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New phenomenon in the stochastic transition of coupled oscillators
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We have performed a detailed numerical investigation around the region of transition from quasiperiodic to
stochastic motions for a chain of particles with Lennard-Jones interaction. We have found that the curve for
the stochastic parameter (or maximal Lyapunov characteristic number) as a function of energy presents
successive bifurcations in that region, a phenomenon not yet observed in this field. This phenomenon is
interpreted as indicating that the so-called stochastic region is in general subdivided into disjoint invariant

components, which merge into a unique stochastic region as energy increases.

I. INTRPDUCTION

The investigation of the way in which the transi-
tion from quasiperiodic to stochastic motions
takes place in a classical system of coupled oscil-
lators appears to be of great interest in many
fields of physics and mathematical physics and has
recently received much attention. ' '

In this connection a most useful technical tool
from the point of view of numerical computations
has proved to be the so-called stochastic param-
eter4 ' k, because it has been shown' to give excel-
lent estimates for a well-defined mathematical
quantity, namely, the maximal Lyapunov charac-
teristic number A, . This, in turn, as a function
of the point x of phase space, has the property of
being positive or vanishirig according to whether x
belongs to the stochastic region or to the region of
quasiperiodic motions (ordered region). Actually,
this characteristic (i.e., A, being positive or van-
ishing) can also be considered to be a consistent
definition of the stochastic and the ordered regions
themselves.

Having in mind to look for new information about
the transition from quasiperiodic to stochastic mo-
tions, we performed detailed numerical investiga-
tions on a model' which has been much studied:
that of a set of N+2 points of equal mass m on a
line, the two extreme ones being fixed a distance
L„apart, and interacting with nearest-neighbor
Lennard- Jones potential

V(r) = 4&[(o/r )"—(cr/r)', ] +e,
where r is the distance between two neighboring
particles, and e and 0 are positive parameters;
moreover, f „=(N+1)2'~'o.

The stochastic-parameter technique has been
applied before to such a model, ' and curves for k

as a function of the specific energy u =-E/N, E be-

,ing the total energy, have been given (see Fig. 2 of
Ref. 6), both for N= 10 and N= 50. The two curves,
which are very close to each other, give a rough
indication of the specific energy (u =1, in the units
defined below) around which the transition occurs,
and this value is in agreement with previous esti-
mates. "However, a detailed study of the transi-
tion region is desirable.

In this paper we present the results of such a
detailed study of the transition region, which has
displayed a new phenomenon, namely, the occur-
rence of successive bifurcations of the curve k(u)
as the specific energy u approaches its minimum
value.

Such detailed analysis has been performed for
N= 5. Indeed from previous works it is known that
the relevant features of our model (such as the
"specific energy of transition") for large N are al-
ready displayed even for N = 5, while, on the other
hand, the computation times are drastically re-
duced.

In Sec. II we present the results for the bifurca-
tion of the curve k(u) and interpret them as indicat-
ing the existence of disjoint invariant components
on the energy surfaces in the stochastic region. In
Sec. III we support this interpretation by an analy-
sis of the densities of the probability distributions
for the normal-mode energies, a technique which
allows one to form a certain representation of the
region of phase space invaded by a single trajec-
tory, even in the case of more than two degrees of
freedom. " The conclusions follow.

Here we add now some details on the computation
times and on the units employed by us. In order to
introduce e natural time unit for our system, let us
first recall what the normal modes are. Consider-
ing as canonical coordinates the displacements of
the particles from their equilibrium positions and
the corresponding momenta, the Hamiltonian can
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be expanded around the equilibrium point in phase
space, starting from terms of second order. By a
linear transformation' one can then introduce new
canonical variables (q, p)=(q„. . . , q„,p„.. . , p„)
such that the contribution of second order to the
Hamiltonian takes the form

&'{q P)=Q&»{q» p»)
A=1

where H»0{q„p») = -,'(p »+2&@'»q») and ~„.. . , ~„are
positive constants.

