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The problem of electron transfer between neutral atoms and multiply charged ions is considered at- low and

medium energies. It is assumed that a large number of final states are available for the electron transition so
that the electron-capture process is treated as:a tunnel effect caused by the strong attractive Coulomb. field

.of the multicharged ion. The electron transition probability is obtained in a closed form using the modified-

comparison-equation method to solve the Schrodinger equation. An approximately linear dependence of the
one-electron transfer cross section on the charge of multicharged ions is found. Cross-section calculations of a
number of charge-exchange reactions are perform'ed.

I. INTRODUCTION

The charge-exchange processes between multiply
charged ions and neutral species have recently re-
ceived appreciable attention in connection with the
contamination problems in tokamak-type thermo-
nuclear plasmas, ' possibility of creation of short-
wavelength lasers, ' and multicharged heavy- ion
source development. ' The most prominent feature
of the charge-exchange process

22+ ~g ++ 8 ( Z2-1) +

is that the electron transition preferentially takes
place into highly excited Rydberg states of the ion
B' 2 "'(resonance or quasiresonance condition).
This leads to the creation of inverse population with

a resulting radiation in the vacuum-ultraviolet (vuv)
and x-ray region. In tokamak plasmas, where
small admixtures of impurity multicharged ions are
present, this radiation carries away a considerable
fraction of the energy accumulated in the system.

Despite the recognized importance of the charge-
exchange collisions between multiply charged ions
and neutral species in the research fields men-
tioned above, little information on their cross sec-
tions and collision dynamics is available at pres-
ent. This holds particularly for the region of rel-
ative impact velocities below the characteristic
velocity of the bound electron. The experimental
difficulties of working in this energy region and the
progress made so far in this field of research have
recently been reviewed by Panov. '

The theoretical studies of low- and medium-en-
ergy charge-exchange processes involving multiply .

charged ions are faced with the complexity of a
multiple curve-crossing problem. Due to the small
energy spacing of highly excited Rydberg states of
the product ion B' ~2 "' (4e -Z', /n'), which in reac-
tion (l) are dominantly populated, the multistate
collision problem involves significant interfer'ences
of different exit reaction channels. In a close-cou-

pling treatment of the problem by Presnyakov and
Ulantsev' these interference effects were neglec-
ted. Olson and Salop' ' have recently studied a
large class of charge-exchange reactions between
multicharged ions and neutral species .applying the
Landau-Zener theory (Hefs. 6 and 7) and the ab-
sorbing-sphere model (Hef. 8). The absorbing-
sphere model assumes a large number of the
closely spaced curve crossings, so that one can
define (although somewhat arbitrarily) a critical
internuclear distance R, inside of which the reac-
tion probability equals one.

Chibisov' has recently treated the problem of in-
teraction of the initial atomic state with the multi-
plicity of highly excited ionic states in a manner
analogous to the methods of Hadtsig and Smirnov"
for treating ion- ion recombination reactions. Since
the density of states of 8' 2 "' ions in which elec-
tron transition takes place is high enough, one can
consider this part of the ionic energy spectrum as
being almost continuous. Then, the electron trans-
fer process can be considered as tunneling of the
electron from the atomic potential well, into the
quasicontinuous energy spectrum of the multi-
charged ion.

In the work of Chibisov' the Coulomb field of the
multicharged ion was considered as homogeneous
and constant in the whole region of the atom. In the
present paper we adopt the tunneling mechanism of
the electron transfer process. However, our treat-
ment takes into account the inhomogeneous charac-
ter of the ioni.c Coulomb field and therefore allows
us to obtain the electron transition probability in
a much broader region of variation of character-
istic parameters of the problem (the binding energy
of the atomic electron and the ionic charge).

