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A new approach 4o the direct determination of excitation energies and various attachment or detachment

energies, such as electron affinities and ionization potentials, is presented, It is based on the coupled-cluster
ansatz for the trial wave function, generalized to the open-shell excited or ionized states in a way which

enables a variation principle to be used, assuming that the closed-shell ground-state coupled-cluster wave

function is known. The conditions for the applicability of this approach are discussed, and the basic
formalism is derived. A technique enabling a systematic elimination of disconnected clusters in a general

open-shell case is presented and used. An example pertaining to ionization processes is worked out in some

detail. Finally, the relationship of the presented approach to configuration-interaction and perturbative
Green's-function approaches is briefly outlined,

I. INTRODUCTION

Recently there has been a renewed interest in
the exploitation of the cluster expansion ansatz for
the calculation of correlated nonrelativistic wave
functions. 'The explicit equations for the connected
cluster components, ' ' based on the cluster ansatz
first introduced in nuclear physics, ' have been re-
derived in several different ways, ' " and the spin-
adapted form of the theory was given. " A new
method for the calculation of properties with the
cluster wave function was formulated" and the '
conditions of solvability of the coupled-cluster
equations were examined. "

A particularly interesting application of this
approach to both the three-" and two-dimensional"
electron gas was achieved by Freeman; and var-
ious applj. catipns tp nuclear, atomj. c, '2 mp-
lecular, ~" ' ' splid state, and extended weakly
interacting systems" have been carried out or are
currently in progress.

Further, an interesting approach, termed vari-
ational localized-site cluster expansion, was for-
mulated and applied to various systems by Klein
et al."

Several appr paches appeared recently
abling an exploitation of the coupled-cluster ansatz
for open shells. In this paper we present another
possible approach" to the open-shell problem.
'This approach is completely general, even. though
it should be particularly useful for open-shell sys-
tems or states, in which the bulk of the correlation
effects is reasonably well described by the corres-
ponding closed-shell coupled-cluster wave func-
tion. Indeed, should the transition to the open-
shell system or state (i.e. , par'tieie attachment or
detachment, excitation, etc. ) be a true many-body

rather than basically a few-body transition (in
other words, should it lead to an extensive recon-
struction of the wave function), the presented
method can be expected to be rather inefficient.

A particularly attractive feature of the present-
ed approach is the elimination of the reference-
state contribution, thus enabling a direct calcula-
tion of the pertinent energy differences as in some
other many-body approaches (cf., for example,
the Green's functionapproach"). In this connec-
tion, the presented "multistep" technique, which
enables the elimination of the discorinected cluster
components, is of interest in a broader context
than is the scope of this paper.

We first summarize the main features of the
closed-shell theory in Sec. II. In Sec. III we dis-
cuss the possibilities of extending the coupled-
cluster theory to open shells and formulate the
cluster ansatz for the wave functior used in this
paper. In Sec. IV we eliminate the reference-state
contribution as well as the disconnected compon-
ents and formulate the basic equations of our ap-
proach. An example of a specific application of
this theory for the determination of the ionization
potentials or electron affinities is briefly outlined
in Sec. V. Finally, the applicability of the present
approach as well as its relationship to other theo-
ries is discussed in Sec. VI.

A more detailed form of these equations, en-
abling the calculation of ionization potentials,
electron affinities, and excitation eriergies of
closed-shell systems, as well as the results of
various model calculations, will be the subject of
a subsequent paper. "

II. SUMMARY OF THE CLOSED-SHELL THEORY

The most essential characteristic of the coupled-
cluster approach is the use of the exponential ex-
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pansion for the exact nonrelativistic wave function

j@& =exp(T)j@.), (+jc.& =(C.j4.) =1, (1)

where
j 4, ) is the closed-shell independent-parti-

cle model (single determinant) reference state,
and

(2)

where"

r, =( I!)-' g g (a'. . .A jt, j.A, . . .&,)„
A „~., A&A(, ..., A

+A& A (3)

repres'ents the i-particle component of the opera-
tor T. Thus the exact wave function is determined
by the (antisymmetrized) f, matrix elements, de-
fining the T, operators, Eq. (3). These matrix
elements are determined by solving the pertinent
system of (nonlinear) algebraic equations, which
are obtained by substituting the cluster expansion,
Eq. (1), into the time-independent Schrodinger
equation. The individual equations of this alge-
braic system represent in fact the projections of
the Schrodinger equation onto the appropriate one-
dimensional subspaces, defined by the independent-
particle model configuration states (cf., for exam-
ple, Ref. 11). The detailed structure of these
equations depends, of course, on the approxima-
tions made regarding various components of the

A

operator T.
'The explicit form of these equations may be

most conveniently derived using the diagrammatic
technique, "' based on the time-independerit Wick's
theorem (cf., for example, Ref. 32). In this ap-
proach the i-particle component of the operator
T is repres'ented by the T, skeletons anddiagrams"
(cf., for example, Figs. 4-6 of Ref. 2 or Figs. 1

and 11 of Ref. 11). Assuming that the Hamiltoniari
H contains only one- and two-particle terms Z and

V, respectively, which are represented by the
usual H diagrams (skeletons) (cf., for exatnple,
Fig. 2 of Ref. 2), one 'obtains the desired system
of equations by equating to zero all connected dia-
grams, which have the same external (noneon-
tracted) lines, and which result from one H and an
arbitrary number of T, (i = 1, 2, 3, . . . ) diagra, ms.

