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The nodal expansion of equilibrium properties of a two-component classical plasma in 2+ & dimensions

(0& e & l) is used to investigate higher-order corrections with respect to the plasma parameter of the
transverse-diffusion coefficient relative to an arbitrarily strong and constant magnetic field. Only the short-
range compact nodal graphs decaying faster than Debye contribute to the third and higher nonvanishing
orders. The usual fluid-limit (k-+0) procedure delivering the first-order Bohm result is shown to be self-

consistent for any dimension 2 & v & 3.

I. INTRODUCTION

'The diffusion of plasma transverse to an arbi-
trarily strong constant magnetic field is a subject
of basic importance in classical plasma physics.
It has direct relevance to the confinement of ion-
ized gases sufficiently hot to sustain exo-energetic
nuclear reactions yielding thermal neutrons. " Up
to now, attention has been focused on the stochas-
tic assumptions underlying the many different, al-
though nearly equivalent, derivations of the Bohm
transverse diffusion coefficient D, -B ' in two and
three dimensions. These assumptions are in agree-
ment with general scaling arguments. ' All these
treatments, without exception, make use of a fluid
picture of the two-component plasma (hereafter
referred to as TCP). The screening length it~ is
assumed to be very large, while the dynamics is
taken as a function of first-order equilibrium prop-
erties with respect to the plasma parameter. Here
we shall not enter into the details of more sophis-
ticated calculations' based on the microscopic
Klimontovitch time-dependent one- and two-particle
distribution functions, which yield essentially the
same results. Our main purpose is the systematic
investigation of high-order corrections in the plas-
ma parameter A to D'„ irrespective of the space
dimension 2 & v & 3. Therefore the more tradition-
al approach used in Refs. 1 and 2 will prove suffi-
cient for our present needs. In this case, the
TCP's equilibrium properties are simply obtained
by duplicating those of the standard one-component
plasma (OCP in the sequel) model. As shown be-
low, such an approximation is valjd only when
one's attention is restricted to the first-order-
Debye term.

A recent detailed investigation' of the TCP pair
correlation function has shown that the neutrality
condition prevents the extension of the previous
treatments" based upon the above assumption, to
all order in A. The importance of the higher cor-
rections to D'~is motivatedby several distinct con-

siderations. First, there is the need of adeeper un-
derstanding of the fluid picture underlying all the de- '

rivations of the Bohm result. In other words, even
in a very hot and dilute plasma with a very large
X~, we should check that higher-order terms are
consistently negligible when compared to the first
terms so that we can allow for a coherent use of
the perturbation expansion in A. Of more direct
relevance to experimental fusion research, we
should also mention that the present most success-
ful Tokamak device' works at a relatively moder-
ate temperature, i.e., 7'. -1 keV instead of the ex-
pected 10 keV. However, the basic need for the
present investigation arises from the pathological,
although probable, situations occurring in laser
fusion' when huge, self-generated magnetic fields
(up to 10s G) produce hot spots and very severely
inhibit the heat penetration from the underdense
outside high-temperature plasma toward the dense
core of the pellet.

Last, but not least, the strongly magnetized TCP
allows for a clear and relatively simple investiga-
tion of transport quantities independent of time.
Such a fortunate situation is due to the drastic
modeling of the particle dynamics within the frame-
work of the guiding center approximation valid for
this case. We should also notice that our contin-
uous parametrization of the equilibrium nodal ex-
pansion with respect to the space dimensionality
v=2+& gives access to an elegant unified pres-
entation of the hydrodynamic calculation of the
Bohm velocity diffusion coefficient.