The plan of the article is as follows. ' Section II
deals with the determination of the quasistationary'
energy spectrum of a hydrogenlike atomic system
in the fie]d of multicharged ions. The imaginary
part of the complex energy of these quasistationary
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states determines the electron transition prob-
ability per unit time. In Sec. III the obtained result
on the electron transfer probability: is generalized
to arbitrary atoms. In Sec. IV the calculation of
the cross sections of a number of charge-exchange
reactions and comparison of the obtained results
with the experime'ntal data {where available) as
well as the previous theoretical calculations are
given. Finally, in Sec. V some concluding remarks
are presented.

Atomic units are 'used iri this work unless other-
wise indicated.

II. QUASISTATIONARY SPECTRUM OF A HYDROGENLIKE
ATOM IN PRESENCE OF A MULTICHARGED ION

Within the model for the electron transfer pro-
cess iri atom —multicharged-ion adiabatic collisions
adopted in the present paper, the perturbed atomic
.states are unstable against electron emission into
the region of quasicontinuous ionic energy spec-
trum. Since the imaginary part of the energy of
quasistationary state determines the electron tran-
sition probability, our electrori transfer problem
in the adiabatic energy region is essentially re-
duced to determination of the quasistationary en-
ergy spectrum of the atom in presence of a multi-
charged ion. In this section we 'shall solve this
problem for the case of a hydrogenlike atom.

A. Separation of variables in the Schrodinger equation

(=2.+z, q=2 z, —8=arctan(y/x),

0& $&~, 0~2'&~, 0~8&27/,
(6)

and representing the wave function g in the form

g =X($)Y(r/)/(27/gq)'/2 exp(+im8), (7)

the variaMes in Eq. (4) are separated and for X($)
and Y(r/) one obtains the well-known equations

X (g)+[-,'Z+ p, /g+(I m')/4p--, 'Fg]X(~) =O, (8a)

Y'( /) r[+2'E+ p2/g+ (1 —m2)/4r/2+ ,' Fr/]Y(2l) =—0. (8b)

In Eqs. (7) and (8) m is the modulus of the magnetic
quantum number, and the separation constants P,
and P, are related to each other by

P1+ P2 =Z'
If,

' for the moment, we neglect the possibility of
electron tunneling and impose the following bound-
ary conditions

The Schrodinger 'equation (2) in this region be-
comes

(2 V +E +Z 1/z- Fz)g = 0,

where

z=s+z, /z, F =z, /It2.

Hence, in the x«R region our problem is reduced
to the Stark-effect problem of a hydrogenlike sys- '

tem in an external homogeneous constant electric
fieM I'. Introducing parabolic coordinates

I.et us consider the motion of an electron in the
field of two Coulomb charges Z, and Z,

Hg = Eg, H = ——,
' V2- Z, /y', —Z2/r„

X(0) = 0, X($) — 0, (1Oa,)

with x, and x, being the electron distances from the
charges Z, and Z„respectively. At large internu-
clear distances R a nar, row cylindr j,cal region
around the internuclear axis gives the main contri. -
bution to the electron transition probability. We
shall therefore solve Eq. (2) in this region and in
the vicinity of Coulomb center Z, . In these two re-
gions the variables in Eq. (2) can be separated in
parabolic coordinates.

I et us place the coordinate origin at the charge
Z, (the nucleus of hydrogenlike atom), orient the z
axis along the direction of the internuclear axis,
place the Coulomb charge Z, at s = —R, and drop
the index 1 in x,. We shall first consider the re-
gion x«R, where the 1ast term in the Hamiltonian
H becomes

Z2 = Z2

[z2 + y2 + (z + g)2]1/2

k=n, +-,'(m+1), n, =-0, 1„2,. . . ,

X=-X, =n, + ,'(m+1), n, =0-, 1,2, . . . ,

2' =- —,
' (1—m')

(12)

and n„n, are the parabolic quantum numbers. The
substitution of Eqs. (lla) and (1lb) into Eq. (9)
gives an equation for E. Solving this equation by
iteration, and keeping in mind relations (5), we
obtain