In this way the chain of mutually coupled equa-
tions .for the Tj components, which is equivalent
to the exact Schrodinger equation, may be obtained
(cf., also, the nondiagrammatic formulation of
this problem given in Ref. 3). For praetieal appli-
cations, this system is then decoupled by making

'

pj.ausible physical assumptions concerning the T,

components
A

In the simplest approximation T = T„at most
two T, vertices can appear in any connected dia-
gram having two-particle and two-hole external
lines, yielding thus the nonlinear algebraic system
of equations"' of the so-called ' coupled-pair
many'-electron theory" (CPMET).

It is worth mentioning that,
" the resulting system

of equations, which has to be solved, - does not
contain explicitly the calculated correlation energy

'This energy is in fact: given by projection of
the Schrodinger equation on the-ground-state de-
terminant jC, ), i.e. , by the sum of diagrams
containing no exterrial lines. Even in the general
case, the energy expression involves at most T-,

components. Thus, after solving a given algebraic
system of equations, the correlation energy &e i, s
calculated using a simple formula, which-is linear
in the- t2."-matrix elements. "':

For a spin-independent Hamiltonian H, one ean
assume the spin independence of the. operator T
and derive simple rules for obtaining the pertinent
spin-free equations (factor, of 2 for, each closed
loop of oriented lines rule). This is particularly
easy to implement in the case of singly and doubly
excited clusters, since the number of linearly in-
dependent singlets and the number of distinct (, —

matrix elements is the same; This is not true for
higher than doubly excited clusters, where special
considerations are necessary. ' However the most
appropriate way of handling the spin symmetry of
the Hamiltonian considered is to use the graphical
methods of spin algebras" (cf. al'so, Refs. 31 and
35).

An explicit form of the equations determining the
t, -matrix elements in various approximations may
be found in Ref. 4. The spin adapted form of the
CPME'T is given in Ref. 11.

III. CLUSTER ANSATZ FOR THE OPEN-SHELL CASE

'There are several possible ways to extend the
cluster ansatz, Eq. (1), which is suitable for
closed-shell systems with spin-independent Hamil-
tonians, to the open-shell case. In order to ap-
propriately exploit the spin-independent character
of the forces considered (and derive the spin-free
theory'), as well as the hole-particle formalism
and the corresponding diagrammatic technique, it
is essential that the reference state

j
4, ) is a, sin-

gle antisymmetrized product of single-particle
states. Moreover, the open-shell states in which
we are primarily interested are those associated
with vari ous excited or ionized states of molecules,
having closed-shell, ground states.

As long as these excitatio'ns or ionizations only
involve directly one or two valence electrons, it
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is reasonable to assume that the majority of the
pair (or higher cluster) correlations will not be
drastically changed. Thus it will be more conven-
ient to start from the correlated ground (or new
reference) state ~4) and calculate the changes
with respect to thj;s state, rather than to introduce
again all the correlation into the uncorrelated in-
dependent-particle model reference state as we
must have done. for the ground state ~% ) . Clearly,
this assumption and, consequently, the whole for-
malism based on it, may not be particularly ad-
vantageous for more general open-shell systems,
which may not be simply related to some closed-
Shell system, and where the other alternative,
closely. paralleling the closed-shell ground -state
formalism, might be equally justified.

Nevertheless, we shall' restrict our considera-
tions here to the states, which may be efficiently
described in terms of, the correlateg closed-shell
state ~4') as follows:

~e„) =Wr y@) =W exp(T)~C, ) . (4)
cA

Here, the operator Wr has a double purpose:

Wr=gw', ~,
»~l

(5)

A

where the 8", ' term yields an appropriate zero
(or first) order wave function of the open-shell
system considered when acting on ~C, ) ." The
subsequent terms W'» ", i = 2, 3, . . . , containing i
more creation-annihilation operator pairs than

Wl, des cribe the' changes in the co rre lation rel
ative to the ' reference" state

~

4) . In order to
simplify our notation, we shall drop the super. —

script (I'), specifying a given open-shell state,
whenever confusion cannot arise.

Thus, for example, for a mononegative (or a
monopositive) ion of a closed-shell system we
can write

first, to form an appropriate open-shell state from
~4') (or ~C, ) )" and, second, to describe the
changes in the correlation in this new state rela-
tive to ~4),

Thus, in general,

W„,=[i)(i+1)!]' Q Q Q (A;A'. . .4'/gy„, /(A);A, . . .Aq)„
A A ) ~ ~ ~ ) A t Al' ' . ~ ) A»

x ][ (X~iX~ )Mg, i =0, 1, .;., (6)

W, = (ii)-'
A ) ~ ~ ~ )A Al) ~ ~ ~ )A»

(A'. . .A'~ ~, IA, . . .A, )„

x jQ (x'„&x„), I & 1 . (9)
j~l

When ~4) and ~4'r) represent the exact eigen-
states, they must be orthogonal, However, even
when ~4') is only approximate, ~%'r) will be in
most cases automatically orthogonal to the ground
state I4'): this will be the case whenever Wr

where

(A;A'. . .A' ~m)„~(A);A, . . .A, )„
(v)