Moreover, if terms of higher order are neglected
and one of theH,"s, sayH,', is different from zero
while the other ones vanish, all particles execute
periodic motions with the same angular frequency,
say co, Thus the H„"s are called the normal-mode
energies. In our model one has'

(u = 2'~'12m '~'c'~'o-' sin[k~/2(N+1)] .
As a natural time unit for our system one could

take the shortest period T„=2m/&u„fothe corres-
ponding harmonic chain. It is more convenient to
consider its limit when the number of particles
goes to infinity (so that one has a unit which is in-
dependent of N), namely, T =(2v/2'~'12)m'~'& " 'a'

(actually one has T~ = T even for small N). How-
ever, for consistency with the previous works" on
our model, we also consider here units such that
m =0 =1, c = 27.5 and in such a way one has T
=0.07S. Thus one has to multiply our times by
1/0.079= 13 in order to have ti.mes in natural units.

The numerical solutions of the equations of mo-
tion were computed on a CDC7600 by a method cor-
rect to third order. Typically, the solutions were
computed up to times of 10'g by integration steps
of 2.5x10 'T. It turned out that the results of the
"omputations were sometimes dependent on the in-
tegration step, and special care was put by us in
checking that our results were actually stable with
respect to it. This independence of the computed
results from the integration step (at least for what
concerns time averages and very probably also the
stochastic parameter) has indeed theoretical sup-
port, when the stochastic region is concerned. "
II. RESULTS ON THE BIFURCATIONS OF THE CURVE k(u)

The stochastic parameter k(x), x being a point
in phase space, is defined as the limit, as time t
-~, of a function k, (x); the latter is computed by
following up to time t&0 a trajectory starting from
x at t = 0, and another nearby trajectory, which is
initially a distance d away and is suitably readapted
to the first trajectory at times v, 27, . . . , ri, 7 being
a positive fixed number. For details we refer to
Ref. 7, where k, (x) is more properly denoted by
k„(v, x, d). We choose here the shorter notation

k, (x), t replacing the discrete time n7', in virtue of
the independence from 7 and d, at least for suitable
ranges of such variables, as discussed in Ref. 7
and also checked again in our case. Yo that paper
we also refer the reader for a discussion of how

k(x) = lim, „k,(x) gives an excellent estimate for the
maximal Lyapunov number A. (x) of the corres-
ponding dynamical system, and also for a summary
of the results of Oseledec and Millionseikov on the
I yapunov numbers themselves. As shown by those
authors, A. gx) exists for almost every x. This
function is measurable and by definition is obvious-
ly an integral (or constant of motion); thus X

takes values which are equal for almost" all points
x belonging to an ergodic corriponent of the energy
surface: if such a value is positive, the corres-
ponding ergodic component will be called stochas-
tic. Moreover, A. vanishes in a domain covered
by quasiperiodic motions.

We present first of all a series of results showing
that k(x), and thus very presumably A. (x), has
several values when x ranges over an energy sur-
face. In Fig. 1 six curves, labeled 1, 2, . . . , 5, and
Eq, respectively, are reported for k, vs t, cor-
responding to six initial dataonthe same energy sur-
face, namely, with u =E/N=4. The six initialdata
are suitably described in terms of normal-mode ener-
gies. Indeed, for curve 1 one had at the initial time
P' =40, P, = . . ~ =P, = 0, q, =. . . =q, =0; in other words
Hj =20,H,'= ~ ~ =H, =0, andq, =0, i.e., onlythefirst
normal mode was excited, and purely with kinetic
energy. Analogously for curves 2, . . . , 5, while
Eq refers to initial equipartition among the normal
modes, H', =. . . =H,' = 4, still purely with kinetic en-
ergy. Quite clearly, starting from values of the
same order of magnitude, the curves appear to ap-.
proach rather well-stabilized values, three of
which are equal, while three are definitely differ-
ent.

