions with nonlinear targets (H,O) has been
discussed by Burke et al.,'® but to date no cal-
-culations have been reported.

An approximate approach to the problem which
avoids solving integro-differential equations was
originally developed by Burke and Chandra.® ‘
This entails enforcing orthogonality of the scat-
tering orbital to all molecular orbitals of the
same symmetry by introducing Lagrange multi-
pliers. One then solves a set of coupled inkomo-
geneous differential equations, a considerably
less arduous task than solving the full scattering
equations. The initial application of this pro-
cedure,® to e-N, collisions, suffered froim the
fact that this system possesses a 2ﬁg shape
(potential) resonancel®+?+25 gt an electron energy
of about 2.4 eV. This feature should appear in
the static-exchange cross section (at a some-
what higher energy), but there is no core 7, mole-
cular orbital in the ground-state orbital occu-
pancy of N, to which the scattering orbital can be
orthogonalized. Hence, Burke and Chandra re-
quired an unrealistically strong polarization
potential to compensate for the lack of exchange
in this symmetry. However, the procedure
has subsequently been applied to the other sys-
tems, 228 notably ¢-CO collisions,?® with some
success. , ‘

Other approaches to the treatment of exchange
include accurate solution of the two-dimensional
Schrodinger equation for the e-H, system®° (a
procedure which is not tractable at present for
scattering from targets with many more than two
electrons), and a variety of L? variational ap-
proaches.3!™%® These methods view the collision
problem from an entirely different perspective
than do the more traditional approaches discussed
above. Briefly, they treat the electron-molecule
system in the region of configuration space‘ near
the target as'if it were a negative ion, using
standard procedures and codes of molecular-
structure theory. In the region far from the tar-
get, where exchange is unimportant, the remaining
interactions usually take on a simple analytic
form, and, for comparatively simple targets such

as H, and N,, the scattering equations uncouple
and the solution of the dynamical problem is
easily effected, Details and applications of these
procedures are discussed in the relevant papers;
they include the R-matrix method,*'% the T-
matrix expansion technique,®* % and a pseudo-
bound-state?® and related low-1 spoiling®7+38 pro-
cedure, Although these procedures are new and
less well tested, they show considerable promise
for solving problems in electron-molecule scat-
tering in the static-exchange approximation for
small molecular targets. To date, no L%-varia-
tional calculations of electron-molecule scattering
including polarization have been reported.

The problems attendant upon including exchange
in an eigenfunction expansion formulation of elec-
tron-molecule scattering theory (see Sec. II) are .
exacerbated as the number of nuclei and electrons
in the target molecule and its internuclear separa-
tions increase. Thus as attention turns to col-
lisions with polyatomic targets (and “large” di-
atomics), the possibility of modeling at least the

- exchange part of the electron-molecule inter-

action becomes increasingly appealing. In addi-
tion to simplifying enormously the numerical
problems involved in the solution of the appro-
priate scattering equations, model potentials
might usefully illuminate the sometimes elusive
physical nature of the exchange interaction in
electron-molecule collisions.

An early crude attempt to determine the sen-
sitivity of various cross sections to exchange
effects in a close~coupling calculation was that
of Lane and Geltman,® who, as part of a study of
low-energy e-H, collisions, augmented the static
electron-molecule potential energy with an ex-
ponential short-range attractive term, the para-
meters of which were adjusted to optimize agree-
ment with available measured low-energy elastic
cross sections. More recently, a number of
studies have been reported on the use of model
exchange potentials for electron-atom scatter-
ing®®™* and intermediate-energy (E >10.0 eV)
electron-molecule scattering.** For the lower-
energy electrons of concern here, the first
application of such an approach to electron-mole-
cule collisions was that of Hara,* who used a
spherical electron-molecule interaction potential
including a free-electron-gas exchange potential
term in a study of low-energy e¢-H, collisions.

In a recent study of low-energy-e~-CO, scat-
tering,**™*® we used a free-electron-gas model
potential together with an ab initio static poten-
tial and a semiempirical polarization potential
to calculate total integrated, momentum-transfer,
total differential, and rotational excitation®®
cross sections for electrons with energies from
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0.07 to 10.0 eV. The resultant theoretical cross
sections were found to be in reasonably good
agreement with the measured results,® especially
at the lower energies, where the unusually steep
rise in the cross section as the scattering energy
decreases below 1.0 eV was reproduced. Con-
sidering the admittedly crude nature of our treat-
ment of exchange in this study, the quality of the
results was somewhat surprising and suggested
further study of these comparatively simple model
-eXchange potentials, ﬁnfortunately, CO, is a
highly ‘anisotropic molecule. This fact makes it
an impractical (and expensive) choice as the tar-
get in any reasonably extensive study of ‘model
potentials. Moreover, to date there have been no
other theoretical studies of ¢-CO, collisions; in
particular, it has not been possible to calculate
accurate static-exchange cross sections like
those of Henry and Lane’ for e-H, collisions. For
these reasons, we have selected the ¢-N, system
as the primary focus of this and future studies of
exchange in electron-molecule scattering.

The nitrogen molecule is, in some regards, an
“jdeal” homonuclear diatomic target for such
studies: it is sufficiently aspherical (compared
to, say, H,) that the resultant anisotropy of the
interaction potential energy introduces consider-
able partial-wave coupling, and yet it is not so
aspherical or possessed of so many electrons
that extensive scattering calculations become
prohibitive. Thus, low-energy e-N, collisions
have been the subject of studies using close
coupling, *7*7 R matrix,*® highly approximate
Born®! and distorted wave,* low-1 spoiling,®’

T matrix,?® and other methods.?'%

In the present paper, we report a study of the
use of free-electron-gas exchange potentials in
low-energy e-H, and e-N, scattering. In Sec. II
we summarize briefly the body-frame formula-
tion of the electron-molecule scattering problem
with exchange rigorously included by fully anti-
symmetrizing the system wave function. The
theoretical foundation for and derivation of a
free-electron-gas (FEG) exchange potential ap-
propriate to electron-molecule collisions are
presented in Sec. OI. In Sec. IV we summarize
briefly the calculational procedures used to solve
the collision problem and present results for e-H,
collisions which suggest certain important fea-
tures of the form of a desirable FEG potential.
The e-H, calculations wereé performed in order
to compare the results calculated using various
.FEG exchange potentials with those of analogous
full static-exchange (SE) calculations. The results
for e-N, scattering appear in Sec. V and suggest
conclusions regarding the use of such potentials
in electron-atom and electron-molecule collision

calculations, Finally, in Sec. VI we discuss
limitations and future directions of this research.
Unless otherwise stated, atomic units are used
throughout,

II. THEORY: BODY-FRAME STATIC-EXCHANGE
EQUATIONS

In this section we shall briefly discuss the de-
rivation of the coupled integro-differential scat-
tering equations for electron collisions with an
N-electron closed-shell molecule which obtain
when exchange is treated rigorously, i.e., when
the electron-molecule system wave function is
made fully antisymmetric under pairwise elec-
tron interchange. These equations yvei'e solved
numerically in the “exact static exchange” (ESE),
calculations of ¢-H, scattering to be reported in
Sec. IV, In this discussion we shall also esta-
blish notation and provide a framework for our
treatment of approximate exchange potentials in
the sequel.

The desired scattering equations can be derived
directly from the variational principle®® or,
equivalently, from an eigenfunction expansion,?%:5
We choose the latter approach. The necessary
algebraic manipulations are similar whether the
derivation is carried out in a space-fixed labora-
tory reference frame’'?® or a body-fixed reference
frame, Therefore we shall omit the details of
the derivation. Our notation is similar to that of
Burke and Sinfailam,'® although our approach is
somewhat different and the equations will be
presented in a form more suitable for the present
discussion.