A A
g

MA ——XAo

for the mononegative ion (electron attachment) and

,„~(A);A, . . .A, )„
= (A'. . .A'

~
~&„~A,; A, . . .A, )„, (8)

MA —-XA
0

for the monopositive ion (ionization).
Similarly, for the excited states of closed-shell,

systems we can write

is not a particle number conserving operator [as
in the case of Eqs. (5)—(8)], or when the symmetry
species of the excited state ~4r) is different from
that of the corresponding ground state ~%). In case
that ~4r) is not automatically orthogonal to ~4),
one can of course orthogonalize it by projecting out
the ~%') component from ~%'r). In fact, as shown
in the Appendix, this is equivalent to using ~4'r)
as defined by Eq. (4) and assuming in all subse-
quent derivations its orthogonality to ~4),i

'The operator W may now be represented dia-
grammatically in a similar way as the operator T:
In order to distinguish between the diagrams and
skeletons associated 4ith T» a.nd W, operators
[particularly in the excitation case, Eq. (9)], we
now use the square-shaped apex for the W terms.
'Thus, for example, the W skeletons and W dia-
grams associated with the W, and W, operators
for the monopositive ion (ionization) case [Eqs. (6)
and (8)] are shown in Fig. 1. Similarly, those cor-
responding to W, and W, operators for the excita-
tion case [Eq. (9)] are shown in Fig. 2, We can
thus use the same diagrammatic formalism,

'
based

on the time-independent %ick's theorem, as in
earl j.er considerations
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Ao

(a) (b)
i

(c) (d)

FIG. 1. Example of W-skeletons (a) and (c) and W-dia-
grams {b) and (d) pertaining to the ionization processes.
The skeleton (a) and the corresponding diagrams (b)
describe the zero-order term ~, while the skeleton (c)
and diagrams {d) express the first-order term W2, Eqs.
(6} and (8).

IV. DERIVATION OF BASIC EQUATIONS

In the case of the closed-shell ground state, the
t, -matrix elements enter the trial ketch%'), Eqs.
(1)—(3), in a highly nonlinear manner. In contra. st,
the open-shell trial ket ~4r), Eq. (4), is linear in
the matrix elements of the operator Wr. Thus we
can use the Ritz variational method to determine
the operator W„. This assumes, of course, that
the highly nonlinear terms in the t, -matrix ele-
ments, which appear in the energy mean value
expression, are sufficiently small and can be neg-
lected.

Moreover, we shall see that the ansatz for ~4'r),
Eq. (4), enables us to determine directly the ener-
gy differences (i.e. , excitation energies, ionization
potentials, electron affinities, etc. ) rather than
the absolute energies of the given open-shell
states. Unless a complete reeonstruetion of the

wave functionoceurs, the former (i.e. , direct) ap-
proach is much. more effective than the latter one,
since it does not require a recalculation of the
correlation effects, which are not essentially
changed in the excitation or ionization process
considered. It should also be clear that, in any
approximate calculation, the resulting values for
these energy differences will not be equal to the
difference of the variationally determined individ-
ual state energies, since the operator T and, thus,
the reference closed-shell ground state, is deter-
mined nonvariationally. However, since there is
no variational principle for the energy differences,
we feel that the use of different treatments for the
ground (or reference) state and for the pertinent
excited or ionized states (i.e., nonvariational versus
variational) is of little importance, particularly
when both the ground-state energy and the pertin-
ent energy difference are determined with a suf-
ficiently high accuracy.

A. Energy difference evaluation

We first derive an expression for the energy dif-
ference &E~,

~E, =(4„iH„i4,) (4, i4, )-'

(»)
between the energies oi the open-shell state ~4r)
and a corresponding reference state ~4') . Using
our cluster ansatz we can write

b,Er = (4,
~

exp(T )WrH„Wrexp(T) ~4, )

& (4 0 ~

exp(T') Wr'Wr exp(T)
~
4c ) '

—(4,
~

exp(T )H» exp(T)
~ 4, )

x (4,
~

exp(Tt)exp(T) ~4, ) ', (ll)

(a) (b)

(c) (d)

FIG. 2. Example of W-skeletons (a) and (c) and W-dia-
grams (b) and (d) pertaining to the excitation processes.
The skeleton (a) and the corresponding diagrams (b)
represent the term W&, while (c) and (d) represent the
term g, Eq. (9).

and evaluate both the numerators and the denomin-
ators using the diagrammatic technique.

Let us recall that exp(T) ~4, ) is represented by
all possible M diagrams, "' each of which consists
of none, one, two, etc. , T diagrams. Similarly,
the Hermitian conjugate quantities are represented
by corresponding conjugate diagrams and skele-
tons"" (T, I, and W diag'rams and skeletons).

Thus the Fermi vacuum mean values appearing
in Eq. (10) or (11) are given by all possible fully
contracted (i.e., vacuum) connected and discon-
nected diagrams containing appropriate M, W, &,
W, and M diagr'ams as indicated in Table I.

Finally, since all our operators are in the N-
product form, no diagrams with internal lines
originating and ending on the same vertex (super-
vertex) can appear (elimination of Hartree-Fock
diagrams; cf. , for example, Ref. 32).
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B. Elimination of disconnected terms
M H M M H M

%e next show how to eliminate the disconnected .