Five more initial data have also been considered,
which have given curves not reported in the figure,
and all tending to the common value of curves 1, 2,
and Eq. These initial data were: (a) modes 1 and
2 only equally excited; {b) modes 3 and 4 only
equally excited; (c) modes 4 and 5 only equally ex-
cited; (d) modes 4 and 5 only excited, with energ-
ies 19 and 1, respectively; (e) all modes excited
with energies proportional to their respective har-
monic frequencies;

At. lower energies we could have drawn analogous
figures with all the curves considered tending to
different values. The figure reported here, how-
ever, is more indicative in our opinion, just be-
cause three curves tend to a common value; indeed
in such a way we intend to show to which precision
the limit values ean be considered to be different.
Moreover, as has already been said, the results



FIG. 1. Curves for k& vs g,
on a log-log scale, for six
different initial conditions at
specific energy u =4.

)0

40 &0'

mere cheeked to be independent of the integration
step.

In conclusion, if we denote by k(u) the lirhit val-
ues of k, (x) when i -~ and the initial point x be-
longs to the energy surface with specific energy
E/N=u, it appears that there exist several

branches for the function k(~).
In Fig. 2 some of the several branches observed

by us are reported as functions of ~ in the interval
0.5 & u & 1000; for graphical convenience just six
branches, corresponding to the various curves of
Fig. 1, have been reported. The criterion by which

10

FIG"-. 2. Bifurcation curve
for a =lim, a, as a func-
tion of the specj fjc energy g



17
I

NE% PHENOMENON IN THE STOCHASTIC TRANSITION. . . 789

points have been ascribed to the same branch is
that they pertain to analogous initial data, for ex-
ample, data corresponding to the whole energy be-
ing initially purely kinetic and only on the first
mode, and so on. In other words, all points of a
same branch refer to initial points of phase space
being on a certain half-line issuing from the origin,
i.e., from the point with zero energy.

From the computations of Ref. 6 we know that at
high enough energies all initial data there consid-
ered gave a' unique branch for k(u); this then
means that all our branches have to merge into a
common "main branch" at high enough energies.
Actually, from Fig. 2 it appears that at u=100
branch 4 is already s~'parated from the main one,
while branch 5 separates at u = 10, branch 3 at u = 8,
and all of the remaining ones separate around u =4.
The same happened for the other already mentioned
five branches not reported in the figure.

The results presented above clearly suggest the
interpretation that the energy surfaces considered
be actually separated into mutually disjoint compo-
nents which tend to merge into an unique compo-
nent; this in turn invades a greater part of the en-
ergy surface as energy increases. Generalizing
an established use, "we will call the stochastic
regions "seas, " and in particular the main sto-
chastic component "big sea. "i Indeed, as already
stated, Q is an excellent estimate for A, ~ and this,
as a measurable function, which is an integral,
has values which are to be equal for almost all

points g belonging to an ergodic component of the
energy surface. One can also have an idea of how
"big" the various seas are. Indeed, considering
again, for example, the energy surface with a=4,
we have looked at what happens when the initial
point is slightly displaced. Let us consider the ini-
tial point with the whole energy (E = 20) on the fifth
mode, which gives the value of branch 5. If the
initial point is so displaced that mode 5 has energy
19.8 and mode 4 has energy 0.2, then we get for
k(x) already the same value of the main branch and
so, presumably, we already are in the big sea.
Now let us consider the point with the whole energy
(E =20) on mode 4, which gives the, value of branch
4. Then, if theinitialpointis sodisplacedthatmode
4 has energy 19.9 and mode 5 has energy 0.1 we
still have the same value for j'g(x); if the initial en-
ergies are 19.5 and 0.5, respectively, the function
k, does not reach a stabilized value in the times
considered by us, so that we can say nothing; in-
stead, for initial energies 19 and 1, respectively,
we get the value of the main branch. The same
happens, as already stated, if the initial energies
are both 10. So it appears that the stochastic seas
which are separated from the big sea have indeed
a small measure at high enough energies.

