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Electron excitation of hydrogenlike ions in the Coulomb Born approximation
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We investigate the excitation of positive ions by charged-particle impact in the Coulomb Born
approximation. We obtain closed-form expressions for the 1s-2s and 1s-2p amplitudes and present
numerical results for the corresponding excitation cross sections. We also indicate how the matrix elements
may be used to calculate excitation and ionization cross sections for mariy-electron ions.

I. INTRODUCTION

In this paper we study inelastic excitation pro-
cesses of positive ions by electron .impact. Since
these processes have important applications in
astrophysics and plasma physics, theoretical in-
vestigations of such problems are of practical in-
terest. Such investigations are also of more fund-
amental interest since electron-ion scattering
represents a situation where the distorted wave
approximation must be used.

Excitation cross sections for hydrogenlike sys-
tems take a simple closed form in the plane-wave
Born approximation (PBA) which, however, fa.ils
at lower energies (near threshold) and loses in-
formation regarding anisotropy for all energies.
One can improve the calculations by substituting
Coulomb wave functions for plane waves in the
Born approximation, " The resulting approxima-
tion is named the Coulomb Born approximation
(CBA). In CBA, the long-range Coulomb field of
the ion is taken care of .properly and the incident
and target electrons are subject to the same po-
tential of the target core (The .distribution of the
electrons in the ion is not affected in zeroth
order by the incident electron. ) Burgess' et al
evaluated the cross sections of 1s-2s and 1s-2p
excitations for the e -He' system in. CBA, em-
ploying partial-wave analysis of the incident and
scattered electrons. However, partial-wave treat-
ments require a large number of partial waves at
high energy and are not useful for impact by heavy
partic1. es. Mitra and Sil, ' avoiding the partial-
wave expansion, calculated the cross sections for
1s-2s transition also in CBA w'ith full continuum
waves for incident and scattered electrons; never-
theless, their matrix element is given as an inte-
gral requiring numerical computation. Gailitis
formulated closed form expressions for 1s-ns and
1s-2P transitions; however, the 1s-2P amplitude
was within a dipole approximation in which the fin-

ite size of atom is neglected.
%Ye now obtain closed form expressions for the

positive ion excitation amplitudes in both 1s-2s
and Is-2p transitions with full continuum wave
functions without further. approximation. The am-
plitudes are expressed as sums of hypergeometric
functions. In the present work we do not consider
the effect of rearrangement collision or inter-
change of spin between the incident and target
electrons. If these effects become appreciable,
the first Born approximation would not be suffi-
cient to calculate the transition amplitude.

In Sec. II we derive the closed form of the ex-
citation amplitude for the transitions 1s-2s and
ls-2p, which are the ones of most interest. We
calculate, in Sec. III, the total cross sections for
excitation to 2s and 2P states of the helium ion and
discuss the results and further applications. of the
present theory.

II. MATRIX ELEMENTS

1
ji d'r d'r' g~k, (r)Q&(r')

2

Here Q& and p& are the initial- and final-bound-
state wave functions of an ion with nuclear charge
Z, and g„'i and g represent the incident and out-
going electron states in the field of an ion with

In CBA the initial motion of the incident electron
is described in zeroth approximation by an eigen-
state of the Hamiltonian H =T —(Z —1)e'/r. In the
final state, the motion is again described by eigen-
states of the same Hamiltonian. - Consequently, in
an inelastic collision the incident electron under-
goes a transition from one eigenstate of 0 to an-
other, owing to the residual interaction V= (e'/
~r r~). Th—en the transition matrix element is
given by
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charge Z —1. The matrix element T can be writ-
ten

Tz; = —
2

d'rg„, (r)U; &(r)(I)z (r)2' (2)

with

2

U,„,(r) = d'r' y,*(r') l,
l

y*,.(r'), (3)

where (I); and (I)f are hydropenic wave functions
with nuclear charge Z. (-„and (|), are the full()

k'
Coulomb continuum wave functions corresponding
to charge Z —1; explicitly

Z-1
g
' (r) = exp 7( I'(1-a)e'"'

k

'g, [a, 1;i(kr —k r)]

&&,E,[b, 1;i(k'r+k' ~ r)]

and x = —', Z. The integral I,» in Eq. (7) is evalu-
ated in closed form as a hypergeometric function
in the Appendix. In general the term e ' ' is set
to equal unity for the hydrogenlike excitation am-
plitudes, but may differ from unity in the calcula-
tions of the cross sections for many-electron ions.