II. BASIC THEORY

In this work we address ourselves to the evalua-
tion of the time-independent transverse diffusion
coefficient to a very large constant magnetic field
B, in a high-temperature fully ionized TCP. The
mean kinetic energy per particle is assumed to be
high enough to allow the neglect of any symmetry
(Fermi) contribution to the equilibrium properties.
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The only retained 5 W 0 effect is due to the uncer-
tainty PrinciPle through the ine(Iuality ff/v'2)))„kaT.
& e'/kaT which means kaT& 1 Ry in three dimen-
sions. -" These nonzero diffraction corrections usu-
ally unnoticed in high-temperature fusion physics
are non-negligible only for small distances com-
parable to the Bohr radius Q0 So, the hydrody-
namic modes (convective cells, for instance) sup-
posed to convey most of the particle transport
across B are not affected by them. Moreover, we
shall work with the very plausible assumption that
8 does not change the TCP equilibrium properties. In.

other words, the Bohr-Van Leuween theorem ap-
plies to the electron wave packets which. we assume,
for simplicity, to be spinless. With this proviso
in mind, we may reformulate the three-dimension-
al derivation detailed in Refs. 2 in a framework
varying with the dimension.
. With the exception of the v unification and the
ensuing fraqtal geometry of the transverse dif-
fusion, the present section is essentially a review
of the hydrodynamic derivation detailed in Refs. 2.
We will take our concept of a real dimension v=2
+& as the simpler' to secure a smooth transition
between v =2 and 3. In so doing, we shall use
W'ilson techniques' for the interpolation of quadra-
tures and the redefinition of vectors in Euclidian
(not vectorial!) spaces with noninteger v value.
Therefore, the transverse velocity coefficient ex-
tending the v=2 model of charged filaments" al-
igned with B obtains as (c being the speed of light)

2

(E,(O) ~ E(v) )d~
0

(2.1)

in terms of the autoeorrelation function of the elec-
tric field E(1 ) seen by a test charge a time r, with
the guiding center approximation

E(T}= g E„-(7')e'r'x"

forall2 & v&3. The problem is one of evaluating
the electric field auto-correlation (E,(0)~ E~(r))
when E(1 ) is the electric field seen at time r by a
"test ion" located on the z axis at r =0. E(1) is
related to the Eulerian electric field E(X, f) by
E(7) = E[X(T),T] and

(t)e i)( x (2 3)

The present Fourier expansion holds for all
0&( &1, because

ig(t)= fd" xe' E(x;.t)'"

is meaningful for any k. X(1 ) is the orbit of the
test particle, while X1(t) is the location of the jth
charge at time t. In E(I. (2.2) the bracket is ex-
plained so that

OO

D, = —, g(E,*r (0) E,Z(r)e'~'x(~))d1. .
0

(2.4)

Furthermore, we will ignore the correlation
between the position of the test particle and those
of the background plasma [the X(r)]. This amounts
to saying that

~ g,'1(r}—1
~

& 1 [g,"(1")denotes any
one of the three TCP pair correlation functions],
even when higher-order corrections are retained.
Such an assumption restricts us to plasma para-
meter values smaller than unity. Since (Ep .E)f )1=0 for k, t —k, and a spatially uniform ensemble,
we have the statistical factorized result

' E(1-) XB
,X(t) = c —,d)' .

0
(2.2)

2

E,*g 0 ~ E,p v' e' 'x&" dv 2.5
F''

The bracket denotes the usual canonical equilibri-
um average. To go farther we need a redef inition
of the point and cross vector products. This is
easily achieved by taking the same scalar product
while the vectorial one is interpolated by an infin-
ite matrix arising from the infinite number of vec-
tor components in a Euclidian space with real v.'
Only for v integer the number of mutual perpen-
diculars at a given point could be identified with
the space dimension; The corresponding integrals
should read

evaluated when exp[ik X(r)]) is known, while the
first average reads

(E,*r(0) E,);(.)) = Q
tg j

'x (expi)( Eifj(s')-x. (0)1% (2.6)

where S„=2))"~'/I'(-,') ). Extending in a straightfor-
ward way the v=2 and 3 trajectories, we have

d"pf(P', p 4„p q. ,
X(r) =X(0)+c E(1') x Bdr'

~2 II

Moreover, we take for granted the existence of the
discrete sum

(2.7)