Y(0) = 0, Y(2I) - 0, (10b)

then Eqs. (8a)-(loa) and Eqs. (8b)-(10b) define two
boundary-value problems. Considering P, and P,
as "eigenvalues" of these problems and E™as a
small parameter, one obtains the expansions"

p, =/2(-2E)'/2+[F/(-2E)][- 02' +r2]+O(F'),-(11a)
P, =&(-2E)'/' —[F/(-2E)][-,'K'+-,'2]+O(F'), (11b)

where

E =—E„=ED+4E,
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E, = Z,'-/2n', (13a)

(13b)aZ = —Z, /P + ,' (Z—,n/2/Z, R') + O(Z, /R'),

where n =n, +n2+m+1 is the principal quantum
number and 6 =n, —n, . The expansions (ll) and
(13) are valid under the condition R»n'(2g, /Z,')'/'.
The term &E in (13) represents the energy-level
shift due to the presence of the multiply charged
ion Z3.

((7!+[-,' (& —2!)+R] )
It is convenient to transform the potential (14) into
the form

B. l3etermination of the quasistationary energy spectrum:

The electron transition probability

In treating E(I. (2) in the region far from the Cou-
lomb charge Z, we should correctly describe the
electron motion in the part of this region which
gives dominant contribution to the electron tunnel-
ing effect. This is certainly a cylindrical region
around the internuclear axis. In parabolic coor-
dinates it is defined by $«1!(2R and (gq)'/2«R
and the last term in the Hamiltonian (2) takes the
form

K, =n, + —,
' (1+m), ri, =0, 1, 2, . . . ,

, exp[-bf(~) -4&.a(~)]
(4b)' 2

x [1+o(l/b)],

where

b = {—2E)' /2R' /Z„n = ( E)R/—Z„
1 —1n(v'1+ c(+ v c()/v'n(1+ n)

(17a)

(17b)

(18a)

g(n) = nin(4 1+ c(+ Mn)/v o{I~c(), (16b)

and n2 is the second parabolic quantum number.
The relations (17) and (lib) give an expansion for
the complex eigenvalues p2. Using this expansion
and the expression (lla) for P, in E(I. (9) one ob-
tains an equation for determination of the energy
of the quasistationary electronic states. Solving it
by iteration, one finds

son-equation method. ""The details of calcu-
lations are given in the Appendix. The expression
for p, is again given by an expansion in the form
of (lib) but with a complex value of K (see the Ap-
pendix),

K=KO i6,

2Z, I(2R —q) =Z, /R+Z, 2!/(2R 1!)R-
Then, from E(ls. (2) and (7), we obtain

(14a) E =E„—2 I'2„„„(R),
'where E„ is given by the expression (13) and

(19)

I"(&)+[-E+P,/~+(I--')/4~ y~(~) =0,

P, Z2q 1 —m'
Y"(n)+ —+ -'+ ' + —, Y(q) -0.

2R(2R —q) 42?2

(15a)

(15b)

The same notation for P„P„X{$),and Y((7) is used
as before, since for E-0 E(I. (Ba) goes over into
Eq. (15a) and for R-~ (or q«2R) E(I. (15b) goes
over into E(l. (Bb). The relation (9) between P, and

P, is still valid. The motion in "f direction" is
finite in the classical sense whereas in "q direc-
tion" the electron experiences tunneling. Thus,
we can retain the expansion (lla) for P, as before.
However, in order to obtain P, E(I. (15b) has to be
solved under the boundary conditions

1'(0) =0, Y(1?) - (outgoing wave), (16)
n&ng

where (7, is the turning point of E(I. (15b), nearest
to the Coulomb center Z, . The second boundary
condition of conditions (16) describes the possi-
bility of electron tunneling into the quasicontinuous
part of the multicharged-ion energy spectrum.

E(?nations (15b) and (16) define a boundary-value
problem with complex "eigenvalues" P, . This pro-
blem can be solved by use of the modified compari-

x (2g R/n)2n2+ 1+ me 2z2n/z1

x exp( —2Z R/n) 1+0 1/R (21)

For n« 1, i.e. , R«2n'Z, /Z,', expression (20) be-
comes

Z2 4Z3g3 2t?3+ 1+ tt?