I,~, which is required in the calculations of exci-
tation amplitudes is, from Eq. (A3) of the Appen-
dix, with p=0, given by

I. »= 4 )T[ x'+ (k -k')' ]"' '(x -i k —ik') ' '

x (x —ik+ 2', k ) (x+ ik ik )
&&,E,[a, 1;i(kr —k r)]

=N»' e'"',F,[a, 1;z(kr —k r)],

x'+ (k —k')'
2F, a, b, 1, 1— (8)

and

(e,(r)=exp{e, )r(1+ ) (e
&&,E,[-b, 1; .-i(k'r + k'r)]

=N» ) e ',E,[—b, 1; —i(k'r+k' ~ r)],

Equation (8) with Eq. (7) then represents T ~ jn
terms of hyper geometric functions.

B. 1s-2p excitation

The 2P state has the m = 1, 0, and -1 magnetic
substates, thus U„~ is not spherically symme-
tric, and we have

where a =i(Z —1)/k and b =i(Z —1)/k'.
The differential cross sections for the excita-

tion are given by

o„=(k /k)lT„

In the present paper, the cross sections are scaled
in units of Z'/(va, ) and the energies are in units
of the excitation energy, ~8Z'.

A. 1s-2s excitation

U~ ~, the atomic potential occurring in the ma-
trix element of Eq. (2), is spherically symmetric
and is given by

4v2 s sU„~=— Z x 1 —x f(r)2V BX BX

with

y -Xr"
d Il

The commutator relation

r 1
[II V]r' Z —1

allows us to express the transition amplitudes for
the various 2P magnetic substates as components
of a vector Ty, p given by

U = —,', )(2 Z(l+ ,'Zr)e ' "I'. — (6) Tls~ 2P

W2 (e. ) ( )g Z
27NA NA Z 1

Then the 1s-2s excitation amplitude can be written

T = e')'~N)e (1 —e 8 8

'2VP Bx 8 x where

x 1 —x - I,
BX 8X

where

d'r e' " ")',E,[a, 1;i(kr —k r)]

X,E,[b, 1;i (k'r + k' r)]

2 2Z
N» N»

* 1 —x — I.„,271K BX 9X

(12)

I= (k', bl [H, V]f(r)lk, a) .
We note that the 1s-2P amplitude of Eq. (10) is
nearly the same as the 1s-2s; only the integral
parts I„for 1s-2s and I for 1s-2p are different.

Because lk, a) and lk', b) in I are eigenstates of
H, we can rewrite it

I = —(k' —k" ) (k', b
l f(r) Vlk, a)

2 &k, bl [f(r), V'] ~lk, a&
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In evaluating Eqs. (10) and (11) we shall need func-
tions lk, a+n) and lk', b+n'& defined as

lk, a+n& =—e' ',F,[a+n, 1;i(kr —k r)]
and (13)

lk', b+n'&=e*" F,[-(b+n'), 1; i(I'r+k' r)].
These functions are eigenfunctions of the Hamilto-
ian H only if n=O.

Reflection symmetry in the plane of k and. k' re-
quires that I has components only in that plane.
Accordingly we select two components of I, I ~ ~k,

and I O'. These components are identical if k is
parallel to k', however, in that case. I has only one
component because of cylindrical symmetry. We
present only the calculation of I k since exactly
the same steps are used to evaluate I k'.

The projection k onto the gradient of lk, a& gives

k ~ Vlk, a&=iklk, a& (a/—r)[lk, a+1& —lk, a)]. (14)

Upon substituting Eq. (14) into Eq. (12), we find
that contributions from the first term in (14) ex-
actly cancel and I k becomes

I k=aa k' —k" k', b .
—

— k, a+1 —k, a

+ (i', ( I (J'(~), ~'] ((/~)i(&, ~+» —(k, ~)))

+ (1 —b) I, „,—ik' I,b.
,. 9

(20)

Similarly

k' ~ (VI.„,), ,= bI.„-„,+ (2b —1)I„,,
+ (1 —b) I„,b, —ik'

~X
(21)

Differentiating I,& with respect to x and using the
relation

Z' '(1-Z)"' ',F,(a, b;1;Z)