(sometimes referred to in this context incorrectly
as "unlinked"") terms from the energy expression
(10) or (ll). In contrast to a similar cancellation,
which occurs in the derivation of the closed-shell
equations or in the Goldstone perturbation theory,
this elimination requires several steps in the
present case.

In order to demonstrate this cancellation, we
shall schematically represent the sum of all pos-
sible connected and disconnected vacuum diagrams
(skeletons), formed from a given set of constitut-
ing diagrams (skeletons), by enclosing this set in
a dashed rectangle, while the sum of all possible
connected vacuum diagrams is indicated by en-
closing the pertinent set of constituting diagrams
in a solid rectangle.

Thus, for example, the numerator (4~H„~4') of
the second term in Eq. (10), given by the sum of
all connected and disconnected vacuum diagrams
formed from one M, one M, and one H diagram
(cf. Table I), is represented by the left-hand side
of the schematic equation shown in Fig. 3.

Separating, now, in each diagram appearing on
the left-hand side of the equation in Fig. 3 the
connected part containing the H vertex (superver-
tex) from the rest of the diagram, and realizing
that no single component (M, H, or M) can yield
a fully contracted (i.e., vacuum) diagram, since
it is in tPt: N-product, form, ""we can factor the
sum of diagrams, representing (4'~H„~4'), as
indicated on the right-hand side of the equation in
Fig. 3."

I et us stress that each M (or M) diagram con-
tains none, one, two, etc. , T (or T) diagrams.

hus, for each connected diagram containing an H
(super)vertex we can always find all possible con-
nected and disconnected diagrams containing an
arbitrary M and M diagram (i.e., containing an
arbitrary number of T and T diagrams for which
all T supervertices possess the same number of

TABLE I. Composition of resulting diagrams repre-
senting the individual terms appearing in the energy
difference ~E&, Eq. (10) or (&&).

L

M M

LI
/

FIG. 3. Schematic representation of the factorizatiog.
of the matrix element &4 )H„~ 4) into the connected part,
represented by the heavy-line rectangle, and the
connected plus disconnected part {dashed rectangles).
The algebraic form of this equation is given by Eq. {12).,
See text for more details.

C------- ~
W W

I I
M M

I I

L J

M H M

W W
I

N M
L

W
H M

M

+
W I

N
M

L J

W
N H

M

r-------w
W

M
M

W W,
H

M M

r- ---—--1
I

M M
I

L

external lines as all the T supervertices so that
the fully contracted diagrams can be formed).
Consequently, the sum of all diagrams, which
equals (0 ~H„~4), factorizes as schematically in-
dicated by a juxtaposition" of the two rectangles on
the right-hand side of the' equation in Fig. 3. In
the algebraic notation this equation takes the form

where (4' ~H„~ @)c designates the connected eom-
Ponent of (4 ~H„~4'), given by the sum of all con-
nected vacuum diagrams, each containing one M,
one H, and one M diagram.

We thus find that the second term in Eq. (10) or
''(ll) yields

(4 /H„/4) (4/4) '= (4 IH„I4) e.
Similarly, the sum of all diagrams representing

the numerator (4'r ~H„~@r) of the first term on
the right-hand side of Eq. (10) or (ll) may be
factored as shown schematically in Fig. 4(a). We
note immediately that the dashed rectangles in
terms (ii) and (iii) of Fig. 4(a) represent the over-
laps (4'~4'r) and (4'r ~4'), respectively. Thus,
assuming the orthogonality of

~

4') and
~
4r ), the

second and third terms on the right-hand side of
the equation in Fig. 4(a) vanish. As shown in the

&~rlH~I+r&

&crier&

(0 t4)

Number of constituting
diagrams of type

M andM, Wand W

0 0

C l
W W

I
I

M M
II J 1I"

I
N N

I J

4

FIG. 4. Schematic representation of the factorization
into the connected (heavy rectangles) and connected
plus disconnected (dashed rectangles) components for
the matrix elements &@rlHNII@r) (a) and Qr[er) (h),
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Appendix, this orthogonality assumption does not
restrict the generality of our considerations.

In the algebraic form we can write the factoriza-
tion shown in Fig. 4(a) as follows:

+ &Cr IH~I 4'r& & kl 4&, (14)

. so that the first term in Eq. (10) or (11) yields

I
H„ I

4 & &
O'

I
4' ) '

= &@'IHw
I
+&e+ &+r IHpr I+r&,

x&.+I+& &+rl@ &

Consequently, the desired energy difference
AEr, Eq. (10), is given by the second teim on the
right-hand side of Eq. (15) in view of Eq, (13).

Finally, the denominator &Crl@r& may be fac-
tored as indicated in Fig. 4(b), yielding

lc ) = &4 I@ ) &O'I@&, (16)

so that we obtain the desired result

~Er = &+rlH~ I
+r &e&+r I Pr&,

'
~

We riext note that both the numerator and the
denominator in this expression may be written as
bilinear Hermitian forms in terms of the W matrix
elements,

b, Er —-Q O' K;18~ QS,

where MI, designate the pertinent W matrix ele-
ments arranged in some definite order.