I"„„(R)=
rr'rr, !(rr, + rrr) r g rr' )
xexp —— ', + 3g 1+OZ, R2 Z3+2

3 Z2ri'
(22)

Z2 - . 4Z3P3 2t?2+ 1+ tt?

I" (R) =""P rr'rr, !(rr,'+rrr) t 2,!r' )
Z~R 9x exp
Z31'E

-2(2n, +1+m) g(n) [1+O(z,/R2)].

(20)
This expression for the energy width of the quasi-
stationary electronic state is asymtotically exact,
i.e., it is valid under the condition R»n (2Z, /
Z', )'/'. Two limiting cases can be obtained from
the expression (20) for I'„„(R).For c(» 1, i.e.,
R» 2n'Z, /Z2, we obtain

g2(Z /nZ )222n/zl
.(R) 1 1 2

n'n, !(n, + m)!
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Expression (22) for I' corresponds to the width of
a hydrogenlike atomic energy level. which is due to
the influence of an external homogeneog, s,electric
field I' =Z, /R'.

The energy-level broadening I"„„(R)describes
the decay of quasistationary states when the multi-
ply charged ion is placed at a distance 8 from the
hydrogenlike system. According to our model
I'„(R)gives the electron-capture probability perfI2N m

unit time.

III. ANGULAR MOMENTUM REPRESENTATION

OF THE ELECTRON TRANSITION PROBABILITY AND ITS
GENERALIZATION TO ARBITRARY ATOMIC STATES

In order to obtain the value of the electron tran-
sition probability I'„„(R)=—I'(n„n2, m) in the or-

dinary angular momentum representation (n, l, m),
one has to sum the expression (20) over the pos-
sible values of parabolic quantum numbers e, and
~,. Accordingly, we have

I'(n, I, m) =
fg + f1 =n-1-m1

( 3)

where (l ['n, n, ) are the coefficients which connect
the angular momentum and the Stark eigenstates.
These coupling coefficients are simply related to
the Glebsch-Gordan coefficients. " The procedure
of summation in (23) is explained elsewhere, '"
Here we give only the result,

Z& (2)+ 1)($+m)! 4Z3R2 2n-1-)))
I'(n, l, m) =

n'm ! (n + l)!(n —l —-1)!(l—m) Z,n' )
x exp — &', + - — — ri — 2e - 1 —, m g n j.+ 0 Z,R '

2
(24)

It is evident from this expression that the axially
symmetric states (m =0) give the main contri-
bution to the electron transition probability.

The expression (24) for I'(n, I, m) can be general-
ized for the case of an arbitrary neutral atom A. in
the field of a multicharged ion 8,. Describing the
active valence electron by its binding energy -&y';
angular momentum 1, and projection m on the in-

ternuclearr

axis, we put Z, = 1, n = y ' in Eq. (24).
The term —', (n —1 —m) in the exponent should be
dropped in the case of an arbitrary atom, since
this term originates from the linear 8tark effect.
In such a way, the expression for the electron
transition probability in the ease of an arbitrary
atom is obtained in the form

r(y, t, m)

,'1, „„(21+1)(l+m)! 4n%')'" '

I

A 2x exp — f(n) —2 ——1-m g(o.')Z. y

I

excited atomic states it is more correct to use the
Hartree-Fock value A„F of this constant, which
can be obtained by a procedure described else-
where. "

In the limiting case o.'«1, I'(y, t, m) becomes (we
drop the index of the constant 4)

1-(y, t, m) =4 y(2y)-2 "—,)„(2t+l)(t+m)!
m! (t m)!