A. Scattering equations

We shall consider a linear molecule in a body-
fixed reference frame, i.e., the z coordinate
axis lies along the molecular internuclear axis R.
We make the Born-Oppenheimer approximation
for the target molecular wave function.’® We also
make the fixed-nuclei approximation®®*® freezing
the orientation in space of the target (R) for the
duration of the collision. (The validity and con-
sequences of these assumptions for low-energy -
electron-molecule collisions have been dis-
cussed elsewhere.'?47+8)

Within this theoretical framework, the Schro-
dinger equation for the electron-molecule system
can be written

(:}C_Ey)(l)y(T’F:U’Rnuc)=0s (Z‘l)

where 7 collectively denotes the spatial and spin
coordinates of the target molecular electrons,
T and o denote the spatial and spin coordinates
of the scattering electron, and R,,. denotes the



nuclear coordinate(s). The total energy of the
system is E,. The subscript y represents the
set of quantum numbers required to uniquely
specify a state of the system. Thus y includes
the molecular electronic state quantum numbers

, the vibrational state quantum number v,, and
the quantum numbers ly and my corresponding
to the asymptotic orbital angular momentum of
the scattering electron and its Z projection.
[The molecular electronic state quantum num-
bers n, designate® symmetry under vertical
reflection (+), symmetry under inversion (g, u),
the projection on R of the total electronic angular
momentum of the molecule (A), and the total
electronic spin (S).]

The electron-molecule Hamiltonian in Eq. (2,1)
is

=3 mol(T: Rnuc) + Te(-f)

(2.2)

‘where JCmo is the nonrelativistic Hamiltonian of
the isolated molecular target, T, is the kinetic
energy operator for the scattering electron, and
Vint is the electron-molecule interaction poten-
tial energy, '

. - -
+Vige (FiFap oo Ty Tyt 1y R »

- > >
Vint (I‘l, ToseeoyTyy Ty Rnuc)

Nnuc N

In Eq. (2.3), the first sum runs over the Nnc nu-
clei, of charge Z ,located at positions R,. The
second sum runs over the N bound molecular elec-
trons, located at positions ;. The total energy

of the system, appearing in Eq. (2.1) is

1

= o (2.3
= [Ty =Tl (2.3)

Zq
- +
1'Ra|

+

E7=.%k27+€(nv)y ’ : (2.4)

where €(,,), is the energy of the target molecule
in state (n1), and (3)%}, is the energy of the scat-
tering electron for the system in state v,

In the eigenfunction expansion approach to the
Scattering formalism, the normalized system.
wave function is expanded as

1/)7 (r, ?1 0y Ruye)

" N+1
1 . -
= 7 § : -1 N+1-i :
(]V+].)1 (n")y, (:Z], ( ) X(nv)yl(l,Rnuf:)

YT, 6. (2.5)

Y (n v,

In this expression X(,,y_,(Z, Ry, is the target
molecular wave function, The overbar on the
argument i denotes the omission of ¥;,0, from
the N +1 possible space-spin coordinates, i.e.,
X7, Ru)=X(1,2,...,

i-1,i+1,...,N+1,R..).
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The spin orbital of the scattering electron is

(,w) ,(¢). The superscript (y) on the scattering
orb1ta.1 reminds us of the initial state of the
electron-molecule system, (nvlm)‘/'. The cor-
responding spin function will be designated 5;,,
such that

Y0, @D =Y, F)E (o) (2.6)

The sum over (nv)y runs over all target elec-
tronic and vibrational states. The wave function
of Eq. (2.5) satisfies the Pauli exclusion principle
provided the molecular wave function X(nv)y, does
S0,

We shall treat the molecule as rigid, freezing
the internuclear separation at its equilibrium
value for the duration of the collision. Thus we

‘do not allow for vibrational excitation in the pres-

ent treatment.®®'** Moreover, we shall retain
only the ground electronic state in the expansion
of the system wave function, Eq. (2.5), thereby
eliminating the possibility of direct (or virtual)
electronic excitation. With these approximations
the sum over y’ in Eq. (2.5) is no longer present
and the molecular target function X(no)y (7, Rue)
can be replaced by the electronic wave funct1on
for the ground state of the target, which in the
Born-Oppenheimer®® approximation depends para-
metrically on the nuclear coordinates Ry,c.

This antisymmetrized electronic wave’funétion,
which we shall denote &, (1), can be written in
the orbital approximation in terms of singly
occupied spin orbitals ,¢A(?.,o..) as

“p, W),
(2.7)

where € 5..., is the Levi-Civita density®® labeled
with N subscripts corresponding to the N spin-
orbitals, and where each sum over a, B, v, ete,
runs from 1 to N, _

. In order to obtain equations for the scattering
function Y 7)(F,), we substitute the expansion, Eq.
(2.7), into the Schrodinger equation, Eq. (2 1),
then multiply this equation by [&, (N+ N+1)EY " (0, )
and integrate over the space and spm coordinates
of the N molecular electrons 7, and the spin
coordinate of the N+1 electron oy,,. The resulting
integral can be simplified by noting!® that for
closed-shell targets, the Pauli exclusion principle
forbids the scattering electron from occupying a
target orbital of the same symmetry. This leads

@ (T)— ‘/_JV—. Z €(xB 1r¢<x(1)¢8(2)

T

to the useful orthogonality relation

@, @Oy 76, =0,

where the integral of the matrix element is per-
formed over the coordinates ¥,,d;.

1<j<N+1, - (2.8)
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Carrying out the indicated manipulations, we
obtain the following integro-differential scat-
tering equation for electron scattering from a
closed-shell N-electron molecule

[‘%V§l+1+.Vst (FN+1)+V(7)(rN+1)_ 2k2]<y(7) rN+1) 0’

2.9)

where %2 is the scattering energy (in rydbergs).
The static potential energy, Vg in Eq. (2.9) is
due to the electrostatic (Coulomb) interactions
and is equal to the matrix element of the instan-
taneous potential, V,,, of Eq. (2.3), with respect
to the ground electronic state wave function of
the molecule, 1 e.,

Vst (FN+1) :<q>'n7(7)|vim (_fu-fa; c ey FN’ FN-&DR(!)
x|e, (). (2.10)

By substituting for the electronic wave function
®, its expansion in spin orbitals, Eq. (2.7), we
can write the static potential in terms of the
Noce(=3N) corresponding doubly occupied spatial
_orbitals ¢;(F,) as

= - Zg
D e A

28 fo vl

xqu(rl)drl. (2.11)

Similarly, in Eq. (2.9) the nonlocal energy-de--
pendent Hartree-Fock exchange operator V) is
given (in terms of its effect on the scattering
function Y‘7’) by

VP (Ey,) YW1

= _Né"y(m)éy(%u)

N,N+1
(2.12)

Introducing the spatial molecular and scattering
orbital, we have

VOO Fy, ) YO W+1)

N occ

== ¢](rN+1) 4)(1‘
e [ 1

yUF) dF,.
1.N+1

(2.13)

It is evident from Eq. (2.13) that exchange is‘a
short-range attractive interaction.”®®) 1In order
to deal numerically with Eq. (2.9), we must re-
duce it to a set of »adial coupled equations.

B. Reduction to radial equations

In a single-center spherical coordinate system,
with all coordinates referred to the origin at the-

5, (JV)‘}J")(N)>.
Y

center of mass of the molecule, we can expand
the spatial scattering orbital in the complete set
of spherical harmonics eg.,

Z Zj FmeY @), (2.14)

1=0 m==1

*y(y)(;)~

with £{™)(r) the radial scattering function. In
practice, the summation over [ runs from 0 to
some [ln,x. This expansion is substituted into Eq.
(2.9), the result multiplied by ¥ 1% (#,, ,)* and
integrated over d7,, to obtain the coupled radial
scattering equations

d? (1+1) ) (m) v
——— — ==+ B i (ry. 1)
(d’rlz\“l 7N+1 fllo N1

-22 ( w (7N+lfl 10(7'1\”1)

- fd7’1K(m)(ll'|7’17’1v+l1)f57"1)0(7’1)> .
(2.15)

where the additional subscript , denotes the in-
itial asymptotic angular momentum of the scat-
tering electron. We note that owing to the neglect
of the rotational Hamiltonian. in our body-frame
fixed-nuclei formulation, these equations are not
coupled in . The static matrix element in Eq.
(2.15) is

ViR 0y =Um|Vy Ey, )| 1m), (2.16)
where Vg (vy, ,) is the averaged electrostatic
potential energy of Eq. (2.11). By expanding V,,
in Legendre polynomials, viz.,

Vst (-fN+1)=Z v;\t(’}’N+l)P)\(COSQN+1) > (2‘17)

A=0 ) '

and carrying out the indicated integral over d#,,,,
we reduce this matrix element to

m 2" +1
”)(r,m)=< 21”) Z v} (#y, )C(I'A L m 0)

xC(1'x1;00), (2.18)

where C(1,1,153m ,m,) is the usual Clebsch-Gordan

" coefficient.”® In practice, the sum‘over X in Egs.

