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Values of antishielding factor y„have been obtained for Zn, Cd, In, Fe'+, and Zn'+ by solving the
appropriate differential equations based on nonorthogonal Hartree-Pock perturbation theory. Iri the case of
Fe'+ we have compared our value with that obtained earlier by Sternheimer. While the agreement i.n the
total y„ is, excellent, . the individual shell contributions, namely y„(2p —+p) and y„(3p~p), differ
significantly. The reason for this discrepancy is discussed and is attributed to two compensating and
exclusion-principle-violating contributions, namely y„(2p —+3p) and y„(3p —+2p), included in Sternheimer
values, y„(2p ~p) and y„(3p ~p), respectively.

I. INTRODUCTION II. PERTURBED WAVE-FUNCTION CALCULATION

Since the work of Sternheimer, ' the first one to
calculate the quadrupole aI1tishielding factor, there
have been a number of other calculations' "' avail-
able for the antishielding factor y„. These cal-
culations can be divided into two groups according
to the methods of approach used for obtaining y„.
The first group of calculations' ' have used the
perturbation technique, while the second group' "
have used the variational approach. The calcula-
tion given in Ref. 5 used diagrammatic techniques
involving linked- cluster many-body perturbation
theory (LCMBPT). In this paper values of y„have
been obtained by solving the appropriate perturba-
tion equations derived in the nonorthogonal form-
ulation" of Ha, rtree-Fock perturbation theory (HFPT).

In the latter formulation, " the condition that the
perturbed orbitals be orthogonal is relaxed to
gain some numerical computation advantage in
solving the perturbation equations. The solutions
so obtained are in general not normalized or ortho-
gonalized. Such conditions are next imposed on the
solutions of the starting perturbation equation. The
nonorthogonal" Hartree-Fock perturbation theory
has previously" been applied with success to cal-
culate the magnetic 'hyperfine field in transition
metals. The purpose of this paper is thereforetwo-
fold: first, to see whether similar success as for
the magnetic hyperfine field" can be obtained in
calculating y„ in the nonorthogonal HFPT; and
second, to report results of y„ for neutral atoms
Zn, Cd, and In for which the values of y„are not
available. ' In case of cadmium and indium, we have
calculated y„using Hartree-Fock (HF) and Har-
tree-Fock Slater (HFS) wave functions separately
to see the difference in the values of y„.

Section II discusses the appropriate perturbation
equation for obtaining the perturbed wave function.
Hesults and discussion are given in Sec. III. Sec-
tion IV contains the conclusion.

The total y„consists of contributions arising
from radial and angular excitations of the core
electrons. By convention an 1 - / excitation is
termed radial and an l-l+2 or E-2 excitation
is termed angular. The contribution to y„ from
angular excitation is usually much smaller than
the contribution from radial excitation. The form-
er may therefore be calculated using the approxi-
mate Thomas-Fermi model.

A. Radial excitations

Let 5g„'t be the part of the perturbed function of
the unperturbed core state go„t belonging to ener-
gy E'„,. Let Hp and H, be, respectively, the un-
perturbed IIamiltonian and the perturbation due
to nuclear quadrupole moment Q. The function
5g„'t is obtained numerically by solving the follow-
ing differential equation derived in the nonortho-
gonal Hartree-Fock perturbation theory discussed
earlier in literature":

(0, Zo„,)~y„', = H, g, +(g, iH, iso„,)q'„,

+ g &4, I&, I c,)4';
n'fn

+ n'i ~
n~ En'i ng rgb '

The summation in Eq. (I) is taken. over all oc-
cupied core states of the same l value as that of
the state under perturbation. In atomic units, we
have

H =-& +V

and

H, =-Q(3 cos'8 —I)/2s s. (3)

The coordinates x, 0 are measured with respect
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to the axis of the nuclear quadrupole moment. It
should be pointed out that the difference between
the perturbation equation in the nonorthogonal
formulation and the conventional perturbation
equation used in other calculations' is due to the
presence of two additional terms, namely, the
third and fourth terms on the right-hand side of
Eq. (1)

Writing H,' =H, /Q and 6P„', = Q6$„"„Eq.(1) can be
rewritten as

1

(ff. —E'.))64.")= -Iflg(+ &0'. ( I&l I 0'&&

+ Z(Ci Iffy l@i&C i

n'An

turbation equation similar to that for radial ex-
citation. However, since the former contribution
is much smaller than the contribution arising from
the latter excitation, we have used the Thomas-
Fermi model, initially proposed by Sternheimer'
and later used by Wikner and Das, to get an ap-
proximate value for the y„(ang). Wikner and Das'
have derived the following formula, based on the Tho-
mas-Fermi model, for the contribution y„(ang).