4 R "''" 2yB

In fact, this limiting case has been considered in
the work of Ghibisov. ' The condition a« 1 is sat-
isfied only for large Z, and/or small y. In most
of the charge-exchange reactions of multicharged
ions on ground-state atoms the critical reaction
radius B0 is such that parameter + is of the order
of magnitude of one. Thus, expressions (25) and
(27) give considerably different values for 1" and
consequently, different reaction cross section, o
—wR .

x [1+O(Z, /R')], (25)

where n =y'R/(2Z, ) and

Ac.„,=y(2y)'~"[I'(1/y+ l+ l)I'(1/y -l)] '~'. (26)

The expression (25) for I'(y, t, m) is valid under the
condition of y'R» (2Z, )' '. The constant Ac,„, re-
presents the Coulomb normalization constant in the
asymptotic expression of the atomic electron ra-
dial wave function. For the ground and low-lying

IV. CROSS-SECTION CALCULATIONS

'The cross section for the electron capture in
atom-multicharged-ion collisions within the adia-
batic approximation is given-by".

OO . m +00

cr=2m pdp 1 —exp — I'(R(t))dt, (28)
0 ~OO

where R(t) is the classical trajectory of the rela-
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tive nuclear motion and p is the impact parameter.
Assuming a straight-line trajectory for R =R(f) and
using the fact that t4e function X(p)

teristic atomic time &, -y"', which gives

v «(rz, x,)"'. (34)

I'dt=2 —, ,—,l-, =-!f(p),r r(R)R dR

n v[R -p]
(29)

(v being the relative velocity) is a strongly varying
function of p, the integration over p in Eq. (28) can
be carried out to get"

20' = 7TPpq (30)

where the critical impact parameter pp is deter-
mined from the equation

g(p, ) =e =0.56; (31)

o = (vZ, /y')x„

where xp is determined by the equation

P(~ ) y3 1/2
2/f 1 m -X'pf{0!p) P{Qp) C a PX 8

2

(32)

(33)

R =A2y(2y) 2~" 22h/Y
(2l + 1)(l + m)!

m! (I m)!

C =0.577. . . being Euler's constant. In order to
make the dependence of the cross section on the
characteristic parameters of the problem more ex-
plicit, let us estimate the integral y(p, ) and intro-
duce a new variable

x, = y'p,'/Z, .

For the cross section we obtain

Since Z, is assumed to be large and y —1, xp
—10,

for ground-state atoms, condition (34) allows one
to consider the collisions with relative energies up
to several KeV 's as adiabatic.

In the rest of this section we give the results of
the cross-section calculations for a number of
charge-exchange reactions. We have used the ap-
proximation (30) and (31) for the cross section
(28). It has been found that for hydrogen targets
this approximation is correct within the second de-
cimal of the cross-section value computed directly
from the expression (28). The accuracy of the ap-
proximations (32) and (33) is almost the same.

A. Atomic-hydrogen reactions

I'.he charge-exchange reactions of atomic hydro-
gen or deuterium with multiply charged ions are of
fundamental importance for controlled-thermonu-
clear-fusion research. In this respect the Z, de-
pendence of the cross section is of particular sig-
nificance. We have performed cross -section cal-
culations for electron transfer from the ground hy-
drogen atom state (r=1, A = 2) to multiply charged
ions with Z, ranging from Z, = 4 to Z, = 40.

Figure 1 gives the result of our cross-section
calculations for v = 7 && 10' cm/sec (the full line).
The dashed curve on the same figure represents
the calculations of Olsen and Salop' within the ab-
sorbing-sphere model. Both theoretical models
predict large charge-exchange cross sections. The
linear Z, dependence of the cross section, predic-

As seen from Eq. (33), the quantity x, =x,(r, Z„v)
is a slowly varying (logarithmic) function of Z, and
v. This implies a slow variation of the cross sec-
tion with the change of relative velocity and an ap-
proximate liriear dependence on Z, in the high
regi. on. 'The slow energy dependence gf 0 seems to
be confirmed by the experiments. " A linear Z, de-
pendence of o has also been obtained in the absorb-
ing-sphere model. ' However, the close-coupling
treatment of Presnyakov and Ulantsev' predicts a
Z', dependence of the cross section. This question
will be discussed later, in Sec. IVC. Here, we
note that in the low-Z, region (o.', & 1) our model
does not allow us to obt'ain any simple Z, -scaling
rule for the cross section, although the calcu-
lations (see, e.g. , Figs. 1, 2, 4, 5) suggest that the
approximate linear Z, dependence of 0 is pre-
served down to Z, =4-5.