(2.17) and (2.18) is finite. (For electron colli-
sions with homonuclear targets, only even-x
terms contribute to this summation.) In our
earlier treatment of ¢-CO, scattering*®~*® and the
present e-N, study, we found that the static
potential energy, Eq. (2.17), could be converged
efficiently by including far more nuclear contribu-
tions than electronic contributiohs. Thus we write
each expansion coefficient v;t(r) as

v () = v () + 03 (r), (2.19)

where v (») depénds on the electronic wave func-



tion, but v}*(») is given by a very simple analytic
form; see Eq. (2.11). In the sum over X in Egs,
(2.17) and (2.18), we include nuclear terms up to
some Xmax and electronic terms up to smaller
Agaxe The values of these limits are determined
by our convergence criteria (see Sec. V).

The second term in Eq. (2.15), the “exchange
term,” contains the exchange kernel
K('”)(ll’lrlrm 1). An expression.for the exchange
kernel can be obtained by expanding the spatial
molecular orbitals in spherical harmonics, viz.,
W)Y M@,
p=0
where m ; is the azimuthal quantum number of the
orbital angular momentum of the ith electron and
'ufl’"-‘) the radial expansion coefficient corresponding
to the uth partial wave. With these definitions,
the exchange kernel is given by

K(M)(ll'l7’17N+ 1)

¢;(F) = - (2.20)

X =

N,
occ B R

=50 Y WOy, )WRe)
i=1 P

| X
X (T m,m,) 7% , (2.21)

where »(=min(r,,7y,,), etc. The factor g, is
given by '
(21+1)(20 +1) )1/2
)

et ;m”"")=((2l"+ D@ +1

X CUNI"; —=mym—m ;)C(INI"; 00)
X C(UA1"ymym; =m)C(I'N";00) .

For the case in which the target molecule has only
o and 7 bound orbitals, these equations reduce to
those of Burke and Sinfailam.

C. Discussion

Equations (2.9) and (2.15) reveal why fully con-
verged ESE calculations for molecules with sev-
eral electrons—and hence several molecular
orbitals—tend to be quite arduous. Suppose we
consider only a single initial partial wave, say,
1=0. If we couple only one other partial wave 7’
in the exchange term sim in Eq. (2.15), the sum-
mation over 7”, 1", and X in Eq. (2.21) introduces
a large number of terms. (Of course, the number
of terms is finite, since the summations are re-
stricted® by the properties of the Clebsch-Gordon
coefficients appearing in g,.) A commonly used
method for numerically solving séts of coupled
integro-differential equations® involves trans-
forming the equations to a larger set of coupled
differential equations.®®”®* Each new exchange

17 -EXCHANGE IN LOW-ENERGY ELECTRON-MOLECULE SCATTERING ’ k 923

kernel in the exchange term sum gives rise to
an additional equation to be solved. Even in a
calculation of e-H, scattering, where only one
molecule orbital is involved and the partial-
wave coupling is minimal, the exchange terms
rapidly proliferate [see Sec. IV B].

An alternate procedure, in which coupled in-
tegrodifferential equations are reduced to coupled
algebraic equations,® % does not suffer from this
problem, However, the matrices which must be
manipulated are typically of dimensionality equal
to the number of continuum channels times the
number of integration points. For a strongly
r-dependent potential (e.g., the electron-mole-
cule static potential), the number of integration
points may be so large that computation times are
comparable or greater than with other methods.

For larger systems such as e-N,, not all al-
lowed exchange terms that arise from the sum-
mations in Eqs. (2.14) and (2.17) need be in-
cluded,!” since, crudely speaking, the scattering
electron “exchanges” principally with the outer-
most molecular orbitals. Moreover, the domin-
ant contributions to the exchange kernel are due
to low-order partial waves, Nevertheless, at
present N, would appear to be the largest target
for which such calculations are currently feasible,
and there still appears to be difficultes in fully
converging e-N, cross sections for very low-im-
pact energies (see Sec. IV B).

III. THEORY: FREE-ELECTRON-GAS EXCHANGE
POTENTIALS FOR ELECTRON-MQLECULE COLLISIONS

In 1951, Slater®” suggested that the Hartree-
Fock equation for the bound-state wave function
of a system could be transformed into much more
easily solvable form by the introduction of an
average exchange potential® based on a free-
electron-gas (FEG) approximation for the elec-
trons of the system.®7% Since then, the use
of such an exchange potential has become wide-
spread in the study of bound states of atoms,
molecules, and solids, leading most recently to
the Xo method.™

The basic idea behind the Slater average FEG
potential can be applied to collision problems, in
which we seek a local exchange potential which
mocks the effect of exchange on the scattering
electron, However, since this electron has a well-
defined momentum, the use of an average ex-
change potential is inappropriate. This point was
made by Hara.*® More recently, such potentials
have been used in the study of intermediate-en-
ergy (10-40 eV) electron-molecule collisions by
Truhlar and co-workers,* and of low-energy
e-CO, scattering.?” '
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The most systematic studies.of the use of var-
ious approximate local exchange potentials have
been those of Riley and Truhlar®®*° for ¢-He,
e-Ar, and e-H and of Bransden et al.*! for e-H,
e-He*, and e-He. In such cases, of course, the
interaction potential is spherically symmetric.
The former authors have introduced a semiclassi-
cal exchange potential (nbt based on an FEG ap-
proximation) which appears to be quite successful
in treating electron-atom collisions for impact
energies above a few tens of eV, and can be ex-
tended to collisions with open-shell targets. This
model potential is quite similar to that of Furness
and McCarthy.** However, considerable care is
required in generalizing conclusions drawn in the
context of electron-atom problems to electron-
molecule systems (see Sec. VI).

In this section, we shall briefly derive the local
FEG exchange potenfials to be used in the calcula-
tions of Secs, IV and V and suggest how this
treatment differs from the standard analysis for
bound-state problems. Further, we shall indicate
certain features of the resulting potentials which
will be useful in interpreting the results of this
study.

Making the FEG approximation for a bound sys-’
tem (e.g., a molecule) amounts to treating all the
electrons as noninteracting fermions®® occupying
a volume V. Thus, exchange explicitly is taken
into account only to the extent of requiring that
the system wave function satisfy the Pauli exclu-
sion principle. All the electrons move in an
identical potential field, and there are no mutual
forces between them. To implement this ap-
proximation, the spatial orbitals of the bound
electrons are replaced by plane waves, Thus,
using the notation established in Sec. II, we set

> >

¢i(F) - \/1_‘7 elk,-r

E=1,2,. (3.1)

000 )
where k; is the wave vector of the ith electron,
which occupies the 7th spatial orbital.

In the collision problem, we must also contend
with the scattering electron. If we assume initi-
ally that the distortion of the wave function of the
scattering electron is negligible insofar as ex-
change is concerned, we can make the Born ap-
proximation for the scattering function in Eq.
(2.13), viz.,

(y(y)(-f):ceii-'; , (3.2)

where K is the wave number of the scattering el-
ectron and c is an arbitrary normalizaton con-
stant. Note that |K| = (2E;c)'/?, where Ej is the
scattering energy in atomic units.