It is of interest to compare our Fig. 2 with Fig.
2 of Ref. 6 (note that our quantity 0 was denoted
there by ki"~/f, t being a fixed time, actually our
r, and not the current time). One thus sees that the
values for N = 5 are below those for N = 10, in agree-

~ ~ ~
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FIG. 3. Density p3* of the
probability distribution for
the energy of the third
normal'xnode at u =1, with
initially modes 3 and 4 only
equally excited. Time
elapsed, 6 x 103.



790 M. C. CAROTTA et al. 17

t

ment with the general behavior of k as a function of N,
illustratedby Fig. 3 there. For what concerns the
main difference, namely that no bifurcation was ob-
ser ved there, the explanation is possibly that the
analysis there performed was not sufficiently detail-
ed, because we have found here that in general most of
the initial data give values in the main branch; on the
other hand, in Ref. 6 the attention was mainly concen-
trated on the dependence of k from N.

Finally, apoint of great interest is to know the be-
havior of the various branches as energy de-
creases. As seen from Fig. 2, at ~=0.5 we were
able to give values of k with sufficient accuracy
only for branches 1, 4, and Eq. For the other
branches we found that log k, vs log t gives curves
which decrease almost linear'ly and this suggests
that one could have k=lim, „P,=0. Actually, it is
impossible to foresee what will happen with in-
creasing time. Indeed, looking at Fig. 1 one can
see that a reliable positive limit for k, is reached
after a certain stabilization time, and this time
was found to increase as the limit value decreases.
In addition, the results of the computations appear
to become the more dependent from the integration
step when one moves in the transition region
towards more ordered regions. Thus it happens
that in general the calculations are the more unre-
liable, and we were not able to produce sufficiently
precise results at energies smaller than u =0.5.

We conclude the present section with a further
remark. If initially only mode 2 or only mode 4
are excited, it is immediately proved by symmetry
considerations that the odd modes cannot have en-
ergy at any time. Instead, in our computations at
high enough energies we find the odd modes to have
nonvanishing energies (see especially Fig. 6) and
this is certainly due to numerical errors. The in-
terpretation is that in such cases numerical errors
bring the orbit into a stochastic region so that the
value of k thus found refers to that stochastic re-
gion; and this is indeed an indication that a large
stochastic region actually surrounds the exact orbit
which corresponds to the considered initial data.
Instead, at low enough energies we find that energy
does not flow to the odd modes, and correspond-
ingly the stochastic parameter vanishes. This then
means that there is no appreciable stochastic re-
gion near enough to the exact orbit.

III. FURTHER RESULTS SUPPORTING THE EXISTENCE
OF DISJOINT STOCHASTIC COMPONENTS ON THE SAME

ENERGY SURFACE

The previous results on the bifurcations of the
curve k(u) thus clearly indicate that in the transi-
tion region every surface appears to be subdivided
into disjoint stochastic components, each of them

corresponding to a branch of k(u). For N=2, this
picture is in agreement with the existence of two-
dimensional invariant tori, as guaranteed by the .

Kolomogorov, Arnol'd, and Moser theorem. In-
deed, in such a case it is well known that a "dis-
continuous set" of invariant tori divides the com-
plementary region of the three-dimensional energy
surface into disjoint invariant parts. Qn the other
hand, such a separation of the stochastic region is
not guaranteed by the existence of N-dimensional
invariant tori for a Hamiltonian system with N de-
grees of freedom with N& 2, and this fact gives
rise to the possibility of the so-called Arnol d dif-
fusion. What happens for'N&2 is thus a completely
open problem to which our results gave a first con-
tribution, with the indication of the existence of
disjoint invariant components in the stochastic re-
gion.

Here we give a more detailed and, possibly more
direct evidence for such a fact. In the case N=2
this would be rather simple, as it would be enough
to produce two-dimensional surfaces of section
showing that different trajectories actually invade
different parts of the allowed region. With N&2,
two-dimensional surfaces of section become the
more untreatable; thus, in order to display visual
results, we have to rely on a different technique
which certainly gives a little less impressive pic-
ture, but is, however, very simple even for, rather
a lar ge number N of degrees of freedom. We refer
to the technique of the densities of the probability
distributions for the normal mode energies, "which
we now describe very briefly.