The adiabatic approximation applied in our treat-
ment will be valid if the collision time rc -p, /v—(1/v )(Z,x,y ')'~' is much longer than the charac-

0
0

s I i I a

PIG. &. Z2 dependence of the cross section for
H{&s}+8 2 H +8 +2 ' reaction at v =7xlQYcm/
sec. The full line: present calculations; the dashed
line: calculations of Olson and Salop {Hef. 8).
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TABLE I. Parameters y and A of the asymptotic
wave function for ground-state alkali. and rare-gas
atoms.

Atom Atom

0
0

I I l

40

Li
Na
K'
Rb
Cs

0.63
0.626
0.567
0.556
0.536

0.765
0.751
0.533
0.491
0.416

He
Ne
Ar
Kr
Xe

1.345
1.26
1.075
1.015
0.945

2.25
1.50
2.07
2.12
2.15

Zg

FIG. 2. Charge-exchange cross 'section for H+8
collision at v ='3xl0 cd/sec. The full line: present
calculations; the crosses and open circles are cal-
culated cross-section values taken from Refs. 5 and 9,
respectively.

ted by Eqs. (31) and (32), is already observed in
the region of low-Z, values. The absorbing-sphere
model predicts linear dependence 'of the cross sec-
tion that starts from considerably higher Z, values
(Z, -20). Figure 2 gives a comparison of the re-
sults obtained by use of the present model for v
=3 x 10' cm/sec (the full line) with the cross-sec-
tion values for Z, = 10 and Z, = 20 calculated by
Presnyakov and Ulantsev' (the crosses). The open
circles on Fig. 2 represent the cross-section val-
ues calculated by Chibisov' for Z, =10, 20, and 30.

The velocity dependence of the charge-exchange
cross section is shown in Fig. 3 (Z, = 10, 20, and

30). As predicted by Eqs. (31) and (32) this depen-
dence is fairly weak (logarithmic). ln the interval
from 1X 10' to 1 x 10' cm/sec (two decades in the
energy scale), the cross-section value decreases
for about 30% only.

~

B. Alkali-atom-multicharged-ion reactions

Another important class of charge-exchange
reactions of multicharged ions is the one in which
the neutral particle is a ground-state alkali atom.
We have calculated the cross sections of this class
of reactions for v = 5 && 10' cm/sec and for Z, rang-
ing from Z, = 5 to Z, = 40. 'The parameters A and

y of the ground-state alkali-atom electron wave
function are given in Table I." The cross sections
are shown in Fig. 4. The cross-section values for
these reactions are about one order of magnitude
larger than the electron transfer cross-section
values for atomic hydrogen. This is the conse-
quence of a great increase of the cross section
with decreasing y. For the same reason, the reac-
tion with a Cs target has the largest cross section.

C. Rare-gas-atom-multicharged-ion reactions

We have performed cross-section calculations
for rare-gas -atom -multichar ged -ion electron
transfer reactions since experimental data are
available for them. ""However, the experiments
are done with Z, ranging from Z, = 4 to Z, = 8 only.
The parameters A, and y for the ground-state rare-
gas-atom wave functions are given in 'Table I."

I I I I I I I I I I I I I

5
'

e

I I I I I I I I I I I I I I
0 s I s I s

10 10

FIG. 3. Velocity dependence of the charge-exchange
cross section in H+9 ~2' collisions.