=(1-a)Z '(1-Z)"' ',F,(a —1,b; 1;Z),
(22)

we express the factors I. . .and I„,~, as

Consider thegradient terms with respect to p,
namely, (k' Vb I,b)b=, . Using the recurrence rela-
tion

y,F,(b, 1;y) =b,F,(b+ 1, 1;y)-(2b —1),F,(b, 1;y) '

+ (1 b) „—F,(b - 1, 1;y),

we write k' .(VbI„)b

k' (Vi,b)b=, = bI, „-„+(2b —1) I,b

-=pa((k' —k")I~+I»). (15) (b 1, x'+ k' —k" —2ik'x Bi, b,' +bIb l)I, ~
2X . BX

The first term I» 'is exactly written in terms of
I,» thus, we have

1
I» =

2 la+ &, & Ia& x=p Ic+ j Q Say
'I

and

( 1)
x + b' —0"—2i|(,"x

I'. 8+.x (1„—I, )) .
BX (16)

More detailed and circuitous manipulations are
needed to evaluate I&. Upon evaluating the com-
mutator [f,V'] we obtain

BI, , , ,
(

t'k ~)'(24)

Substituting Eqs. (23) and (24) into Eqs. (20) and
(21), and the resultant into (19) we obtain the
greatly simplified expression

I,„=(k', bl — '

e ""(lk,a+1& —lk, a&)

+2((k'b)'lr 'e ""(lk,a+1) —lk, a&), (17)

2ik
Ig+ j,y Igy - Ig+.y, y

where

l(k', b)'&=r Vlk, b&

=-ik'rlk', b&+b(lk', b+1& —Ik', b&). (16)

Substituting k' ~ V~e 'P' = -ik' ~ re 'P' into Eq.
(18) and the result into Eq. (17) we obtain

l

8
I» 3(Iayy b Iab) + x (Va+ ) b Iab)

k'- k" o (I"l, b I.b) -(25)
Combining I» from Eq. (25) and I» from Eq. (16)

is required in Eq. (15) we have

a k'- k"'I' 0
2 2 [(Ia+)., b

—Iab)a=o —(Ia+). b
—Iab)]

+ 2k' ~ [Vb(I„, b I )]b=,b—
)

+2b(ia+„b+& Ia+&, b
—Ia b-+&+Iab) ~ (19) Similarly

2ik
+ la+1 g

—Izy — Ia+ y (26)
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6 k' —k"
I ' k 2' ( (Ia, s+ i —Iav)r=0 ( Ia ~, z

—I,~)j
\

2ik'
~a, b+ 1+ Iab+ ~c,b+ 1 (27)

The first terms, those with x = 0, in Eqs. (26)
and (27) are equivalent to the bremsstrahlung am-
plitude first given by Sommerfeld. ' The Sommer-
feld amplitude was used by Guth and Mullin' to
evaluate nuclear dipole transitions in the point-
nucleus approximation. When only the r/'r' term
of U„~ in Eq. (9) is kept, our results reduce to
those of Guth and Mullin. The remaining terms
with xc 0 may be regarded as the effect due to the
finite size of the target atom. Note that in Eqs.

A A

(26) and (27) I k and I ~ k' are antisymmetric under
the change of k into -k', as required by the rela-
tion, . gf *=('- between incoming and outgoing wave
functions. In the forward direction, where k is
parallel to k', l. 0=1 k', since for 0 k'=1, a(I,„,,
—I„)=b(I, ,„,—I„). As a further check on our re-
sults, we recover the plane-wave Born expres-
sions by setting the multiplicative factors a in Eq.
(26) and h in Eq. (27) equal to i(Z —1)/k and i(Z
—1)/k', respectively, and then setting a=b =0
elsewhere.

The amplitude Ty gp can be alternatively repre-
sented by two components along orthogonal direc-
tions T, and T„, where T, is the component along
the direction of the incident electron and T„ is
along an axis in the scattering plane;

o, = —„[T,i'dk,

k'
2o, = —„[T„f'du.

The quantity Ao depends only upon the properties
of the excited state, not upon how it decays, in
contrast to the polarization of fluorescence.

III. RESULTS AND DISCUSSIQNS

The scaled cross sections for transitions 1s-2s
and 1s-2P are shown in Figs. 1 and 2 together with
PBA prediction and experimental data. ' ' %e find
excellent agreement with the results of Refs. 1 and
2 in CBA for all energies where comparison is
possible. Our analytic results for the ls-2s ex-
citation agree with the experimental data of Dolder
and Peart, ' and of Dance et al. ' within 1/0 at 10
times the threshold energy and within 10% at 5
times the threshold energy. %e also compared the
1s-2P excitation cross section with the experimen-
tial data of Dashchenko et al. ' and obtained similar
results.