In order to implement these ideas, we begin
with the body-frame Hartree-Fock scattering

equation, Eq. (2.9), with the corresponding ex-
change potential given by Eqs. (2.13). In order
to transform V{)) to a local FEG exchange po-
tential, we first multiply and divide Eq. (2.13) by
YN(F,)*Y ) (F,), thereby obtaining

V(el)(?l) ‘y(y)(fl)

N,
SRR A N AT AR
020 B 2 il o

i=1

—— df,y V(F,). (3.3)
12

Because of the presence of the bound erbital
¢ ,;(T,) in the integrand of Eq. (3.3), this integral
will be over the finite range of the velume
occupied by the molecule, just as in the beund-
state problem.™ We now wish to approximate

VP yr) by the product of a local exchange po-
tential VF},{G times the scattering wave function
Y7, We substitute our plane wave and Born
approximation, Eqgs. (3.1) and (3.2) into Bg. (3.3),
obtaining

NOCC

Vil @ “%Z JEXp [i(K-k,) - F, - 7,)]
i=

I

x L af,.  (3.4)
. 712 ,
[Note that the arbitrary constant in Eq. (3.2) is
no longer present.] We can carry out the integral
over V and then the sum over j, keeping in mind
that the E, represents the wave vector of the jth
bound electron, obtaining70

VL (F,) = ~(2/n)keF(n), (3.5)

where kg is the Fermi momentum (the radius of
the Fermi sphere in momentum Space) The func-
tion F(n) is defined by

_1 1-9° 1+7 ’ _
F(n)= 3+ an In Tl (3.6)
with
n=k/kg. 3.7

* The Fermi momentum is related to the density of

the bound-target electrons, p=N/V, by
kp=[37*(N/V)]*2 = (3n2p)*/2. (3.8)

It is worth noting that Eqs. (3.5)—(3.8) have the
sanie form as those obtained by carrying through
an analogous derivation of a FEG exchange poten-
tial for an electron in a bound system.®® However,
in the bound-state. problem, we have n=k;/kp,
with K, the wave ¥ector of the bound electron in
question, rather than Eq. (3.7).

The above form for V;é(); follows directly from

.making the FEG approximation for the bound



electrons and the Born approximation for the
scattering electrons. However, some simple
modifications can be made which should make
this model potential more reasonable. First, the
charge density of the target molecule, which ap-
pears in the definition, Eq. (3.8), of the Fermi-
momentum, is certainly not independent of T,.
This observation éuggests replacing p with the
true F-dependent charge density p(¥), thereby
making the Fermi momentum 7, and therefore
F(n), T dependent, viz.,

ke (F) = [372(F) 2. (3.9

Second, we can replace k in the definition of n
with-a more realistic quantity. We assumed in
making the Born approximation of Eq. (3.2) that
the wave function of the scattering electron was
undistorted by the collision. A more realistic
treatment, - although still highly approximate,
would be to replace k by a local F-dependent mo-
mentum for the scattering electron (7).

If we let V denote the potential field in which the
electron moves, then by conservation of energy.

@)+ V() =E;, - (3.10)

Now, the Fermi electron, the bound electron with
momentum k,, moves in a potential field, say V’.
Its energy is just the ionization potential of the
target I. We therefore have approximately

FRE@)+V/(E)=-1 . (3.11)

If we now assume that the scattering electron and
the outermost bound electron move in the same
potential field,*® i.e., V(¥)=V'(¥), we can define
the local momentum «(¥) by :

K3(F)=2(Einc +1) + R %(F), (3.12)
and replace 7 of Eq. (3.7) by
- n=k(@)/kp(T) . - (3.13)

Thus Egs. (3.5), (3.6), (3.9), (3.12), and (3.13)
define the FEG exchange potential which was used
in our treatment of ¢-CO, collisions and in the
present study. This form is. called the Hara free-
electron-gas exchange (HFEGE) potential since
Hara*® used a similar exchange potential in
studying low-energy e-H, scattering.

An alternate FEG exchange potential has been
suggested by Riley and Truhlar.®*® These authors
argue that in the limit » -~ «, the local momentum
of the scatte'ring'electron, k(¥) of Eq. (3.12) re-
duces not to the correct value, k= (2Ey.)"2, but
t0 [2(Einc + )]*/2 arid that a more reasonable way
to define x(¥) might be to set =0 in Eq. (3.12).
The resulting form is called the asymptotically
adjusted FEG exchange (AAFEGE) potential.
Riley and Truhlar found that for e-He and-e-Ar
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collisions use of the AAFEGE potential produced
phase shifts for high-order partial waves at low
energies that were in better agreement with exact
static-exchange results than those obtained with
the HFEGE potential. However, for e-Ar scat-
tering, the HFEGE phase shifts for low-order
partial waves at very low-impact energies were
better than the AAFEGE results; the AAFEGE
potential apparently being too strong for 2< 0.5a;,
Bransden et al.,*! in their study of e-He collisions
for impact energies greater than 3.0 eV, also
found that phase shifts obtained with the AAFEGE
potential are in good agreement with the results
of their exact static-exchange calculations.

IV. CALCULATIONAL PROCEDURE AND RESULTS
- FOR e-H, COLLISIONS

In this section we summarize the procedure used
to solve the scattering problem when the local
FEG exchange potential of Sec. III is implemented.
The theoretical framework and computational de-
tails have been explicated elsewhere?® and will not
be repeated here. We shall also discuss the re-
sults of a study of FEG exchange potentials for
e-H, collisions, which includes detailed compari-
sons of several model exchange potentials with
exact static-exchange (ESE) results calculated
with the same target wave functions, parameters,
and convergence criteria.

A. Calculational procedure

We recall that the problem is formulated in the
body frame, making the fixed-nucleus approxima-
tion and treating the molecule as rigid, with the
internuclear separation fixed at its equilibrium
value™ (1.402a, for H,, 2.068a, for N,). The
coupled scattering equations are converted to
integral equations,™ and solved by numerical
quadrature .8

In the present calculations (and our earlier
e-CO, studies*’) considerable care is taken in
treatir{g the partial-wave expansion of the scat-

- tering function [Eq. (2.14)] and the expansion of

the electron-molecule interaction potential energy
in Legendre polynomials [Eq. (2.17)] to ensure
convergence to some preselected criteria. Since
there has been some discussion of this problem
in the recent literature,'®'¥" % we would like to
clarify several points. The usual procedure for
testing convergence is to fix the number of ex-
pansion terms in the potential energy Vg (¥y,,)

at some Ama [cf. Eq. (2.19)] and then increment
the number of partial waves in the expansion of
the scattering function [cf. Eq. (2.14)] until suc-
cessive cross sections are converged to, say,
M%, i.e.,
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o(N)-o(N-1) < M

) 700 (4.1)

where N is the maximum number of partial waves
included in the calculation of the cross section o.
This procedure establishes a “local convergence.”
However, it can be misleading, for in certain
systems (e.g., ¢-CO,, e-N,) convergence may be
very gradual, so that o(N) is really quite far

from true “gtobal convergence” to within M%. In
fact, one must consider comparisons between
cross sections calculated in widely differing basis
sets to establish global convergence, e.g.,

o(N)-oWN-K)| M

O‘(N) < m‘ ’ (4-2)

where the larger K and smaller M employed, the
more stringent is the resulting criteria. (The
importance of achieving global convergence is
illustrated in a recent study of static e-N, col-
lisions by the present authors.'®)

Global convergence can be accurately and ef-
ficiently achieved by carrying out successive
calculations of ¢ starting with . =2Amax (for some
reasonable An.x) and then incrementing A max and
I max Simultaneously. This procedure quickly gets
one into the region of these parameters where
convergence is at hand and facilitates efficient
determination of the optimum values of [ . and
Amax for convergence. (It is possible using the
conventionalvprocedure of fixing A . and con-
verging in I, to miss the global convergence in
Amax if extreme caution is not exercised.)

Finally, it is worth noting that the value of Imax
(or Amax) required for global convergence varies
with the scattering energy, sometimes quite
strongly. Therefore using the same expansion
parameters over a wide range of energies can
lead to cross sections with widely differing con-
vergence properties. Of course, this is a problem
only if the parameters chosen are too small for
certain scattering energies under consideration.

These are not insignificant considerations,. even
if one is carrying out exact static-exchange cal-
culations, where the considerable effort involved
to achieve highly accurate results necessitates
an appreciation of the internal accuracy of the cal-
culation. In model studies such as the present
one, it is essential to realistically assess the
accuracy of the numerical solution of the scat-
tering equations in order to be able to meaning-
fully evaluate the strengths and weaknesses of
the models being used.

Returning to our treatment of the scattering
problem, we use a model electron-molecule
interaction potential energy, calculating the
static potential, Eq. (2.11), from the ab initio

Hartree-Fock charge density of the ground state
of the target, including the FEG exchange poten-.
tial described in Sec. III, and using a semiem-
pirical polarization potential of the form

V ot () =(_ 3% - 54 P, (cose)) Cw),  (43)

where o, and o, are the spherical and nonspheri-
cal polarizabilities of the target and C(r) is an
exponential cutoff function,

C(1f)=1—e'('/'c)6 . (4.4)

The single parameter 7,, the cutoff radius, is
determined by adjusting the theoretical cross sec-
tions to some well-established feature (e.g., the
2.4 eV 7, resonarice’®?°5 in ¢-N, collisions).