The definition of the normal mode energies
H,', . . . ,H~ has been recalled in the introduction.
Clearly, in the limit ease of the harmonic approx-
imation, where terms of order higher than two in
the Hamiltonian are neglected, the normal mode
energies H~o are integrals, so that their values do
not vary with time. In presence of an anharmo-
nicity, instead, they can take a pro~i any value in
a certain interval (0, a„), where a„.. . , a„are
positive constants which depend on the total energy
E; moreover, for not too high energies, where the
anharmonicity is not too large, one has a& -—E for
any k. Thus, given an initial condition and the cor-
responding trajectory q(t), P(t), one can define the
probability distribution for the function HI', in an
obvious way. Indeed, if 6 is the characteristic
function of the interval (-~, 0), the probability dis-
tribution o'), (s)(0 & s & a~) for 00), is defined by

T
tt, (s)=)ittt —J e[tt,'(tt(t)t(t)1 t]dt . , -

We will make reference to the corresponding den-
sity p~(s) =do„(s)/ds. Moreover, in order to have
the possibility of easy comparisons at different en-
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FIG. 4. Same as in Fig. 3,

after time 1, .4x &04.
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ergies F-, we reported as in a previous paper" the
densities of the probability distributions not for the
functions H,' themselves, but for the functions H„'/Z.
These densities will be denoted by p, (s), with
0 ~ s ~ a~/E = 1.

A limit case, opposite to the harmonic one, is
that of an ergodic system, where the probability
densities do not depend on the initial. data on an en-
ergy surface. For example, if at an energy E our
system is ergodic and the anharmonicity is still so
small that it can in practice be neglected (apart
from the circumstance of causing ergodicity), the
densities are rather easily computed and they turn
out to be all equal to the function p'(s) = (%+1)(1
—s)" ', independent of k (the "microcanonical den-
sity in the harmonic approximation").

In practice, by numerical computations of a tra-
jectory, the densities p~(s) are easily evaluated as
limits, with increasing time, of suitable frequency
distributions, and such limits were in many cases
reached in times shorter than those required for
the function jg, As an example. Figs. 3 and 4 show
the function p~~ at times Gx10 and 1.4x104, re-
spectively: the initial data were z =1 and modes 3
and 4 equally excited.

In order to display our results, we present the
densities p„.. . , p, on a single strip from left to
right. In addition, for graphic convenience, the
curves p, (s) are represented by continuous lines.
As an example, in Fig. 5 the first strip (from top)
gives the densities for the same initial condition of

Figs. 3 and 4, so that the third density (from left)
corresponds to that of Fig. 4.

The scales for the abscissas and the ordinates
are the same throughout the figure, and the initial
values for H„' (0 = 1, . . . , 5) are marked by a cross
on the corresponding axes of abscissas. For ref-

. erence, the theoretical curve p' for the ergodic
case (in the harmonic approximation) is reported
(dotted line) in the upper strip (left).

Let us now describe the results of Fig. 5. The
first strip has already been considered. The re-
maining strips refer to a, different class of initial
conditions, namely with all modes excited at ener-
gies proportional to the respective har'monic fre-
quencies, i.e., H~o= o.e, (0 =1, . . . , 5), o being suit-
ably chosen in order to have the desired energy.
Precisely, the specific energies u were 0.05 for
the second strip, 1 for the third strip, and 50 for
the fourth one.