2 1.7VOV '"
y„(ang) = '

(yx)' 'dx,
0

where the reduced variable x in usual notation is
given by

x =Z' 'x/0. 885 34as. (8)

64., = 64." —g &4, 164.",&g, .
n'An

.(5)

The summation above is taken over all occupied
zero-order states of the same I as that of P'„, .
Having obtained 6g„„ the contribution to y„ from
radial excitations nl -l is obtained from the rela-
tion I

y-("' I) =4f -i&can I
&'I 6y. ~&

g l &&.r I& I6&.r&

n' gn

-4Q o 2 n

(6)

The second equality in Eq. (6) results after sub-
stituting 6P„, from Eq. (5) in the first line of Eq.
(6). The summation above is taken over all zero-
order occupied states of the same l value as that
of the state from which excitation takes place.
Of the constant factor 4 in Eq. (6), a factor of 2

is due to spin degeneracy of the electron state and
the remaining factor of 2 is due to the expression
for the induced charge density. The factor b, is
a consequence of summation over all the magnetic
substates for a given l value. The solutions 6(„",
in Eq. (6) are obtained numerically in a nonitera-
tive procedure as described in Ref. 3.1.

B. Angular excitation

The contribution to y„ from angular excitation
could have been also calculated by solving a per-

+ ~i ~ .i ~'~-~'i 'i ~

n'l
n'8 n

The solutions 6P„; are in general not orthogonal
to all occupied orbitals $0~, However, it is de-
sirable to have a 6$„, which when added to the
zero-order functions go, produce normalized, mu-
tually orthogonal orbitals. This is achieved by the
Schmidt orthogonalization procedure, ' namely

The function y„remains finite at large x, so in
order to evaluate the integral J (Xx)'~'dx for dif-
ferent atoms, it must be cut off at a distance de-
pendent on the atom. Following Vfikner and Das, a

we obtained the cutoff distance x, for various at-
oms using the tabulated values of atomic radii ~
by Pauling. " The curve X-x was taken from Mes-
siah." Using the data in the latter curve, another
curve of (Xx)'~' vs x was plotted, from which the
value y„(ang) was obtained by finding the area un-

der the curve (jx)'~'-x between x =0 to x =x,.
The results for y„(ang) are given in Tables I and

II.

III. RESU.LTS AND DISCUSSION
I

The results for y,„for Fe",Zn" and neutral'
atoms Zn, In, and Cd are given in Table I. In
obtaining the individual shell contribution due
to radial excitation, Hartree-Fock atomic'func-
tions have been used in all these cases. For the
neutral Zn atom and the ion Zn", wave functions
from Clementi's tables" were used and for In and
Cd, wave functions from Mann's tables" were
used. The contribution to y„(ang) in all but Fe'+
and Zn" were ealeulated in an approximate way
from the Thomas-Fermi model as discussed in
Sec. II. The y„(ang) for Fe" and Zn" are taken,
respectively, from the work of Ray and collabor-
ators' and Burns and Wikner. '

Of the five systems under study in only two
cases (Fe" and Zn") are theoretical results by
other authors available. &e have compared our
result y„ for Fe" with those obtained separately
by Sternheimer' and by Ray and collaborators. '
In case of Zn", we have compared our result with
those of Feiock and Johnson. 4 On comparing the
total y„ for Fe" in our calculation with Ref. 3
(Table I); the agreement is seen to be excellent.
But the individual shell contributions, particularly
y„(2p-p) and y„(3p-p), differ significantly from
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TABLE I. Values of p (n/ l), p (ang), and p (total) from this work, using HF functions,
and from Refs. 3 and 4.