HIGHER-ORDER CORRECTIONS TO FARTICLE DIFFUSION. . . 911

b is the unit vector ((B. The test charge is taken
to be an ion with charge-to-mass ratio 8,./m, The
initial position X(0) may be set equal to zero, while
the initial test ion velocity V~~ is a statistically
distributed quantity assumed to obey the Boltzmann
distribution. Evaluating (exp[ik X(r)] ) is no simple
matter. About the best that can be done is the fol-
lowing. Because X(r) is the portion of a random
variable initially localized near X(0) =0, and be-
cause its probability distribution P[X(7),r] is ex-
pected to- spread out with time,

]ex«[i% X(e&]) f=d.X(e& e&e "e&p']X(e&, e ]

will damp with increasing 7' for any & &0
damping occurs for two reasons: motions "paral-
lel" and "perpendicular" to B. Only the latter is
operative when e =0. The damping along B will be
more extreme than that due to the "perpendicular"
motion. Therefore, in the presence of very strong
magnetic fields, it is useful to forget the "perpen-
dicular" drift except when k&8. This is tanta-

; mount to assuming

(ee]e X&~&)

ickx Bexp, E(r')dr', k.B=0
0

(2.8)

'r 1' E(g tr'i
xp ick bV„7 + d7' d7'" e,-bb —' ', k B40.

0 0 Pl
S

The "parallel" electric field can accelerate a par-
ticle for any E &0, whereas the "perpendicular"
component cannot.

The "perpendicular" motion can be visualized as
a limit of small increments in position space, the
"parallel" motion as a sum of small incremerits
in velocity space. This picture is the v=3 one ex- .
tended to any v&2. Eventually some of the parti-.
cles will move rapidly. They will begin to lose
energy through the radiation of plasma oscilla-
tions, and the relatively infrequent close collisions
vrith other particles. So, the electric field seen
in the "parallel" direction is not well modeled by
a velocity- independent distribution probability.
The "parallel" motion is closer to the Langevin
approximation of the linear Brownian motion. It
should be apprecia&ted that a Brownian motion' may
be given any dimension in the framework of the so-
called fractal geometry. Therefore, the required
interpolation between v=2 and 3 could easily be
supplied by motions with dimensions smaller than
one, - provided a fractal dimension exists for any
v, defined in the present Wilson meaning. We
take this plausible point for granted, "so h given
test particle will obey

and A(t). Devoting our main effort to the higher-
order corrections in the plasma parameter we do
not need to explore this subject more quantitative-
ly. At this point, we need an approximation which
will render tractable the second expression in the
right-hand side of Eq. (2.8). One possible pro-
cedure is to neglect the contribution of the "para-
llel" electric field. So, we extrapolate the v=2
case arid therefore concentrate on the low-frequen-
cy long-wavelength parts of the electric field spec-
trum. For this reason, one may expect the mech-
anism of free streaming of particles down the
field lines to be dominant in destroying the corre-
lations between the initial electric field seen by a
particle and that field at a later time. If we ignore
E~„we get for k Be 0,

(e'r'x"&}»„„,—= (exp(iek bV„r)}=exp( —,'g', V'„,v')—,

where we have assumed the test ions to be distri-
buted with a thermal equilibrium velocity V'„„
=—ksT/m, Generalizing the v =2 treatment' thus
gives

(exp[ik X(r)])»,

Z(V)+a(f)
dV
dt (2.9)