In the 1s-2P transition, one may neglect the ef-
fect due to the finite size of the atom at high en-
ergies. The matrix element U„~(r) in this dipole
approximation (DA) becomes (r/r')dz; where d~; is
the matrix element of the dipole moment. ' Then
the transition amplitude can be written

T„=T,k+T„x, (28)

Accordingly T, and T„are given by

2vY Z sTz=- x1 —x — I k,
2Vm Z —1 Bx Bx

(29)
'02

e + He Is-2s

x(1 0' —cos&1 ~ 0) sin0 '
A A

with coso= k ~ k'. 4

Equations (28) and (29) a.re needed to compute
the polarization of collision excited fluorescence.
Rather than tabulate the polarization of collision
excited fluorescence, which depends upon such de-
tails a fine and hyperfine structure, we paramet-
rize the anisotropy in terms of A. o the Fano-
Macek alignment parameters, "given by

I I & I I II I I I

A;" = (o, —o,)/(o, + 2(x,),
where

FIG. 1. Total cross sections for e +.He (1s)
e +He'(2s). The solid curve is the-CBA result,

the dashed line is the PBA result, and the broken
curve is the experimental result of Dolder and Peart.
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10 measure 2P excitation experimentally. The polar-
ization 2,nd angular distribution of the radiation is
then of some practical interest.

The polarization of decay radiation is given by'

3h{2)scot0
2 —h GA."'

0
(34)

where G is a constant, less than or equal to unity,
which incorporates the effect of fine structure and
hyperfine structure precession. If hyperfine struc-
ture is negligible and only fine structure is pres-
ent, G is given by

(2J+1)(2J'+1) J' 4 2 ' 1
2S+ 1 1+ (WJ~7)2

I I / I I I I)
10

I I I I

FIG 2. Total cross section for e +He+(1s) e
+He+(2P), where curve A is the DA result. The curves
labeled B are the same as Fig. 1, where the broken
curve is the experimental result of Dashchenko et al.

T'A ~= ——d„d'r q' '*(r) , q(+—&(r),. . .
27T

(32)

(33)

which corresponds to the terms with x=0 in Eqs.
(26) and (27). fhe total cross section can be cal-
culated analytically as done in Bremsstrahlung
cross section. " One finds

2w (Z —1)' f m'Z,
2P . . l 2&{S-1)/& i X I W -2&(& -1)/II')

(36)

where 7 is the atomic mean life, lI'« = (E~ —E~ )/
h, S=& for hydrogenlike ions, and I =1 for P
states. The constant h{' incorporates details of
the radiative transitions. It is given by'

rI.
(36)

and is equal to -2 for I., =1 and 1.&=0.
The alignment is shown in Fig. 3. Note that, ex-

cept for electron energies near threshold, total
cross sections and alignments are in good agree-
ment with predictions of PBA, but that the align-
ment deviates somewhat more than the cross sec-
tion does, although the deviations are not large
except at threshold. Such good agreement with the
more approximate Born calculation is surprising,
and presumably indicates a near cancellation of
two effects. The Coulomb wave function incorpor-

Here f is the oscillator strength, E the energy of
the incident electron, E» the excitation energy,
and Z, = -[4kb'/(k —k')']. Gailitis" result differs
from Etl. (33) by a factor of w, an apparent mis-
take.

At sufficiently high energies, one expects that
both Coulomb deflection and finite-size effects be-
come less significant. Then the total cross sec-
tions in CBA, PBA, and DA converge to 4m(f/
E,„)(logE/E). However, as shown in Fig.. (2), the
cross section in DA converges more slowly to this
limit than one might expect and differs drastically
in the whole range of energies. This may be be-
cause the finite size contributions are coherent
with the dipole term in the cross section. Ne find
that the finite-size contribution is more important
than the Coulomb deflection and DA is an inadequ-
ate method in the electron-ion excitation process.