Z2

FIG. 4. Z2 dependence of the charge-exchange cross
section in alkali-atom-B 2' collisions at v = 5x10 cm/
sec.
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charged ion is the independence of the transition
probability (and, consequently, the reaction cross
section) on the final state of the captured electron.
The experimental data of Klinger et al."allow us
to check this property of the model. Figure 6
gives a comparison of the theoretical calculations
and experimental data (8 =30 keV) for the reactions

0
0 15

FIG. 5. Charge-exchange cross sections for rare-
gas-8+ 2' collisions at v = 5.4 x 10~ cm/sec. '

The full
lines: present calculations; the dashed lines: calcula-
tions of 01son and Salop (Ref. 8).

where B=Ar, Kr, Xe, and Z, =2 —8. The full line
represents the result of our calculations using
Eqs. (31) and (32), whereas the dashed curve in-
dicates the calculations of Presnyakov and Shev-
el'ko" performed by usi. ng the theory given in Ref.
5. 'fhe figure suggests that for Z, ~ 4 the experi-
mental cross-section data are fairly independent
on the ionic species that supports the transition
mechanism adopted in our model. On the other
hand, the comparison of the theoretical curves
with the trend of experimental data suggests that
a linear Z, dependence is more likely than a quad-
ratic one.

V. CONCLUDING REMARKS

o - E-3O

io= +Q
R

Ar 0
8—Kr a

Xe+

A+EI'—A+8 '
I I I I I I I

1 2 3 L 5 6 7 8

ZR

FIG. 6. Z2 dependence of the cross section. for Ar
+j3+2'

. Ar'+8 2 ~ ' reaction. The full curve:
present calculations; the dashed curve: calculations of
Presnyakov and Shevel ko (Ref. 19);the experimental
points are taken from -Ref. 3.

Figure 5 shows the results of our Z, -dependence
cross-section calculations for the relative col-
lision velocity v = 5.4 & 10' cm/sec (the full lines).
On the same figure the calculations of Olsen and
Salop' are also presented (the aashed curves). Ex-
cept for He and Ne atoms, our model gives higher
cross-section values than the absorbing-sphere
model.

The most characteristic feature of our electron
tunneling model foe the charge exchange of a multi-

The theoretical method developed in this paper
for calculating the charge-exchange cross section
of multiply charged ioris on neutral atoms is based
on the assumption that the electron transition takes
place- in the ionic energy spectrum where the
density of states is sufficiently high. Generally,
this assumption is justified for multicharged ions
with high values of the ionic charge (Z, ~ 10). For
lower values of Z„where this condition is not
fully satisfied, our treatment overestimates the
value of the transition probability. 'This explains
why our curve in Fig. 6 is for approximately a-fac-
tor of 1.5 higher than the experimental data. An-
other feature of the electron transfer process, in-
cluded in our treatment, is its resonant character.
'This implies that no electron-loss process which
involves energy transfer is included in the deter-
mination of the transition probability. However,
Chibisov has shown' that the direct ionization and
electron capture via target-excitation process'es
have negligible cross sections in the adiabatic re-
gion ender consideration.

There is another ionization channel which is as-
sociated with the quasiresonant electron transfer.
Namely, after the electron-capture process (which
takes place at internuclear distances of the order
of tens of. atomic units) the ionization of the excited
ion 8' 2 "by the impact of the ion A' can occur.
'The one-electron transfer cross section calculated
by use of the theory of the present paper should
be reduced by the value of the above ionization
cross section. However, this reduction is neglig-
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ibly small because the ionization cross section is
of the order of 10 "cm' at v-1 a.u.'

'The treatment developed in the present article
(for charge-exchange collisions of multicharged
ions on neutral atoms) can be readily extended to
the diatomic molecular target case. In this case
the transition probability I" contains the Frank-
Condon factor for vibrational transition in the sys-
tem of molecule-molecular ion (as a multiplicative
factor) and the constant A in the asymptotic elec-
tron wave function becomes dependent on the angle
between the molecular axis and the vector R that
joins the center of mass of the molecule with the
multicharged ion. 'Then, the cross-section calcu-
lations can be performed using a procedure out-
lined in Ref. 20.

ered as a largepa. rameter, n istreatedas aninde-
pendent parameter, and A. is the spectral para-
meter of the problem.