=exp —, dv', dv, v, .E v, 2 10
0 0

with a frictional drag coefficient E(V) and a sta-
tionary random force field A —Sb E(t). In this ap-
proach the dimensions of the ensemble spanned in
the "parallel" motion should be derived from E(V)

for the case of purely perpendicular k's
~ Also,

making the approximation. that led to hq. (2.10) we
see



C. OEUTSCH 17

(E,*~(0)~ E;„(r))= g ', && ~(expik [X,.(0) —X,.(0)])exp(- ,'k—', V»r') k„w0

~e c2
V K j exp —

2 gT~
0

de, (E,(e) E,(e)))(ezpik [X (0)-X (0)]), 0„=0 (2.11)

where Vo, = keT. —/m, . Finally, we need

ej -0}('r
(exp[ik [X;(0)—X,(0)]])= 5(k}—~ ' -=5(k) -V-'S,,(k). (2.12}

Inserting Eqs. (2.11) and (2.12) into

(E,(0) ~ E,(r)) = g(E,g(0) E,-„(r))(e'"'""})
w

(2.13)

we have

(E,(0).E,(e))= g g ', "', exp(
' -

)exp (
' - )

(=j )0

kII &0

.e FP ", ' 'ezp(-; f de f d( e(EeE},(e,)))

+ g g ", ' ~ —,' exp — " » [6(k) S,,(k)V.
"

]exp(-EkEV, ,„v'E)

itj k
kII A)

S'e;e.
k'V' ~ 2B'

fgj
kII"-0

'd., (E,(.,) E,(;)})(e(k) 0„(k)~!,. .. (2.14)

This is an integral Eq. for (E,(0) ~ E,(r). Performing the i,j summation makes the 5(k) contribution can-
cel out altogether with the first two sums thus yielding

k V

k
kII&

'e' c2k
e P k."& ezp. —,' de, (Ed( e)E(ee,}))00(k}

k =0
II

where

3!(k}= V '(—S„(k)—S;;(k) + 2S,,(k) ) (2.16)

R,(7}=, dr, ! drE Q,(7'E r,}, —~2 . 1

is the extension of the usual first-order thermal
spectrum. Equation (2.15) can be simplified
through

—,'&E,(O) E,(~)& = q, (~),

in the form

$2. 2 g2

k I)

$2
+ g,",exp [-2k'P, (v) ]SC(k},

kII=P

(2.16')

d'R, (~) c'q,( )T
d7 B

Defining e, =S'„e c /BEVE'k~ EthiEs becomes, replac-
ingr byt
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d'R = E, g exp [-2k',R,(7)]5C. (k)k2~
k

+&q Qf(k, t)

which can be integrated, when one notes that
dR, (0)/dt =0, in the form

(2.17)

III. TWO-COMPONENT PLASMA EQUILIBRIUM PROPERTIES
I

Our task will be completed by explaining the
structure factors sum (2.16) in terms of the higher-
order corrections with respect to the plasma pa-
rameter. For this purpose, we need two things.
The first is a smooth extension of the Coulomb in-
teraction with respect to the dimensionality param-
eter v = 2+ &. This requirement is easily fulfilled
by the potential

dR (t dre '~Pi"&X(k)
2

dt

+e,g f(k, r) dr.
Jp

(2.18)

Q'"'(r)= (v-2) '~r~' ", vx2

= ln/r f
', v=2.

Solution of the Poisson equation is

(r) = ~v 2 ~S&(r) .

(3.1)

(3.2)

The only place the magnetic field enters the
above equations is in the denominator of the small
quantity E~. Therefore, we seek the leading term,
in powers of e„, of the solutions to Egs. (2.17) and
(2.18). We shall see presently that for large t,
R(t) - e~~'f makes the first term on the right-hand
side of Eq. (2.18) an O(e~j') term. Since the sec-
ond is O(c~), it can be deleted to the lowest signifi-
cant orders in e„either in (2.18) or in (2.17). If
we delete f(k, t) in Eg. (2.17), we get (k'=k', +k'„)

(2v) " d "kf(k k, )

K„,
2r dQ k~'(sing)"

The Fourier isometrics between Eq. (3.1) and
the Fourier transformation -S„k ' of Eq. (3.2) are
obtained through the v-dependent Wilson quadra-
turesa [K„=S„(2n)"]

d~R t
df'

~ e 2$LRg(t)~(k)

k

(2.19)
&&f(k', k,k cosP). (3.3)