The corresponding expressions for the Hi, or S,&

matrix elements are then simply obtained as a
sum of all connected diagrams formed from the
pertinent W diagrams, representing the matrix
elements ze,. and m,. involved, arbitrary M and

M diagrams, given by the approximation consid-
ered, and one H diagram or an empty diagram in
between, respectively.

We present an example of this procedure in Sec.

C. Basic equations

Having determined the pertinent Hi, and Si, ma-
trix elements in terms of the one- and two-particle
integrals, defining our model Hamiltonian in the
chosen (atomic or molecular orbital) basis, and

in terms of the t,.-matrix elements determined
from the reference-(ground-) state calculation, it
is straightforward to calculate the desired energy
differences n. Er =E„-E (note that reference-state
energy E is fixed and is only used as a convenient
energy zero) and the corresponding so,. matrix ele-
ments from the pertinent eigenvalue problem

Q (H,.) —DErS)))m)=0.

For spin-independent Hamiltonians one ca,n, of
course, eliminate the explicit spin dependence and

obtain a spin-free formalism. This is most con-
veniently done" by exploiting the graphical meth-
ods of spin algebras"40 (cf. also Refs. 31 and

35).

V. EXAMPLE

In order to illustrate the above outlined general
procedure, let us consider an example involving
ionization ' of a closed-shell system. For the
sake of simplicity let us restrict ourselves to a
simple approximation, in which all but the T2
component of the T operator vanish and, for the
ion, consider only the first term W, in the W op-
erator.

Thus, in order to obtain the matrix elements H i,
we must construct all the connected diagrams in-
volving one W„one H (i.e., E or V), and one W,
diagram and an arbitrary number of T, and T,
diagrams. In fact, one can construct connected
diagrams of this type having an arbitrarily large
number of T, and T, diagrams. We see easily that
such diagrams exist as long as the difference be-
tween the number of oriented lines in the W and M
diagrams on the one hand, and the W and M dia-
grams on the other hand, lies between -4 and +4.
It seems reasonable to assume that diagrams con-
taining a large number of T, and/or T, components
will be relatively unimportant, since they corre-
spond to high-order terms in the perturbation the-
ory approach (cf. Sec. Vl, Table II}. Assume,
thus, that we can restrict our considerations to
at most one T, and one T, diagram.

Then, the diagrams yielding H,.&'s in the approx-
imation just mentioned may be classified into
three types, namely, those containing (i) no T, (T,}
diagram, (ii) one T, (or T,) diagram, and (iii)
both T, and T, diagrams. These diagrams are
easily constructed and are shown (in the Hugen-
holtz form) in Fig. 5. In the same way the overlap
diagrams may be obtained.

A more detailed description of important partic-
ular cases will be given in a subsequent paper"
describing an application of this theory to certain
model systems.

VI. DISCUSSION

The usefulness of the exponential ansatz for the
correlated wave function of closed-. shell systems
stems from two basic facts: (i) the negligibility of
the connected tetraexcited clusters as compared
with the disconnected ones (symbolically T~ «2T22};
and (ii) a transformation of the multiplicative

I
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TABLE II. Classification of various connected and disconnected clusters according to the
lowest order of the perturbation theory in which they contribute.

Order
Closed shell

Connected Disconnected
Open shell

Connected Disconnected

0

T2

Tf $ T3

T5.

T2

Tf T2 j T2T3$ T2
3

Tf,:TfT3,' T3
2 2

T2 T4) T2

Tf T2y T3T2
2 2

W2

W3

WfT2 I

Wf Tf, Wf T2, Wf T3
2

W2T2

Wf Tf T2 p Wf T2 T3 p Wf T2
3

Wf T4.

W2Tf y W2T3, W2T2
2

W3T2

Wf Tf T3 y Wf T2 T4 Wf Tf2

Wf T5, Wf T3) Wf T2
2 '4

Wf Tf T2, Wf T3T2
2 2

W2Tf T2, W2T2T3y W2T2
3

3 f~ 3 3~ - 3 2
2

W4T2

structure for the noninteracting wave-function
components into an additive one (cf. also Ref. 43).

The first property enables a physically sensible
truncation of the chain of coupled equations (cf.,
for example, Refs. I, 3, and 19), which are equiv-
alent to the Schrodinger equation, while the second
property automatically guarantees the "size con-
sistency""'" of the formalism

In the open-shell case, our basic ansatz [Eq. (4)]
assumes that the pair (or higher cluster) correla-
tions in the closed-shell (correlated) reference
state

~

4') are not drastically modified by a crea-
tion (an annihilation) or an excitation of a, few
"quasiparticles" in this reference state, as al-
ready mentioned. In other words, it assumes
that the pairs (clusters) and their intera, ctions in
the closed-shell part of the open-shell state
(system) considered are not significantly altered
by the introduction of the open-shell part.

Moreover, it assumes the importance of the
higher-order disconnected clusters as compared
to the connected ones. Thus, for example, the
triexcited component of the low-lying excited
states is assumed to be reasonably well represent-
able by the disconnected clusters of the W,T, type,
making thus the consideration of the connected W,
clusters unnecessary. (Note that in the closed-
shell ground state the importance of the connectt,.d
and disconnected triexcited clusters is just re-
versed. ~) Should the higher;-excited connected
clusters prove to be essential in a given open-

shell state, the formalism offered here would be-
come impractical, since a large number of dia-
grams would have to be considered (in fact, any
presently known formalism becomes computation-
ally very difficult in such a case). This also ap-
plies to the higher powers of t,.-matrix elements
as mentioned earlier (cf. Sec. V).