As one sees, at very low energies (second strip)
the anharmonicity just produces a small perturba-
tion with respect to the -harmonic case: indeed the,
normal mode energies, although not constant, take
values with probability densities very neatly peaked
around the initial values. This situation presum-
ably corresponds to a, quasiperiodic motion, and
indeed the corresponding curve for 0, vs t was
found to decrease up to time considered. An inter-
mediate situation appears in the third strip, for u
=1, while the opposite situation is shown- in the
fourth. strip (u = 50), where all the densities are
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FIG. 5. Densities pz(s), k =1, ..., 5 (from left) of the probability distributions of the energy of the normal modes divided
by total energy. Each strip refers to a different initial condition at the specific energy u indicated to the right. The
initial values of the energies (divided by total energy) are indicated for each mode by a cross. The data computed have

' been interpolated by smooth curves. For example, the third figure of the first strip (from top) corresponds to the curve
of Fig. 4. The microcanonical curve (in the harmonic approximation) is dotted at top (left).

indistinguishable from p, i.e., from ergodieity in
the harmonic approximation.

The same "microcanonical distributions" were
also obtained for other initial conditions at the
same specific energy u = 10, and even for all initial
conditions at various high enough energies, cor-
responding to k(u) in the main branch, even for u
= 100.

The most important point for our purposes, how-
ever, is to compare the first and the third strips,
which correspond to different initial conditions at
the same specific energy z = 1. For reference, the
corresponding values for the stochastic parameters
were '7x10 ' and 10 ', respectively, and from the
difference of these two values we would have con-
cluded that the motions take place in disjoint re-
gions. This is very beautifully confirmed by our
strips. Indeed, first of all, we note that the den-
sities are different for the two cases, while, being
time averages of suitable megsurable functions,
they should be equal if the initial points belonged to
the same invariant component. In addition, how-
ever, our strips allow us to give a certain "des-
cription" of such invariant regions themselves.
Thus, for example, for the initial condition cor-

responding to the first strip, the point in phase
space passes through regions where the third mode
has energies rather large, while, for the initial
condition of the third strip, the point generally re-
mains in regions where the third mope has small
energies.

In Fig. 6 four strips are reported for a different
class of initial conditions, i.e., only the second
mode excited, .at the specific energies g =0.02, o.5,
2, and 10, respectively (from top). The scales of
the abscissas and ordinates are the same as in Fig.
5. In the first and the second strip, the odd modes
1, 3, and 5 did not receive any energy (we found
values smaller than 10 ") and energy is exchanged
only among modes 2 and 4. At z =0.02 the average
values of II,' and H4 were 9.924x10 ' and 6.4x10
respectively, and the curves p, and p~ in the first
strip were a little bit enlarged for graphical con-
venience and truncated above 0.15. At u =0.5 (sec-
ond strip) we were unable to draw clear conclu-
sions concerning the stochastic parameter, while
it stabilized to positive values in correspondence
to strips 3 a,nd 4.

As a conclusion to this section, it appears that
the technique of the densities of the probability dis-
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u=qO2

0

u=0.5

FjG. 6. Same as in Fig. g

for a different set of initial
conditsons at various energies.

v=10

tributions for-the normal mode energies strongly
supports the existence of disjoint invariant com-
ponents in the stochastic region.

IV. CONCLUSIONS

We have reported two kinds of results: the bifur-
cation curve for the stochastic parameter (or max-
imal Lyapunov number) and the curves for the den-
sities of the probability distributions for the nor-
mal mode energies. These results appear to in-
dicate that in general, in our model, on the same
energy surface the stochastic region is subdivided
into mutually disjoint invariant components. I.,et
us now add some commerits.

(i) A Posteriori it may appear not so surprising
that we found our bifurcation curve. Indeed, it
seems to be a general feature that some kind of ac-
cumulation of bifurcations occurs in any transition
to something like a turbulent state. Qn the other
hand, a kind of bifurcation was already observed
by Contopoulos" for Hamiltonian systems with two

degrees of freedom. Actually that author looked
for periodic orbits. Let x be the abscissa of the
point of intersection of a periodic orbit at energy
E with a given surface of section; then one can
consider the curve x(E). Contopoulos found that
such R curve bifurcates at the energies where the

orbit becomes unst. able, beca.use two new stable
periodic orbits then appear. In such a way several
accumulations of bifurcations were observed.