The second equation requires the extension of the
standard OCP nodal expansion' to the pointlike

or equivalently

1 dR,(f) '
~e g l-exp(-2k+, )

2 dt 2 k',
kg

(2.20)
Since R, and its first two derivatives are always
positive for t&0, the last term in Eq. (2.20) be-
comes negligible at t- , and

1 dR,(~) ' ~a~~(k)
at

k g

But ,'D, is just dR—,(~)/dt, so

(2.21)

2 „, ~X(k) '"+O(&,)

k~

(2.22)

To approximate it by an integral for a large vol-
ume, we ~ake the replacement'

k mj, n

(2.23)

k „=2a/V'~" is the lower limit which results from
the finite box size, while the upper kD= ~~ means
that we restrict to the so-called fluid limit. "'

two-component plasmas with respect to the clas-
sical plasma parameter A, = e'/k~T &'D(X'D=kaT/
S„pe'). The fulfillment of this latter condition is
strongly v dependent. , For v &. 2, the correspond-
ing classical 2N-body systems are stable, so the
TCP nodal expansion is obtained immediately
from the OCP's by retaining the condition of neu-
trality. The situation is not so simple when v&2.
Here, Schrodinger quantum mechanics have to be
retained to secure stability within the plus-minus
pair, through the appearance of bound states down
to a ground state with a negative finite energy.
Nevertheless, a detailed study4 shows that the per-
turbative expansion in A, remains valid when k~T
is larger or comparable to the ground-state energy.
This amounts to saying that the mean thermal en-
ergy should be high enough to break up almost any
bound states. The degree of ionization is there-
fore very close to unity, which allows to work out
the equilibrium properties in the canonical en-
semble. However, there is an additional price to
pay before employing quantum statistical mech-
anics so easily. To secure two-body stability in
classical statistical mechanics, the long-range
Coulomb interaction has to be interpolated with
the x-0 limit of the plus-minus Slater sum re-
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stricted to the strongest interacting states in the
continuum, i.e. , the S states with l=O. In three
dimensions this procedure leads to the replace-
ment of r ' by ) '(1 —e ") with C-X,,'.

An additional quantum-mechanical requirement
1s

4„&mean interparticle distance&&D,
(3.4)

still leaving room for substantial high-order im-
provements. With all these provisos in mind, we
could perform the g,'~(r) —A, expansion. Never-
theless, we should be cautious about the inclusion
of a strong constant magnetic field in the above
classical program. This point is discussed fur-
ther in a separate work, where it is shown that
ip the realistic limit of a strong but still pertur-
bative Zeeman interaction, the temperature-de-
pendent pseudopotential built upon the spherical
hydrogenic wave functions with B=O, remains un-
changed in the present situation. The same is
true of the electron-electron effective interaction
i@eluding the 5c O diffraction corrections. "

These preliminaries allow us to extend the v-
dependent OCP ~, expansion' to the high-tempera-
ture pointlike TCP. So, the usual nodal rules are
to be modified as follows.

(a) The screening length is such that

X2 = k T/S„pe'(C, Z2+ C,Z,'),
where C,.= Ã, /NZ, is the c. harge attached to the
component i. Each field point gets an extra factor
(C,Z2+ C,Z', ) '.

(b) The interaction between particles i and j is
proportional to Z&Z,-, so that each field point is
agg, in factorized out with C,Z,"~+C,Z,"~, where II~
denotes the number of lines merging into the field
point k. The root points have to be given a factor
Zrr, Zrr,

(c) When c& 0, the Debye line k'+1, which cor-
responds to the bare Coulomb interaction r ', has
to be replaced by a normalized sum of the modi-
fied Debye lines attached to the direction ion-ion,
iop-electron, electron-electron interactions, re-
spectively. This is easily performed foi v= 3,
once we note that the Debye interaction resumming
the long-range behavior of the effective interaction
r '(1 -e ") may be written (CX~&2)

points has to be given a factor (Zp))-) —Zn))"&)/(Z,
—Z,) when the overall neutrality condition C,Z,
+ C,Z, =O is taken into account. As a consequence,
the usual OCP linear chains built upon two bubbles
intertwined with Debye lines vanish to all orders,
so the traditional long-range hypernetted chain
(HNC) resummation does not apply to the present
situation. It is therefore replaced by the much
more rapidly decaying chains made of three-
bubbles or other compact nonconvolution graphs.
The number of graphs within each order is also
drastically reduced.