The higher-excited connected clusters were in-
deed'found to be small as compared with the dis-
connected ones in the cluster analysis of the full
CI wave functions for several low-lying excited
states of the PPP model of benzene. "'"

~

Moreover, in estimating the importance of vari-
ous clusters we ca.n aga, in be guided by the lowest
order of perturbation theory in which a given corn-
ponent contributes for the first time. We have
summarized this information in Table II for both
closed and open-shell low-order clusters. We

recall, for example, that in the closed-shell case4
the disconnected T2 terms appear already in the
second order of perturbation theory, while the
connected tetraexcited term T4 appears for the
first time in the third order (cf. Table II). Like-
wise, the connected T3 component appears in the
second order while the most important discon-
nected component T,T2 appears only in the third
order (cf. Fig. 2 of Ref. 4). Our case study of
the BH3 molecule~ showed clearly that indeed the
T, and T,T, clusters (third-order appearance)
were completely negligible with respect to the
2T', and T, clusters (second-order appearance). 4~
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(a)

(c)

Flo. 5. Hugenholtz skeletons (diagrams) determining
the H, . matrix elements in Eqs. (18) and (19) for the
ionization potential calculation in the approximation
considering the zero-order terms in T2 clusters (a), the
first-order terms in T& or T2 (b), and bilinear terms in
T2 and &2 (c).

In the open-shell case we find that the W,T,
clusters appear already in the first order, while
the W3 ctusters appear only in the second order.

In the closed-shell case by far the most impor-
tant terms are, of course, the T, clusters. The
next important contribution is due to the discon-
nected —,T2 clusters followed by T3 and T, clusters
(usually in this order, depending, of course, on
the one-electron basis used). Thus the clusters,
which contribute to the first two nonvanishing or-
ders of the perturbation theory, yield a very good
description of the correlation effects.4'~9 ~~

For the open-shell case, the connected terms
contribute already in the zeroth order so that,
correspondingly, the disconnected clusters con-

tribute already in the first order (ef. Table II).
However, it is hoped that the clusters, which con-
tribute in the first two nonvanishing orders of
perturbation theory, should give again a reason-
able description of the open-shell states involved.
The pertinent clusters to be considered in this
case are W„W„and W,T, clusters. For the ex-
citation energy calculations, these contributions
require that 28 diagrams be considered, while the
terms appearing in the next order of perturbation
theory (i.e., clusters W„W,T„W,T,', W, T„and
W~T, ; cf. Table II) would require an additional 328
diagrams. However, the number of diagrams re-
quired increases much less drastically for the
ionization potential or electron affinity calcula-
tions.

It is worth noting that by restricting ourselves
to the W, terms only, our probl, em reduces to a
simple CI problem within the set of zero-order
configurations (for example, in the case of excita-
tion energy calculations, to the CI involving mono-
excited configurations). Consequently, the pres-
ented approach may also be regarded as a "renor-
malized" CI calculation, in which the highgr-
excited configurations are represented by discon-
nected clusters. For example, triexcited config-
urations are represented by the WyT2 clusters.
Since we are not interested in the energies of the
highly excited states, but only in their effect on
the low-lying states, their approximate represen-
tation by the disconnected components (involving,
moreover, the ground-state pair clusters) should
be satisfactory.

In a similar way we can easily see the relation-
ship of the presented formalism with the Green's-
function approach. This is particularly simple
using the diagrammatic representation in both
cases. The pertinent Green's-function formalism
up to and including the third order of the perturba-
tion theory was presented earlier. ' ' To find the
corresponding perturbation theory diagrams,
which are accounted for in the coupled-cluster ap-
proach, we simply replace the T,. vertices by an
appropriate set of perturbation theory diagrams,
which in turn are simply obtained by iterating the
basic coupled-cluster equations in the diagram-
matic form (cf., for example, Refs. 2 and 11).
Similarly, the W, vertices are replaced by ap-
propriate open lines, characterizing the Green's-
function diagrams, and the necessary number of
interaction vertices (as follows from Table II).
For the basic open-shell vertices shown in Figs.
1 and 2 these replacements are schematically il-
lustrated in Fig. 6.

Thus each diagram of our coupled-cluster ap-
proach corresponds to a certain subset of the
diagrams for the perturbative Green's-function
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thus, the orthogonalized state as
I

4'r'&,

I
'-'-'r'& = ~r'I ~&

where"

~r =&r+~~

we find that (~I'„'I 4& =0 &f

(A2)

(A3)

the subscript 6 designating again the connected
component (cf. Sec. IV.B), since

(A6)

FIG. 6. Schematic representation of the relationship
between the present theory and perturbative Green's-
function approach. The indicated replacements yield
the corresponding diagrams {skeletons) for the latter
approach.