Fe3+

This
work Ref. 3

Zn
This
work. Ref. 4

Zn
This
work

Cd
This
work

In
This
work

2p-p
3p p
4p~p
3d~d
4d d
Ang

Total

—0.39
-8.27

—0.70
-7.89

—1.56 —1.59
~ ~ ~

+0.666 + 1.04

-9,554 -9.14

—0.31
—7.60

—4.82

+ 1.19

—11.54 —12.31

—0.31
—7.73

—5.92
~ ~ ~

+ 1.56

-12.40

+0.18
—1.21

—18.79
—0.31

-11.76
+1.92

-29.97

+0.22
—1.14

—16.93
—0.28
—8.83
+2.01

-24.95

the corresponding values of Sternheimer. ' How-
ever, the value y„(3d-d) in our calculation com-
pares well with Sternheimer's.

We offer an explanation similar to that of Stern-
heimer' for the above discrepancy. The disagree-
ment is attributed to the nature of the solution
5p„, as obtained by Sternheimer' and by our cal-
culation, In Fe" the core states 2P and 3P are
occupied. Any excitations of the type 2p -3p and
3P-2P are excluded by the Pauli principle.

In our calculation 5P» is orthogonalized to $3~
and similarly 5P» to P,'~ to avoid such exclusion-
principle-violating (EPV) excitations. The solu-
tions 5g„, in the Sternheimer' calcula, tion, on the
other hand, do include such EPV excitations.
From perturbation theory it is easy to see that the
contribution to y„ from excitation 2p-3p and that
from 3p-2p are equal in magnitude but opposite
in sign. Thus on adding y„(2p- p) and y„(3$-P) in
the Sternheimer' calculation, these EPV contribu-
tions cancel, giving a number -8.59 which corn
pares well with the corresponding value -8.66 in

our calculation.
From perturbation theory the EPV contribution

y„(2p-3p) can be calculated from the formula

(2p 3 ) 4( |I30 I
/y' la» &(t»l r 'I ti.)

2p 3p

TABLE II. Values of y for neutral atoms In and Cd
from this work using HFS wave functions.

For Fe", by actual calculation" the value y„(2$
-3P) was found to be -0.316. Correspondingly
y„(3p-2p) is equal to +0.316. Adding these values
of y„(2p-3p) and y„(3p-2p), respectively, to our
values of y„(2p-P) and y„(3p-p), we get the num-
bers -0.706 and -7.954, which compare well with

the respective values —0.70 and -7.89 of Stern-
heimer' for y„(2P-P) and y„(3$-p). Since there
is no other occupied d shell than 3d in Fe", the
question of EPV contribution does not arise.
Therefore it is not surprising that the value y„(3d
-d) in Sternheimeris calculation' agrees well with

ours. We would like to remark here that in a re-
cent calculation by Ray and collaborators, ' the in-
dividual shell contributions y„(nl - l) for Fe", ob-
tained by orthogonalizing the Sternheimer-type
solution 5g„, to occupied core states of the same l

value, agree excellently with the corresponding
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Total .—30.85 —21.70 FIG. 1. The perturbed function V&(2p p) and the 2p
function Uo(2p) for Zn.
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values in our calculation. The. novelty in our cal-
culation is, however, that we have orthogonalized
the solution 6|t)„, obtained in the nonorthogonal
formulation of the Hartree-Fock perturbation equa-
tion.

Since the individual shell contributions y„(nl —l)
in the case of Zn" are not reported in the calcula-
tion of Feiock and Johnson, ' we have compared our
total y„with their corresponding value. Our value
of total y„ is a little larger than their value. This
is possibly due to the combined influence of rela-
tivitistic effects and the use of HFS wave functions
on their calculation. On comparing our result for
the neutral zinc atom with that for Zn", we find
that the result for the ion is smaller in magnitude
than the value for the neutral atom. This is under-
standable because in the ion, because of the rela-
tively strong attraction, the orbitalq are drawn
inward more than in the atom. As a result the
induced quadrupole moment in the ion is less than
in the neutral atom and hence the antishielding is
small.

The results for y„ for neutral Cd and In atoms
using HFS atomic functions" are given in Table Q.
Comparing the former results with the correspond-
ing HF results given in Table I, we find that except
for small differences in individual shell contribu-
tions, the total y„agrees within 3% in cadmium
and within 15/q in indium. The difference is mainly
due to the local exchange used in HFS atomic wave
functions in contrast to nonlocal exchange used in
HF functions.