B. Results for e-H, collisions

The e-H, system, which has been the subject of
very extensive scrutiny since the early days of
electron-molecule collision research,!3:6-8
was chosen for'our initial study for two reasons,
both related to its comparative simplicity.*? For
this system the coupled radial integro-differential
scattering equations, Eq. (2.15), simplify con-
siderably, since H, is a nearly spherical two-
electron molecule with only one spatial molecular
orbital (0,). The solution of the scattering prob-
lem therefore does not entail coping with the
numerical problems attendant upon studying larger
systems,*® It is relatively simple to determine
cross sections globally converged to better than
1% for this system in the exact static-exchange
calculations and in those using FEG model poten-
tials. '

A computer code written by Sinfailam,® which
solves the SE scattering equation, Eq. (2.15),
using a technique first devised by Marriot,** was
used in these calculations. This procedure in-
volves converting the set of coupled integro-
differential equations to a larger set of coupled
differential equations, The resulting coupled
equations are solved by inward-outward numeri-
cal integration. Since each exchange kernel, cor-
responding to indices (1I'1”1"X,m gm,) in Eqgs.
(2.15) and (2.21), gives rise to an additional dif-
ferential equation, very large sets of equations
obtain even for systems as “small” as e¢-N,, al-
though the situation is sqmewhat~ ameliorated by
the fact that some of these exchange terms can be
neglected.

For e-H, scattering, we used the Hartree-Fock
target wave function of Fraga and Ransil™ cor-
responding to an internuclear separation of 1,402«
This function yields a quadrupole moment of
0.48¢a?; compared to the experimental value” of



17 EXCHANGE IN LOW-ENERGY ELECTRON-MOLECULE SCATTERING 927

TABLE I. Cross sections (in a%) and eigenphase sums (in ra‘d) for low-energy e -H, collis-
ions at scattering energies from 0.01 to 0.36 Ry in the Z, symmetry. The S results were
determined in the static approximation (neglecting exchange). The ESE results were ob-
tained by solving the exact static-exchange equations (2.14) using the code of Sinfailam (Ref.
63). Three free-electron-gas exchange potentials were used as described in the text (Secs.
II atid IV A). All results are globally converged to better than 1%. The eigenphase sums ap-

pear in parentheses.

E (Ry) S ESE HFEGE AAFEGE TFEGE
0.01 493.4 56.7 92.5 28.8 57.0
(~0.677) (=0.211) (—0.274) (=0.151) (~0.214)
0.04 247.3 53.3 82.0 41.4 54.3
(~1.088) (—0.419) (—0.532) (=0.367) (—0.425)
0.09 132.4 C48.1 68.4 43.1 49.7 -
' (~1.334) (—0.618) (~0.767) " (—0.580) (~0.631)
0.16 78.3 42.0 54.8 40.3 43.7
(~1.503) (—0.806) (~0.975) (=0.781) (~0.827)
0.36 33.7 29.5 33.1 29.7 30.5
(~1.735) (~1.136) (-1.312) (~1.136) (=1.172)

0.474 +0.034¢a? and the highly accurate theoretical
value of 0.484ea? determined by Wolniewicz.”®
Expansion terms for A=0, 2, and 4 were included
in the static potential [Eq. (2.17)], partial waves
for =0, 2, and 4 in the expansion of the contin-
uum orbital [Eq. (2.14)], and two terms, u=0 and
2, in the partial-wave expansion of the bound o,
molecular orbital [Eq. (2.20)] in the exchange
kernel. These choices resulted in a set of 20
coupled differential equations. The K matrix was
extracted”” at »=10a, and cross sections calcu-
lated. We neglected polarization effects, since
our purpose here is to focus on the effects of ex-
change on the scattering. Only results for Z,
symmetry,”® which dominates at low energies
where the scattering is essentially pure s wave,®
will be presented here. The code was checked by
comparing at selected energies against the total
cross sections of Henry and Lane” and those of
Tully and Berry.*® Our exact static-exchange
(ESE) cross sections for several values of the
scattering energy from 0.01 to 0.36 Ry are shown
in Table I together with the £, eigenphase sums.™
Also shown in Table I are cross sections and
eigenphases sums obtained using the local HFEGE
and AAFEGE potentials. In the HFEGE calcula-
tions, we used the experimentally determined
value of I=1,128 Ry for the ionization potential of
H,. For comparison, results obtained in the
static approximation (S), in which the exchange
potential is set equal to zero, are presented. Al-
though including either the HFEGE or the AAFEGE
potential gives cross sections closer to the exact
static-exchange values than those obtained in the
static approximation, neither model potential
would appear to be appropriate for the e-H, sys-
tem for low impact energies. (Of course, the

effects of exchange disappear as the scattering
energy 1is increased, and all the models, including
the static, tend to produce the same cross sec-
tions.) The AAFEGE poteéntial is clearly too
strong and appears to be especially poor at very
low-scattering energies. The HFEGE, on the

-05

v, (r) [HARTREES ]
5

r[ao]

FIG. 1. Spherical components vy (r) of the static po-
tential energy S and three static-exchange potential
energies using FEG exchange potentials for e-H,
collisions. The HFEGE, AAFEGE, and TFEGE poten-
tials shown here were calculated at 22=0.09 Ry using
I(H)=0.564 a.u., I{AA)=0.0, and I(T)=0.071 a.u.
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other hand, is too weak. To illustrate, we show
in Fig. 1 the A =0 expansion term of the HFEGE,
AAFEGE, and static-potential energies. The ex-
change potentials in this figure were calculated
at k#=0.09 Ry.

To see if we could compensate for this defi-
ciency, we tried “tuning” the FEG exchange po-
tential in the following manner, Selecting a scat-
tering energy of *=0.04 Ry, we treated I in
Eq. (3.12) as a parameter, adjusting it until the
FEG calculation reproduced the exact static-
exchange cross section at that energy. Cross
sections and eigenphase sums are shown in Fig. 2
as functions of the parameter I. We note the
nearly linear character of both curves for values
of I greater than about 0.2 a.u. Matching to the
exact static-exchange cross section at k?=0.04 Ry,
we determined I=0.071 a.u, We call the resulting
optimized model exchange potential the tuned FEG
exchange (RFEGE) potential. This potential en-
ergy, the A =0 coefficient of which is shown in
Fig. 1, is intermediate in strength between the
HFEGE and the AAFEGE potential energies,

Using the(TFEGE)potential with 7=0.071 a.u.,we
calculated cross sections and eigenphase sums for

90 T T T T Ik T 3.0
]
— 2.9
— —2.8
~ o
o o
° <
—
- E
3
o 3
W «
b —2.7
—2.6
40 1 | 1 | ! | 2.5

) 0.2 0.4 0.6
I (HARTREES)

FIG. 2. Cross sections and eigenphase sums for
e-H, scattering in the =, symmetry at 22=0.04 Ry as
a function of the parameter I in the TFEGE [cf. Eq.
(3.12)]. The calculated model static-exchange results
are shown as open circles (cross sections) or solid dots
(eigenphase sums). The exact static-exchange cross
section 0(Z,) = 53.3a§ was most accurately reproduced by
I1=0.071 a.u.

1000 T T T TTTT T T

100

o(Zq) [a,2]

10 1 Lol I Lol il
0.01 0.1 1.0

ENERGY (RYDBERGS)

FIG. 3. Cross sections for e-H, scattering ir the
static approximation S and three model exchange calcula-
tions (solid curves). The open circles are converged

" exact static-exchange cross sections obtained by solving

Eq. (2.15). The three FEG exchange potentials were
recalculated at each scattering energy using I(H)

=0.564 a.u., I(4)=0.0 a.u., and I(T)=0.071 a.u. See also
Table I. ‘

e-H, scattering at several energies, obtaining the
results shown in Table I. In Fig, 3 we compare
the cross sections for all three model calcula-
tions against the exact static-exchange results
(open circles) for scattering energies from 0.01
to 1.0 Ry.- The TFEGE potential appears to be a
very accurate representation of the exchange
potential, since the TFEGE results are in excel-
lent agreement with the exact values over the
whole energy range studied. It is important to
note that the TFEGE potential preserves the form
of the FEG exchange potential derived in Sec, III
and that the “tuning” required to obtain I in the
TFEGE was performed at only ore energy. More-
over, a small (but nonzero) value of I is required,
at least in e-H, scattering, to produce a realistic
model exchange potential.