We now calculate the energy mean value E~,

Er= &er IH~—I'er & ('er'
I er & . (A6)

Using the same technique as explained in Sec. IV 8
(cf. Figs. 3 and 4), we find

&+'I&. l+'& = &+IH. I+&. &+I+& &+&+I+& &

approach. " We easily find that, except for the
time orderings of interaction vertices, we recover
in this way all the third-order diagrams of the
Green's-function approach" when using the dia-
grams shown in Fig. 5.
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APPENDIX A: ORTHOGONALITY CONDITION

and

+»e&&~. IH~I ~&.('r+ &~l4r &e6, (Ag)

6 =
I
&+ &+I +,&. I'+ &+, I+'&'

r E, =x/S.

Substituting for Xr from Eq. (A4) we get

R=(4' IH lc

(A12)

(A13)

We thus get for the desired mean value, Eq. (A6),

E = (4IH„lc& +K/s. (A»)

The first term on the right-hand side gives the
energy of the reference state E in view of Eq. (13).

Thus for the 'energy difference ~Ez ——E~ —E we

find

We will show that we can always assume in our
derivations that the state

I
Cr &, as defined by

Eq. (4), is orthogonal to l@&.
Indeed, suppose that this is not the case, so that

&e
I ~, & = &el@',

I
e) ~ o. (A1)

and

s=(c I4 )

so that finally

&Er = (+r IH~ I @r&e &@rl '4& e '.

(A14)

(A16)

In such' a case, we can remove the reference-
(ground-) state component from I4r) . Designating,

This is, however, the same expression as Eq. (17)
and our assertion is proved.



814 j. PALDUS, J. CIZEK, M. SAUTE, AXD A. LAFORGUE

*Permanent address; Departement de Mathematiques,
Universite Claude Bernard, Lyon I; 43, Boul. du 11
Novembre 1918, 69621 Villeurbanne, France and Ob-
servatoire de Lyon, 69230 Saint-Genis-Laval, France.

)Permanent address: Laboratoire de Mecanique
Ondulatoire Appliquee, Faculte des Sciences,
Universite. de Reims, B.P. 347, 51062 Reims Cedex,
France.

~J. Cizek, J. Chem. Phys; 45, 4256 (1966) (paper I).
J. Cizek, Adv. Chem. Phys. 14, 35 (1969) (paper II).
3J. Cizek and J. Paldus, Int. J. Quantum Chem. 5, 359

(1971) (paper III).
4J. Paldus, J. Cizek, and I. Shavitt, Phys. Rev. A 5, 50

(1972) (paper IV).
5F. Coester, Nucl. Phys. 7, 421 {1958);F. Coester and

H. Kummel, Nucl. .Phys. 17, 477 (1960); H. Kummel,
in I eetuxes on the Man&-Bod& PxobLem, edited by
E. B. Caianiello (Academic, New York, 1962), p. 265;
J. da Providencia, Nucl. Phys. 61, 87 (1965).

H. Kummel, Nucl. Phys. A 176, 205 (1971};H. Kummel
and K. H, Liihrmann, Nucl. Phys. A 191, 525 (1972);
K. H. Luhrrnann and H. Kummel, Nucl. Phys. A 194,
225 (1972).
F. E. Harris, in Electxons in I"inite ayd Infinite
Stxuctuxes {Proceedings of the NATO ASI in Gent,
Belgium), edited by P. Phariseau and L. Scheire
(Plenum, New York, 1977), p. 274.

A. C. Hurley, Electxon Coxxelation in Small Molecules
(Academic, New York, 1977).

9P. Grange and J.Richert, The Correlated Many-Body
Wave Function of Nuclar Systems (Laboratoire de
Physique Nucleaire Theorique, Centre de Rbcherches
Nucldaires de Strasbourg, France) (unpublished).
B. H. Brandow, Adv. Quantum Chem. 10, 187 (1977).
J. Paldus, J.Chem. Phys. 67, 303 (1977) (paper V).
H. J. Monkhorst, Int. J. Quantum Chem. Suppl. 11, 421
(1977).
T. P. Zivkovic and H. J. Monkhorst, Analytic. Connection
between Configuration-Interaction and Coupled-Cluster
Solutions (Univ. of Utah) (unpublished).
D. L. Freeman, Phys. Rev. B 15, 5512 (1977).
D. L. Freeman, The Correlation Energy of the Two-
Dimensional Electron Gas at Intermediate Densities
(Univ. of Rhode Island) (unpublished).
H. Kummel, K. H. Luhrmann, and J. G. Zabolitzky,
Rep. Prog. Phys. (to be published).
J. da Providencia and C. M. Shakin, Phys. Rev. C 4,
1560 (1971); C 5, 53 (1972).

~ J. G. Zabolitzky, Nucl. Phys. A 228, 272, 285 (1974);
H. pummel and J. G. Zabolitzky, Phys. Rev. C 7, 547
(1973).
J. Paldus and J. Cizek, in Enexgy, Stxuetuxe and
Reactivity, edited by D. W. Smith and W. B.McRae
(Wiley, New York, 1973), p. 198.
J. Paldus, B.G. Adams, and J. Cizek (unpublished).

~P. R.I Taylor, G. B. Bacskay, N. S. Hush, and A. C.
Hurley, Chem. Phys. Lett. 41, 444 (1976). These
authors failed to notice our earlier and more thorough
work (Ref. 4) concerning the same system.
F.' E. Harris and H, J. Monkhorst (private
communication) .
J. Cizek, J.Ladik, and S.Suhai (private communication).