)() ) g iij 2sg2Z'(1+ s) (~/g )I(2

(3.6)

an obvious extension of the OCP result. K„(x) is
the second kind modified Bessel function.

High-order corrections start with l —k= 2. l and
k denote, respectively, the number of lines and
field points within a given nodal graph. As shown
on Fig. 1, rule (d) reduces drastically the number
of available diagrams, as compared to the OCP's.
In the present situation, we therefore obtain

C(2)(~) I )j ( )l C(sa)(&) ( )j (+)] (3 7)

The second (3b) is the convolution product of
two bubbles (Z', = Z&=1)

1.Second order

2.Third order

12
(3a)

1 2
(3d)

(3b) ' (3c)
C

. 1 2
(3e)

A. v ~& 2 nodal expansion

Let us first pay attention to the lower dimension
where the rule(c)is simpler. The three distinct
first-order corrections to the, potential of average
force are given as (i,j being the electron or ion)

e' (e~~" —e~2") '' 1 1
r (1 —4C2/)). 2D)'~' ' k'+ o,' k'+ &', ' (3.5)

in r and k space, respectively. Similar expres-
sions may be worked out for the whole 2& v& 3
range.

(d) Putting together the above rules for the field
points, we see that each nodal graph with k field

3.Fourth or der

1 2

2 1 1 2

FIG. 1. Two-component p)asma nodal gr aphs. The
solid line denotes the Debye line [Eq. (3.11')].
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00

G(2b)(r) v-l v-l ~2( /& ( 2 / A2 dk kl+6/2g (kr) F (] ] ~ ~. 2. 6k2)2

/

where K„=S„(26/) . Equation (3.8) is suitable for numerical computation with r in number of XD, as a
running parameter. The graphs (3c, 3d) may be worked out similarly through

(2ii}2 v 26/ 2 v l fI(1 + 6 e)4r6/2 k2+ ] 6/2( 6/2( ) ' (3 9)

(3e) is obtained by adding one more (k'+1) ' under
the k quadrature.

The present analysis works only for & & -1. It,
cannot be straightforwardly extended to high or-
ders, in view of K, /, (u) u "'/' when u-o.
Short-range resummations of n-bubbles lines
should then be used to all order in A„ in order
to 'get rid of this difficulty. The present order by
order evaluation of the nodal graphs is expected
to remain valid in the & = 0 limit, on both sides of
the cross over dimension v= 2. By extrapolating
the above third-order results, one gets the domi-

I

nant asymptotic contribution within each order
from the alternate chains built up from three

. bubbles intertwined with single Debye lines.
Therefore, a modified version of the standard OCP
Hypernetted chain approximation with three
bubbles replacing two bubbles, - and lacunary series
instead tt}f the geometric ones is expected to ex-
haust g2(r) in the r- ~ limit. On the other hand,
the short-range limit lim, g2(r) is no longer
monitored by the resummations of ladder graphs
when v&2.

The long-range resummation explained by

when

I A k'G' '(k)/(k'+ 1) —1

produces the required extension of the HNC

schema. The sign "="accounts for the obvious
but cumbersome v-dependent overall factor.