Finally, it is worth pointing out that the sort of
precise tuning and ¢omparison of various models -
which were carried out on this system require
constant application of a fairly stringent conver-
gence criterion in both the exact static-exchange
and model-exchange calculations.

V. RESULTS FOR e-N, COLLISIONS

We now turn to the e-N, system. We have cal-
culated converged results for total integrated,
momentum transfer, and differential cross sec-’
tions for this system for impact energies from

'0.01 to 1.0 Ry using the HFEGE and AAFEGE



potentials. We have also included induced polar-
ization effects in these calculations. In this sec-
tion, we shall present and discuss these results
and compare them with meaéured_cross sections
and selected results of other theoretical treat-
ments e-N, collisions.

The nitrogen molecule possesses 14 electrons.
In the ground electronic state, its orbital occup-
ancy is

X3} 102202302 102205175 .

This gives seven doubly occupied spatial mole-
cular orbitals, counting 7,(x) and 7,(y) separately.
The equilibrium internuclear separation’ of N,,
2.068a,, is considerably larger than that of H,,
Thus the electron-molecule interaction potential
for the e-N, systemis much more aspherical,
and many more expansion coefficients in the
‘'static potential energy and correspondingly more
partial waves in the expansion of the scattering
orbital are required to achieve a reasonable
degree of convergence in the calculated cross sec-
tions.®

For these reasons, we were unable to carry out

exact static-exchange coupled-channel calculations

for e-N, scattering at the same level of conver-
gence as was employed in of our model studies.

In a preliminary convergence study (in the static
approximation) we were unable to obtain reliable
cross sections using the Sinfailam code for Amax
>14 and Imax>13. Beyond these limits, the pro-
-gram produces nonsymmetric 7 matrices and
erroneous cross sections. This appears to be
due to a numerical problem inherent in the pro-
cedure implemented in the program. The most
nearly convergent available exact static-exchange
cross sections for e-N, scattering are those of
Buckley and Burke, to which we do compare in
this section (see Fig. 8). Unfortunately, these
authors provide no convergence details and do
not state their convergence criterion. [Their
calculations used Amax =14 and Imx=12 (g), 13(x).]
Moreover, they published cross sections only
for calculations in which polarization was in-
cluded, not for the static-exchange case.®®

The analytic Hartree-Fock SCF N, X%} wave
function of Cade et al.®! at R=2.068¢, was used
to calculate the static potential energy, Eq.
(2.10), using a procedure described elsewhere,*®
The basis set used by these authors consists of
an extended basis of Slater-type orbitals aug-
mented by selected 3d and 4f polarization Slater
functions with the orbital exponents in all the
basis functions optimized by repeated SCF cal-
culations to produce a near-Hartree-Fock wave
function. The Hartree-Fock energy corre-
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sponding to this wave function is ~108,9928 har-
tree; the calculated quadrupole moment is ¢
=-0.95¢a3. (We should note that in the calcula-
tion of Burke and co-workers which we shall dis-
cuss below an equilibrium geometry wave function
determined by Nesbet,®? was used, The Hartree-
Fock energy for this function is —108.9714 hartree
and the quadrupole moment g =-0.89¢a%. Com-
parative studies at a few scattering energies
suggest that the difference in the electron charge
cloud which describes the target resulting from
using the wave function of Cade et al., rather than
that of Nesbet may produce 10%-15% variation in
the e-N, cross sections, the greatest discrepancy
occuring at the lower scattering energies. Never-
theless, the convergence behavior of the problem
appears to be independent of the choice of wave
function.) The experimental value of the quad-
rupole moment® of N, is g(expt) =—1.04+0.2ea?.’
In calculating the HFEGE potential, the experi-
mentally determined value of the ionization poten-
tial,® 7=1,146 Ry, was used.

The same convergence criteria were applied to
the present calculations as were used in our pre-
vious study of e-N, scattering in the static ap-
proximation.'® The trends in the convergence of
the cross sections dnd eigenphase sums for the
SE and SEP cases closely paralleled those for the
static case. The conditions of local and global
convergence are best explicated in the Tables in
Ref, 16. In the expansion of the static potential
energy [cf. Egs. (2.17) and (2.19)] we include
electronic terms up to A = 14 and nuclear terms
up to Amax=28., Expansion coefficients of the FEG
exchange potentials up to A=14 were included. In
the model static-exchange calculations, partial
waves up to Iny=26(Z,,1,) and Inx=25(2,, II,)
were included for » <3.0a, in the expansion (2.14)
of the scattering orbital. For »>3.0a,, all par-
tial waves in this expansion with > 8 were trun-
cated from the solution matrix, thereby consider-
ably reducing the dimensionality of the wave-func-
tion matrix being propagated. The coupled dif-
ferential scattering equations were integrated out-
ward to 7 ,,,=65a, in the calculations in which
polarization was neglected and to r,,, =85a, in
those with polarization. By these values of 7, the
potential energy is weak enough (of the order of
107® a.u.) that the phase shifts are stable in 7 .
In order to ensure linear independence in the
wave-function matrix, the solutions were stabil-
ized®® every three mesh points for »<3.0a,. The
quadrupole moment of g=-0,95¢aZ obtained from
the X '} N, wave function of Cade et al.,?* was
used in the long-range quadrupole term of the
A =2 expansion coefficent of the static potential
energy, i.e., :
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v,(r) ~ —q/73.

With the parameters described above, the re-
sulting cross sections are globally converged to
better than 3% in all symmetries reported. In
e-N, scattering, as in e-CO, collisions, adding
the HFEGE potential to the static term does
not markedly alter the convergence properties
of the calculations.

" A. Static-model-exchange results

We shall first consider cross sections calcula-
ted in a static-exchange (SE) approximation, in
which induced polarization effects are ignored,
using the HFEGE and AAFEGE model exchange
potentials. The ) =0 expansion coefficients of the
electron-molecule interaction potential at 2%2=0,1
Ry for these two SE potential energies are com-
pared with the static contribution to v,(r) in Fig.
4 (solid curves). Also shown for comparison is
the static v,(r) coefficient (dotted curve).
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Vo (r) \ /
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FIG. 4. Spherical components vy(7) of the static
potential energy S and static-exchange potential energies
using the HFEGE and AAFEGE potentials for e-N,
collisions (solid curves). The FEG exchange potentials
were calculated with 22=0.1 Ry, I(H)=1.146 Ry, and
I(AA)=0.0. Also shown for comparison (dashed curve)
is the A=2 expansion.coefficient of the static potential
energy [cf., Eq. (2.17)]. [When the A=2 components
of the HFEGE and AAFEGE potentials are added to
v 3‘ (r) the resulting curve does not differ sufficiently
from 1;3‘(7) to be included in this figure.]
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In Figs. 5(a) and 5(b) and in Table II are shown
partial integrated SE e-N, sections for Z,, Z,,
Il,, and IT, symmetries for scattering energies
from 0.01 to 1.0 Ry. Clearly, the results obtained
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FIG. 5. Partial cross sections an Z,, 1, (a), and Z,,
11, (b) symmetries for e-N, scattering using model static-
exchange potentials (no polarization). The HFEGE and
AAFEGE potentials were calculated at each scattering
energy using I(H)=1.146 Ry and I(AA)=0.0, respec-
tively. .
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TABLE II. Partial integrated cross sections (in aﬁ)
for e-N, scattering at selected impact energies E for the
SE-HFEGE model.