4D. J. Klein, J. Chem. Phys. 64, 4868 {1976), Mol.
Phys. 31, 783, 811 (1976); D. J. Klein and M. A.
Garcia-Bach, J. Chem. Phys. 64, 4873 (1976); Mol.

I

Phys. 31, 797 (1976).
~D. Mukherjee, R. K. Moitra, and A. Mukhopadhyay,
Mol. Phys. 30, 1861-(1975); 33, 955.(1977).
R. Offermann, H. Kummel, and E. Ey, . Degenerate
Many-Fermion Theory in exp'S-Form I. General
Formalism (Ruhr University, .Boehum) (unpublished);
R. Offermann, II. Comparison with Perturbation
Theory (Ruhr University, Bochum) (unpublished).

~M. Saute, Docteur es Sciences Thesis (University of
Rheims, 1976}.
J. Paldus and J. Cizek, J. Chem. Phys. . 60, 149 (1974),
L. S. Cederbaurn and W. Domcke, Adv. Chem. Phys. .
36, 205 (1977), . and references therein.

SM. Saute {unpublished).
We exploit here the convention by which the hole and.
particle states are 1abeled by subscripts and super-
scripts, respectively, a general state having then no
labels (cf. Ref. 31).

3~J. Paldus, B.G. Adams, and J. Cizek, Int. J. Quantum
Chem. 11, 813, (1977).
J. Paldus and J.- Cizek, Adv. Quantum Chem. 9, 105
(1975).
Let us recall (Refs. 1 and 2) that the skeletons, which
are obtained by stripping off the free (Ref. 32) (i.e. ,
summation) labels from the diagrams, ' are very
convenient for the topological considerations deter-
mining the correct combinatorial factors involved.
For the derivation of explicit algebraic expressions
associated with diagrams, one can use either the
Goldstone type diagrams (Ref. 1) or, better yet, one
Goldstone version (any) for each Hugenholtz diagram
(Refs. 2 and 11). These are sometimes referred to as
Brandow (Ref. 34) diagrams (cf., for example,
Appendix A of Ref. 11). .The latter may also be
conveniently coupled with the angular momentum
diagrams when the spin-adapted form is desired (Ref.
11). In this paper we shall only use Hugenholtz
diagrams, which are best suited for general
considerations and afford the most economical
representation. Moreover, it is straightforward to
convert them into the Goldstone or Brandow diagrams.

~'4B. H. Brandow, Rev. Mod. Phys. 39, 771 (1967).
'B. G. Adams, J. Paldus, and J. Cizek, Int. J. Quantum
Chem. 11, 849 (1977).

~SNote that in the particle-hole formalism, using ~40) as
the reference state, both ~ and exp (T) will be
expressible as linear combinations of the products of
creation operators only. Moreover, each term of
exp(T) contains an even number of the creation operstors
with respect to

~ 40) [cf. Kq. (3)l Thus Wr commutes
with exp (T).
Cf. , for example, footnote 26 of Ref. 11.
Following strictly our convention we should also
enclose the two rectangles on the right-hand side of the
equation in Fig. 3 in another dashed rectangle. In
order to simplify our symbolic equations we will agree
to delete these overall dashed rectangles enclosing the
individual (necessarily dis connected) factors.
A. P. Jucys, I. B. Levinson, and V. V. Vanagas,
Mathematical Appaxatus of the Theoxy of Angulax
Momentum {Iostitute of Physics and Mathematics of
the Academy of Sciences of the Lithuanian S. S. R. ,
Mintis, Vilnius, 1960), in Bussian. English
translations: (Israel Program. for Scientific
Translations, Jerusalem, 1962) and (Gordon and



l7 CORKE LATION PROBLEMS. . . Vl. . . . 815

Breach, New York, 1964); A. P. Jucys and A. A.
Bandzaitis, The Theory of Angular Momentum in
Quantum Mechanics (Institute of Physics and Mathe-
matics of the Academy of Sciences of the Lithuanian
S. S. R., Mintis, Vilnius, 1964), in Russian.
E. El Baz and B. Castel, Graphical Methods of Spin
Algebras in Atomic, Nuclear and Particle Physics
(Dekker, New York, 1972).

+Note that the case involving an electron attachment
(electron affinity calculation) is simply obtained by
reversing the orientation of lines (time reversal).

4 One can obtain these diagrams by eliminating the
interaction (H) vertices from the diagrams of Fig. 5
and by excluding the equivalent diagrams from those
so- obtained.
H. Primas, in Modern Quantum Chemistry, edited by
O. Sinanoglu (Academic, New York, 1965), Vol. II,
p. 45.

44This very appropriate term was recently introduced
by Pople (Ref. 45).
J.A. Pople, R. Seeger, and R. Krishnan, Int. J.
Quantum Chem. Suppl. 11, 149 (1977),

4~Of course, it would be highly desirable to carry out a
similar study for a number of other molecules,
especially those containing several heavy atoms, and
for larger than minimal basis sets, in order to
determine the limits of accuracy for various truncated
cluster expansions.
This formulation pertained to the calculation of the
excitation energies. The corresponding formalism for
the ionization potentials and electron affinities is simply
obtained from this more general formalism by deleting
all but the self-energy diagrams (for more details,
cf, Ref. 32).

4 The scalar operators are simply designated by the
appropriate scalar multiplying the identity operator.