1 2(n22—u,')
k'+ 1 (k'+ o.2')(k'+ /222)

f2 t2

(6'+ II,'*)(6'+ II,")} (3.11}

extrapolating first the real case v=3, where the
pair (i2„ /2 )refe2rs, to the plus-minus pair, while

B. v & 2 nodal expansion

lgost part of the above discussion is expected to
hold for v&2, provided due attention is paid to rule
(c), with a first-order Debye interaction in the v

= 3 form. Therefore, only a slight algebraic modi-
fication of the v&2 treatment is needed. However,
this latter is, sufficient to produce more complica-
tions. This is why we detailed first the basic fea-
tures of the TCP nodal expansion usirig the more
symmetrical and transparent v & 2 situation. Fol-
lowing rule (c}, the normalized first-order Debye
line in k space is now given as

(c/,', n )p2ertains to the diffraction corrections" "
of the lighter particles ("electrons" ). For the
sake of simplicity, we shall ignore these latter in
what follows. Taking the classical limit e, —~,
n, -1 produces

,
(

S„, )/1(-,'(q + 1))
2I'(1+ —,'q)

(3.11')

in k space and

C(i) I
i/ & / 2146/21 (1+ l )r6/2+ 2g

x [K,/ (r)2nl+/2K, /2(o. ,r)
-n2'/2K, /, (n2r)] (3.12)

I

~ r space, with ~ and a, , in number of X~ and

XD, respectively. In the T -~ limit, the latter
reduces to the v ~ 2 result (3.8). As far as their
derivation is concerned, these expressions make
sense only for v=3. Nevertheless, we find it use-
ful to explain them as q-dependent expressions,
continuing analytically the integer Debye quantities
to q &0. Such a procedure allows for an intrinsic
rephrasing of the TCP nodal expansion when bound
states are likely to appear. ' Again, high-order
nodal graphs may be estimated as above, from
Eqs. (3.11) and (3.11') and the corresponding two-
bubble function G, (k}.
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IV. FINAL CALCULATION OF D

Up to now, the TCP nodal equilibrium properties
are detailed enough to allow the completion of the
calculation of the transverse velocity coefficient
D, as given by Eq. (2.22). The only remaining task
is to explain the S;&(k)'s introduced in Eq. (2, 12)
through the linearized pair correl. etion function

1 2

g,"(r)- I+ W,"(r), A, - 1. (4.1)

It is important to note that the sum K(k) is essen-
tially built upon the more compact nodal graphs
which decay faster than first order (Debye). They
are depicted in Fig. 2.

Their convolutions with one and two Debye lines
are to be included too, so that the general quantity
to be inserted in Eq. (2.15) is

K(k) -=-S„(k)—S;;(k)+ 2S„.(k)

= —W,"(k) —, W,"(k}+2 W,"(k)

=4 II' k + B k 1+H' k
8=3 .

4H'(k) + X-'(k), (4.2)

where B(k) denotes the (bubble) sum, within a
given order n, of the above listed graphs. The
first remarkable result is the absence of second-
order contribution. The more important diagrams
in the k-0 limit are the linear chains built upon
three bubbles intertwined with Debye lines. The
first one appears with n = 5. H'(k) and B(k) are ob-
tained from the nodal analysis performed in Sec.
III. However, the most important property dis-
cussed in the present work is the negligible con-
tribution left by all the higher-order graphs to the
expression (2.22) when the integration procedure
(2.23) is applied to it, so that

a'
dk, K'(k)k, = 0. (4.3)

~n/Z,

FIG. 2. Two-component plasma nodal graphs contri-
buting to Dj .

This is a result of the fast decaying properties of
the iqtegrand in the k -0 limit, conveying much
of the particle transport across the magnetic field.
As a consequence, the usual first-order derivation
of the Bohm transverse diffusion appears very ef-
ficient treatment which almost completely elimi-
nates any contribution from the higher orders in
A, . Moreover it can be worked out continuously
for any dimensionality 2 & v & 3. Therefore, the
expression (2.22) for D, explained by its first
ordex '

R -i/
D v2 "e Ai(a In v 2eB 2 pAD

=3 4.4

integer quantities appears as remarkably stable
with respect to the high-order A, corrections.
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