E (Ry) % m, z, m,
0.01 112.441  ©0.020  0.858  0.060
0.04 98.190 0.015  2.531 0.279
£0.10 76.821 0.019  5.983  2.132
0.20 54.195 0.845  10.179 = 5.572
0.30 40.400  13.886  12.530  8.157
0.40 31.374 ° 61.563  13.663  9.905
0.50 25.158  26.435  14.039  11.037
0.70 17.425  12.373  13.584  12.144
1.00 11.527 8.584  11.786  12.373

using the AAFEGE are radically different in all
symmetries from those obtained using the HFEGE.
The II, resonance, which does not appear at all

in the AAFEGE calculations in this energy range,®®
peaks at about 5.42 eV in the HFEGE calculations.
In these latter calculations, we verify that it is
essentially a d-wave resonance. It is interesting
to note that this energy is very near the resonance
energy of 5.41 eV obtained by Morrison and Schn-
eider®® in their ab initio study of e-N, scattering
using the R-matrix method, which, though for-
mally quite different from the theory of Sec. IIA,
does treat exchange rigorously. This resonance
is also seen in the results of Buckley and Burke

at an energy of 5.44 eV. The results of Fig. 5 .
suggest that for the e-N, system, the AAFEGE
potential is much too strong and the unoccupied
lwg orbital of N, may be bound in the resulting
interaction potential. ‘

B. Static-model-exchange-polarization results

The induced polarization of the target molecule
by the electric field of the scattering electron has
long been known to have a considerable effect on
cross sections for low-energy electron-molecule
scattering.>®7 In order to facilitate a meaningful
- assessment of the usefulness of the FEG exchange
potentials under consideration, to enable com-
parison with measured cross sections and results
of other theoretical calculations, and to further
study the effects of the AAFEGE potential in this
problem, a series of calculations were performed
using the semiempirical adiabatic polarization
potential described in Sec.' IV A [Eqgs. (4.3) and
(4.4)] with® a,=11.894 and @,=4.19a. Results
of these model static-exchange polarization cal-
culations will be labeled SEP. :

In order to determine the cutoff radius 7, in
Eq. (4.4), we varied this parameter, calculating
Il cross sections and eigenphases for each choice

1.6 T
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FIG. 6. Resonance tuning in e-N, collisions. The
d, eigenphase are shown as a function of the cutoff
radius 7, in Eq. (4.4) at a scattering energy of 2.39
eV for model static-exchange-polarization calculations
using the HFEGE (a) and AAFEGE (b) potentials. The
optimum values of the parameter », as determined by
these calculations are 7, (H)=2.341la, and 7, (AA)
=0.753a,.

of 7, until a value was found for which the d, wave
II, resonance peaked at the experimentally deter- -
mined energy of 2.39 eV. In Figs. 6(a) and 6(b),
the d, eigenphase are shown as functions of 7,
(modulo 7) for the HFEGE and AAFEGE studies,
respectively. This analysis produced cutoff radii
of 2.341q, for the HFEGE model system and
0.753a, for the AAFEGE case. The former value
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FIG. 7. Partial cross sections in Z,, I, (a) and Z,,
1, (b) symmetries for e-N, scattering in model static-
exchange-polarization calculations using the HFEGE and
AATFEGE potentials. The potential and convergence cri-
teria used in these calculations are described in the
text (Sec. IVB) .

lies well outside the principal concentration of
electronic charge of the molecule®! and far from
the nuclear centers and therefore seems phys-
ically quite reasonable. We note that in their

static-exchange calculations, which treat the
polarization part of the interaction potential in
the same way, Buckley and Burke determined a
cutoff radius 7,=2.308a,. However, the cutoff
radius of 0.753a,, which was required to position
a II, resonance at 2.39 eV in the AAFEGE model
system, is physically unreasonable. Thisvalue is
well within the molecular-charge cloud and the nu-
clei; it will give rise to a very strong attractive
polarization potential in this region.

In order to verify that 0.753a, is indeed the
appropriate cutoff radius for the AAFEGE model
system, tuning calculations were carried out for
values of 7, from 0.2a, to 6.0a,, by which point
polarization ceases to be an effective part of the
electron-molecule interaction potential and the
eigenphases approach their static-model exchange
counterparts calculated without polarization (Sec.
VA). A very fine mesh was used in varying
74, 0.01a, for most of the range of values studied,
0.001a, from 0.74a, to 0.80a,. No hint of another
resonance was seen, and we must conclude that
0.753a, is the correct cutoff radius for this model.

Partial cross sections for scattering in 2,

I, Z,, and I, symmetries are shown in Figs.
7(a) and 7(b) for the HFEGE and the AAFEGE
calculations. There is virtually no similarily
between the two sets of results, with the possible
exception of those for the I, symmetry, where
we forced the cross sections to behave similarly
near 2.4 eV, and for the I, symmetry. In any
case, the lowest-order partial wave contributing
to the scattering in II, or II, symmetries is =1,
which does not “feel” the full effect of the short-
range interaction potential because of the presence
‘of the repulsive centrifugal barrier I ({ +1)/#2 in
the effective potential energy [cf. Eq. (2.15)].

These results reinforce the conjecture pro-
pounded in Sec. IV A that for low-energy e¢-N, col-
lisions, the AAFEGE potential is too strong, so
much so that it binds the unoccupied 17, N, orbital,
which should give rise to the II, resonance in the
SE calculations. Therefore, in order to induce
such a resonance in the SEP calculation, we re-
quire a polarization potential strong enough to
pull the 27, unoccupied orbital near to zero en-
ergy. It is certainly true that the local momem-
tum £ (F) in the HFEGE potential approaches
[2(By,.+D)]*/? as 7~ rather than (2E,,.)'/2. How-
ever, the effect of this is felt in the factor F(n)
in Eq. (3.5). Since this multiplies %2,(¥), which
vanishes as 7, this apparent asymptotic in-
consistency in the HFEGE potential appears not
to affect the scattering at low impact energies.
Although we did not tune the FEG potential in this
case, the quality of the results suggests that this’

procedure is not necessary for this system. At
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TABLE III. Partial and total integrated cross sections (ina3) for e-N, scattering at selected
impact energies E. The SEP-HFEGE model electron-molecule interaction potential was used
as described in the text (Sec. IV B) with 1=1.146 Ry and 7,=2.341a,. See also Fig. 8.

E (Ry) Eg Hg Ag 2,‘ Hu Au Otot
0.01 28.072 0.015 0.147 0.021 1.473 0.066 29.733
0.02 34.074 0.039 .0.209 0.018 1.610 0.009 35.959
0.04 39.394 0.144 0.318 0.077 1.275 0.016 41.226
0.06 41.359 0.387 0.427 0.252 - 0.804 0.024 43.253
0.08 41.887 0.944 0.539 0.539 0.423 0.032 44.364
0.10 41.674 2.307 0.654 0.913 0.176 0.040 45.766
0.16 39.192 77.165 1.053 2.037 0.114 0.066 119.898
0.18 38.129 131.698 1.200 - 2.804 0.252 0.076 174.158
0.20 37.031 56.218 1.355 3.299 0.440 0.086 98.429
0.30 31.704 - 9.561 2.231 5.558 1.756 0.142 50.952
0.40 27.146 6.240 3.219 7.300 3.187 0.211 47.303
0.50 23.396 . 5.261 4.224 8.540 4.473 0.294 46.189
0.60 20.326 4.832 5.151 9.378 5.567 0.303 45.648
0.70 17.808 4.603 5.932 9.918 6.485 0.507 45.254
0.80 15.734 4.464 6.537 10.249 7.259 0.636 44.880
0.90 14.020 4.374 6.962 10.448 - 7.921 0.778 45.504
1.00 12.598 4.312 7.227 10.581 8.496 0.931 44.144

this point in our study, the AAFEGE potential was
abandoned. ‘

There remains to evaluate the results obtained
using the HFEGE potential, a representative
sample of which are presented in Table III. Total
integrated cross sections calculated in the SEP
approximation with »,=2.341q, using the HFEGE
potential are shown as solid dots in Fig. 8, where
they are compared with the measured cross sec-
tions of Golden'® which were determined using a
modified Ramsauer apparatus, and the theoretical
results of Burke and Buckley and of Burke and
Chandra. Partial cross sections for Z,, Z,, II,,
I,, 4, and A, symmetries were included in our-
SEP-HFEGE calculations, the contribution to the
cross sections of higher symmetries being neg-
ligible in the energy range under consideration.
Notice that for impact energies below about 8
eV, the major contribution to the total cross sec-
tion comes from the Z, partial cross section.