The spatial variations of the solution 5P„, in the
case of neutral zinc atoms have been shown in
Figs. 1, 2, and 3 for the states 2P, 3P, and 3d, re-
spectively. In each figure we have plotted V,(nl-f)
and U,(nl) against r, where the former function is
obtained by taking the product of x with the radial

IV, CONCLUSION

The motivation of tlute present paper has been to
show how well the quadrupole antishielding factors

1.0-.

08-

06-

g, 04-
o

02X
La

—02"

—04-

—0.6
~0

I

1.0
I I I

&'0 30 40
RADlUS t (CI, )

I

5'0 6'0 7.0

FIG. 3. The pertubed function V&(3d d) and the 3d
function U'p(3d)

part of 5g„, and the latter is r times the radial
part of the unperturbed function g„,. The functions
V, (2p-p), V, (3p-p) and V, (3d-d) behave, as far as
nodes are concerned, like excited 4p, 4p, and 4d
states, respectively. Since for large x the product
of V,(nl-l) and U, (nl) is negative, the effect is
therefore anti shielding.
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obtained in the nonorthogonal Hartree-Fock pertur-
bation theory compare with those obtained in other
methods. In view of the excellent agreement be-
tween the results obtained in this paper and those
obtained by others, we conclude that one can use
the nonorthogonal Hartree-Fock perturbation the-
ory with confidence to calIculate antishielding fac-
tors in other ions and neutral atoms.

The difference between the individual shell con-
tributions of various y„(nl- l ) in our procedure
and the corresponding ones in Sternheimer's pro-

cedure is traced to being due to exclusion-principle-
violating contributions included in the latter pro-
cedure. The spatial variations of the perturbed
part of the. wave function seem to have the right
behavior as far as the number of nodes is concern-
ed.

ACKNOWLEDGMENTS

The author expresses his gratitude to Professor
T. P. Das and Professor D. Ikenberry for helpful
d& scu ss &ons.

~R. M. Sternheimer, Phys. Rev. 80, 102 (1950)'; 84, 244
(1951);96, 951 (1954).

2H. M. Foley, B. M. Sternheimer, and D. Tycko, Phys.
Rev. 93, 734 (1954).

3R. M. Sternheimer, Phys. Bev. 130, 1423 (1963), and
its supplement document No. 7475, ADI Auxiliary
Publication Project, Library of Congress, Washington,
D. C.

4F. D. Ieiock and W. R. Johnson, Phys. Bev. 187, 39
(1969).

~S. N. Bay, Taesul Lee, T. P. Das, R. M. Sternheimer,
R. P. Gupta, and S. K. Sen, Phys. Bev. A ll, 1804
(1975).

6K. D. Sen and P. T. Narasimhan, Phys. Bev. A 14,
539 (1976).

~T. P. Das and R. Bersohn, Phys. Rev. 102, 783 (1956).
8E G. Wikner and T. P. Das, Phys. Rev. 109, 360

(195'8).
G. Burns and E. G. Wikner, Phys. Bev. 121, 155 (1961).
B. Bersohn, Phys. Rev. 29, 326 (1958).

' K. J. Duff and T. P. Das, Phys. Rev. 168, 43 (1968);
A. Dalgarno, Proc. R. Soc. A 251, 282 (1959).

~2K. J. Duff and T. P. Das, Phys. Rev. B 12, 3870 (1975).
3L. Pauling, Nature of the Chemical Bond (Cornell Uni-
versity, Ithaca, N.Y., 1948), p. 246.

~4Albert Messiah, Quantum Mechanics (North-Holland,
Amsterdam, 1965), Vol. II, p. 618.
5E. Clementi, Tabl e of Atomic Iunctions (IBM, White
Plains, N.Y., 1965).

6J. B. Mann, Atomic Stmctu~e Calculations I (Natl.
Bur. Stand. , Washington, D. C., 1967).
S. .N. Ray (private communication).

~ F. Herman and S. Skillman, Atomic Structure Calcula-
tions (Prentice-Hall, Englewood Cliffs, N.J., 1963).