For the values of parameter b satisfying the con-
dition b»4A. , Eq. (Al) in the region of our interest
0- y & I/a (0- r/& 2R) has a pole at y = 0 and near
it a turning point y, =4K/b. Apart from this, Eq.
(Al) has a distant turning point y, = (1+a) ' whose
proximity to the pole y = I/u (the Coulomb center
Z, ) depends on the value of the parameter a. For
the present, we assume that a =O(1).

In the region y~ [0,y, —e,], e, &0, we can take
the Whittaker equation as the etalon (or compari-
son) equation for Eq. (Al). Then, the regular so-
lution, I'o(y), of Eq. (Al) in this region can be re-
presented in the form""
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Substituting this into Eq. (Al) we obtain the non
linear equation for the function u(y),

APPENDIX

Using the scale transformation

q=[( 2E)R'/Z, ]y,
the boundary-value problem [(15b) and (16)] is re-
duced to

where

P (y) = [I -y/(1 —o'y)]" '.

d2y ' b2 y by
, + ——1 —— — +dy' 4 1 —&y y

I'(0) =0, F(y) - outgoing wave,

+ —, I'(y) =0,
y

(Al)

(A2)
u(y, b)= gu, (y)b ', X(b)= Qz, b'. .

f =p fop
(A6)

Now we assume that u(y, b) and X(b) can be ex-
panded in asymptotic series in inverse powers of

l.e. ,

where

b = (-2E)3i 'R' /Z„A. = P, (-2E) 'I',
n = ( E)R/Z~,

(A3)

and y, is the turning point of Eq. (Al) correspond-
ing to 'I), from Eq. (15b). In Eq. (Al), b is consid- X ='JC —(1/b)(-,'X'+ —,

' r)+ O(1/b'), (Ava)

The condition that Eq. (A5) should be satisfied for
any power of b gives an infinite system of recur-
rence first-order differential equations for u&(y).
The coefficients Xf are determined from the con-
dition that u&(y) are regular at y = 0. Solving the
mentioned system of equations for uf, we obtain

u(y) = 2K
p(y) dy.+-

b

PVdy

dy + O(1/b')
yP y

(AVb)

We note here that, having in mind Eq. (A3), the ex-
pression (lib) for P, can be directly reproduced
from the expansion (Ala).

In the region of the variable y which includes the

turning point y', (i.e. y a [e„1/a —e,], e, & 0, e, & 0),
the Airy equation can be taken as comparison to
Eq. (Al). The solution I', (y) in this region can be
represented as
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Y', (y) = const&& [v'] '~'[Ai(b'~'v) —iBi(b' 'v)], (A8)

and, using the same method as before, we obtain
for v(y)

"P(y)
v(y) =

2 2
—dy

Whittaker and the Airy functions, the matching
condition Y,F', —E",F, =o gives the following "dis-
persion relation" for determination of the para-
meter- K:

cosp(K —a Bz)

1/2 9 p y 1/3

K
&& ——dy + 0 (1/b') . (AQ),, yP(y)

The linear combination of the Airy functions in Eq.
(A8) is chosen so as to satisfy the second of the
boundary conditions (A2).

In the region yH [a„y, —e,] both 1'o(y) and 1',(y)
are valid and should be smoothly linked in this re-
gion. Using the asymptotic expressions for the

z 4~ 2K

r[Z+ —.'(1+m)]r[X+ —,'(1 m)]

~i dyx exp b—p(y) dy+ 2'K
yP y

+i& K ——— 1+0 (A10)

where the relation I'(—,'+x)I'(—, -x) = &/cos&x is used.
Carrying out the integrations in Eq, (A10) and then
solving this equation by iteration, we obtain Eqs.
(17) and (18).
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