All of the theoretical cross sections are much
too large for energies near the 2.4 eV II, res-
onance owing to the neglect of vibrational motion
of the nuclei in the calculations. (This problem
has been studied by Chandra and Temkin.?®) The
width of the resonance in the SEP-HFEGE model
is about 0.48 eV. The very close agreement of
our results with those of Burke and Chandra is
especially interesting since they used a completely
different procedure of including exchange effects,
namely, the orthogonalization procedure men-
tioned in Sec. I. Our SEP-HFEGE momentum-
transfer cross sections calculated with (SEP)
and without (SE) polarization are shown in Fig.

9, where they are compared with the measured
results of Englehardt ef al.,®® obtained from an-
alysis of swarm data. The inclusion of polariza-
tion brings the theoretical low-energy momentum-

60

40— SEP -

* HFEGE

[

|

i e-N,
[

|

[

]

~ o
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”mml[

4 5
’ ENERGY [eV]

FIG. 8 Total integrated cross sections for e-N,
collisions. The converged SEP results using the
HFEGE potential are shown as solid dots. Cross sec-
tions for %, %,, M, 1I,, A,, and A, symmetries
were included in ¢o4. Also shown are the measured
cross sections of golden (Ref. 19) and the theoretical
curves of Burke and Buckley (dashed curve) (Ref. 17)
and Burke and Chandra (Ref. 9).
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FIG. 9. Momentum-transfer cross sections for e-N,
scattering. Results of model static-exchange (SE—
dashed curve) and static-exchange polarization (SEP—
solid curve) calculations are shown. In these calcula-
tions the HFEGE potential was used as described in
the text and T-matrix elements for Z,, Z,, I, II,,
A,, and A, symmetries were included. The dotted
curve shows the experimental results of Englehardt

et al. (Ref. 88).
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FIG. 10. Differential cross sections for e-N, scatter-
ing at selected energies calculated with a model SEP
potential. The HFEGE potential was used as described
in the text, and T-matrix elements corresponding to
Zgr Tys g, M,, Ag, and A, symmetries were included
in the calculation of do/d. The polarization cutoff
radius used was 7, =2.341a,.
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FIG. 11. Theoretical differential cross sections for
e-N, scattering at an impact energy of 7.0 eV in the
SEP-HFEGE model. The solid curve shows results
calculating using Z,, Z,, Mg, My, Ag, Ay, and A,
symmetries, the dashed curve those with = and I
symmetries only. The experimental results (dotted
curve) are the absolute cross sections Srivastava et al.
(Ref. 89). Similar agreement between theory and ex-
periment were obtained at 5.0 and 10.0 eV (Ref. 91).

transfer cross sections into much better qual-
itative agreement with experimental results.
Differential cross sections are a notoriously
sensitive test of the validity of any model-scat-
tering calculation as well as a very difficult quan-
tity. to measure for low-energy collisions. In
Fig. 10, we illustrate the general behavior of

‘ do/dS for e-N, scattering at several representa-

tive energies for the SEP-HFEGE model. We
note the d-wave character [P,fcos8)] of do/dQ
at 2.3 eV, in the vicinity of the IT, resonance.
Recently, Srivastava et al.®® reported absolute
values of the differential cross sections for elec-
tron impdct energies from 5.0 to 75.0 eV and for
an angular range from 20 to 135°. These results
were obtained in a crossed-beam experiment in
which the ratio of the differential cross section
for‘e-N2 scattering to that for e-He scattering
was measured at each impact energy. The results
for e-N, scattering were determined by multi-
plying this ratio by the absolute e-He cross sec-
tions of McConkey and Preston.”® We have com-
pared our SEP-HFEGE results with the experi-
mental differential cross sections at impact en-
ergies of 5.0, 7.0, and 10.0 eV. The results at
7.0 eV are illustrative of all these comparisons
and are shown in Fig. 11 (solid curve). The error

A
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bars on the experimental (dotted) curve in this
figure are taken from the paper by Srivastava

et al. Agreement of theory and experiment is
quite reasonable except at angles below about 45°,
where the theoretical differential cross section
rises above the experimental result. It is in-
teresting to note the effect of the inclusion of
T-matrix elements corresponding to A symmetry
in these calculations; the dashed curve in Fig.

11 was calculated with only = and II symmetries
and compares much less favorably with experi-
ment. It also contains a spurious bump at 6 ~120°,
(For scattering energies below about 2.0 eV, how-
ever, the A-symmetry contributions are negli-
gible.) The theoretical total- and momentum-
transfer cross sections® at 7.0 eV are oy,
=11.596 A% and 0, ="7.965 A% The corresponding
measured :gesults are 0,,=11.0+2.0 A2 and Omom
=8.8+1.8 A2,

We have also calculated rotational-excitation
cross sections for e-N, collisions in the SEP-
HFEGE model. The results agree with those ob-
tained in other theoretical studies®!? about as
well as our total cross sections (cf. Fig. 8).

The results of this section indicate that the
HFEGE potential is quite appropriate for e-N,
collisions, producing results compaf'able to those
of rigorous static-exchange methods.

VI. CONCLUSIONS

In this paper, we have summarized the deriv-
ation of the body-frame static-exchange equations
for electron-molecule scattering, Eqgs. (2.9), and
their radial counterparts, Eq. (2.15), and shown
how the exact treatment of exchange is modified
by making a free-electron-gas approximation for
the target and the Born approximation for the
scattering electron. Making some reasonable
modifications to the resulting approximate ex-
change potential leads to the HFEGE potential,
defined in Egs. (3.5)—(13). Using this potential
in calculating cross sections for e-N, collisions
yields results in good agreement with those of
other theoretical treatments and (off resonance)
with experimental cross sections. For e-H, col-
lisions, the agreement between model static-
exchange and exact static-exchange cross sections
was considerably improved by “tuning” the FEG
exchange potential. This procedure appears not
to be necessary for collisions with many-electron
molecules. The FEG model is based on a sta-
tistical treatment of the molecular electrons and
therefore probably gives a better representation
of exchange effects for systems with large num-
bers of electrons.

The present successful applications of the free-
electron-gas exchange potential derived in Sec.

II to e-H, and e-N, scattering, taken together
with an earlier analogous treatment of e-CO,
scattering?® and the work of others on electron-
atom collisions,3**! augers well for the use of
such model potentials in low-energy electron-
molecule collision studies. Although certainly
highly approximate, such exchange potentials
appear to reliably mock the effects of exchange
on the scattering event. In particular, the HFEGE
potential seems most appropriate for such prob-
lems, particularly if the target molecule has many
electrons.

It is precisely in the treatment of low-energy
electron collisions with many-electron molecules
that some form of approximate local treatment
of exchange is desirable, since the computer time
required for an exact solution of the problem
rapidly becomes-prohibitive as the number of
electrons is increased. In contrast, aside from
the calculation of the FEG exchange potential, the
solution of the scattering problem in the SEP-
HFEGE model requires no more computer time
than does the solution of the problem in the static
approximation, since the convergence behavior
(and other numerical features) of the solution are
not markedly affected by inclusion of the HFEGE
potential.

It is clear from the form of the FEG exchange
potential, that in this approximation, exchange
is treated as an attractive interaction [cf. Figs.

1 and 4]. In deriving the coupled integro-differen-
tial scattering equation (2.15), we implicitly im-
posed a constraint on the continuum function in
using the orthogonality of the scattering orbital

to bound molecular orbitals of the same symmetry
[cf., Eq. (2.8)]. Therefore, for closed-shell sys-
tems, the orbitals one obtains by solving Eqgs.
(2.15) exactly ave appropriately orthogonal, and
no further orthogonalization need be enforced.
However, we do not know at present to what extent
replacing the Hartree-Fock exchange potential by
an approximate exchange potential affects this
conclusion. It may be that our results would be
improved by explicitly orthogonalizing in addition
to using the model potential. Riley and Truhlar®
have studied this question in the context of elec-
tron collisions with open-shell atoms (e-H).

Hopefully, the use of FEG or other model ex-
change potentials in conjunction with procedures
for solving the collision problem like the one used
in these studies will facilitate theoretical exam-
ination of a large number of electron-molecule
systems that have heretofore been numerically
intractable. Moreover, such model potentials may
prove illuminating in understanding the physical
nature of the quantum-mechanical exchange inter-
action in electron-molecule collisions.
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