Light-intensity observations frequently serve to

04

0.2-
e + He' Is- 2p

AOO I

-0.2-

-0.4-

-0.8-

FIG. 3. AlignmentAO vs energy in the 2p transi-
tions.
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A col
0

1.0
1.05
1.1
1.2
1.5
2.0
3.0
4.0
6.0

10.0
14.0
20.0
24.0
30.0
34.0
40.0

0.502 8
0.484 6
0.467 3
0.435 4
0.359 4
0.277 2

0.189 6
0.143 9
0.096 94
0.058 62
0.042 00
0.029 46
0.024 57
0.019 67
0.017 37
0.014 77

1.653
1.669
1.679
1.688
1.665
1.574
1.379
1.221
0.9980
0.7434
0.6006
0.4726
0.4162
0.3549
0.3240
0.2874

-0.782
—0.763
-0.744
-0.710
—0.622
—0.510
—0.365
—0.275
—0.167
-0.060
-0.004

0.045
0.068
0.092
0.105
0.121

TABLE I. Total cross sections (7la0/Z ) and A0 at
energies E (in threshold units) for He'.

Pano and Inokuti" advocate Coulomb Born cal-
culations employing a method incorporating a six-
dimensional integral over a product of the atomic
form factor E,&(P —P') times

~
P —P'~ ' and a func-

tion W depending only on the Coulomb distortion
of incident and scattered waves. This procedure
has-the advantage that it separates the atomic dy-
namics, represented by I'(P —P'), from dynamics
of a single electron in a Coulomb potential, rep-
r'esented by R'. This separation, while useful, re-
quires analysis and numerical computation of a
six-dimensional integral with 6 -function-like sing-
ularities. Our expression for I„ in the Appendix
simplifies the Fano-Inokuti approach.

By Fourier transforming the interaction poten-
tial ~r r'~ ' w-e easily obtain the expression for
Coulomb excitation of a many-electron ion. Spec-
ifically we have

d'PI";1$) . (0-'„,'I e "—'
I j-'„') .

The matrix element in Eq. (37) is given by

(37)

ates an increased electron density of the incident
and scattered electrons near the atomic nucleus,
which increases the cross section as compared to
PBA and is responsible for the nonzero-threshold '

cross section. It also incorporates an accelera-
tion of the incident electron by the long-range
Coulomb potential, which presumably decreases
the cross section. Our results indicate that two
effects almost exactly cancel over whole energy
range except near threshold, although the reasons
for the near cancellation are not clear.

For completeness, we tabulate cross sections
and alignment parameters in Table I. These val-
ues were used to construct Figs. 1-3.

(s'„,'le "'Is)'&=-(—e.,(x, s& . (ss&
x=0

where I,b(X, P) is given by Eq. (A3) of the Appen-
dix. In using Eqs. (37) and (38), one must properly
recognize the various 6-function terms, such as

1 d
27&' „, dx x'+(p-q)'

Note that Eq. (37) involves only a three-dimen-
sional integration and could prove useful for nu-
merical computation. Computer codes for calcu-
lating I,z(q) already exist, thus evaluation of a
triple integral is the main remaining task.

APPENDIX: INTEGRAL OF I 5

I„ in (7) can be evaluated with the term e ' ' for wider use such as further ionizations by impact, al-
though the calculations of the excitation transition do not neces'sitate it. Then I,~ is written

I,b= d r exp[i(k —k' —p) ~r],F,[a, 1;i(kr —k r)],I",[b, 1;i(k'r+ k' r)] .r (A1)

si

With the integral representation for confluent hypergeometric functions, Eq. (Al) can be expressed as

1I„=
( 1, , dt(1 —t) '(1+t)' ' duu' '(1-u) ' d'rr 'exp[-xr+ik'u&

0

+ i(uk' —k' —p') ~ r] . (A2)

Here h. = x 2i(1+t)k a—nd p'=p —(1 —t)bk. Integrating over the r variables, then setting u=(v+ 1) ' we
easily evaluate the integral over u to obtain

where

1

I3(a, 1 —a)
dt(1 —t) '(1+t)' ' [~2+ (p + k )']'-' 4vC "b-

p"+ X-ik' ' '
A. 'A" ' (A3)
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A = (x —ik')'+ (p —k)',

A' = (x —ik)'+ (p+ k')',

C = x + (p —k+ k')

and

we have

A = (x -ik')'+k',

A ' = (x —ik)'+ k",

C=x +(k —k')

2A[k (p —k+k') —ikx] —C(p k —k' i—kx k.—k')
AA'

When, p=0; as required for most of our woe'k,
1

ancl

x + (k —k')
x'+(k —k')' '
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