(ii) A confirmation of our results has been given,
just after our observations, by Benettin and Strel-
cyn, " in a study of the way in which a certain mod-
el for billiards passes from being integrable to be-
ing a K system as the border is continuously de-
formed. Indeed they found a, bifurcation curve for
the stochastic parameter, just analogous to ours
reported in Fig. 2. In this connection it may be re-
marked that their results are particularly interest-
ing because in thei. r case of two degrees of freedom
it is possible to provide figures by surfaces of sec-
tion, so that a visual observation of the disjoint
stochastic regions can be afforded. On the other
hand, our case' with N & 2 provides new information
because, as we have already remarked, the exis-
tence of disjoint stochastic components is then no
more gua, ranteed by the existence of invariant N-
dimensional tori. Thus our results appear to indi-
cate that there is a phenomenon which points out
some general features and could be of interest in
connection with t,he problem of the so-called
Arnol'd diffusion.

(iii) The transition from quasiperiodic to sto-
chastic motions has been repeatedly investigated by
Froeschle and Scheidecker. "" The main conclu-
sion they draw is that their results "confirm the
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conjecture that a dynamical system with N degrees
of freedom has in general N or 1 isolating inte-
grals. " Actually, our results suggest that some
kind of constraints exist even in the stochastic re-

gion, but it is no't yet clear how and whether they
can possibly be described in terms of formal inte-
grals. This is an open problem to which we hope
to come back in the future. "

~B. V. Chirikov, Researches concerning the theory of
nonlinear resonance and stochasticity, CERN Trans-
cript 71-40, Geneva, 1971 (unpublished). ,

2L. Galgani and A. Scotti, Riv. Nuovo Cimento 2, 189
(1972).

J. Ford, in Eundamental Problems in Statistical
Mechanics, edited by E. D. G. Cohen (North-Holland,
Amsterdam, 1975), Vol. 3.

4B. V. Chirikov and F. M. Izrailev, in Colloque Interna-
tional CNRS sur les transformations ponctuelles et
leurs applications, Toulouse, France, 1973 (unpub-
lished) .

B.V. Chirikov, F. M. Izrailev, and V. A. Tayurski,
Comp. Phys. Commun. 5, 11 (1973).

M. Casartelli, E. Diana, L. Galgani, and A. Scotti,
Phys. Rev. A 13, 1921 (1976).

G. Benettin, L. Galgani, and J. M. Strelcyn, Phys. Rev.
A 14, 2338 (1976).
P. Bocchieri, A. Scotti, B.Bearzi, and A. Loinger,
Phys. Rev. A 2, 2013 (1970).

9M. Casartelli, G. Casati, E. Diana, L. Galgani, and

A. Scotti, Theor. Math. Phys. 29, 205 (1976), in
Russian.

~ M. C. Carotta, C. Ferrario, G. Lo Vecchio, B.Car-
azza, and L. Galgani, Phys. Lett. A 57, 399 (1976).
G. Benettin, M. Casartelli, L. Galgani, A. Giorgilli,
and J;M. Strelcyn, Nuovo Cimento B (tobepublished).

~~Here and in the following, we refer to the normalized
measure induced on the considered energy surface
(which is supposed to be compact) by Lebesgue measure
in phase space (i.e., we refer to the microcanonical
measure) .

~3M. Henon and C. Heiles, Astron. 'J. 69, 73 (1964); see
p. 76.

'4G. Contopoulos, Astron. J. 75, 108 (1970).
G. Benettin and J.-M. Strelcyn, Phys. Rev. A 17, 773
(1978), this issue.

~6C. Froeschle, Astrophys. Space Sci. 14, 110 (1971).
~~C. Froeschle and J.P. Scheidecker, Astrophys. Space

Sci. 25, 373 (1973).
~ G. Contopoulos, L. Galgani, and A. Giorgilli (to be

published),


