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We numerically investigate the behavior of a simple dynamical system, a plane billiard which by a
continuous deformation of the border passes from a completely integrable system to a well-defined type of
completely stochastic system, namely a K system. A stochastic transition is observed, with the usual
coexistence of ordered and stochastic regions. Moreover, the stochastic region at certain intermediate stages
appears to be separated into several invariant components. An estimate of the Kolmogorov entropy is

presented.

I. INTRODUCTION

Since the celebrated paper by Fermi, Pasta,
and Ulam in 1954, a lot of numerical work has
been done to investigate the ergodic properties
of classical dynamical systems.?® By means of
these numerical computations (or numerical ex-
periments, as one often says), the new phenom-
enon of the stochastic transition has been ob-
served.

This appears to be a rather general feature of
those dynamical systems that are obtained by suit-
ably perturbing integrable systems: for small
enough perturbations the computations show only
very regular orbits, lying apparently on invariant
tori, while for larger perturbations a part of the

tori seems to be destroyed, and erratic orbits in-

stead appear, filling the so-called stochastic re-
gion. The change of behavior, as appears for ex-
ample in the well-known Hénon-Heiles pictures,®
is rather impressive and certainly convincing,
but presently very little understood by the theory,
which cannot explain what happens when (and
whether) invariant tori are destroyed.

In the present paper we are concerned with a
billiard in a plane convex region, which by a suit-
able continuous deformation of the border passes
from a disk to the so-called “stadion,” that is, a
region bordered by two equal parallel segments

FIG. 1. The stadion.

and two half-circles (see Fig. 1). While the cir-
cular billiard is completely integrable,® the bil-
liard in the stadion, as proved by Bunimovich,® is
a K flow, i.e., certainly a flow with very strong
stochastic properties. Since a K flow is ergodic,
the disappearance of the invariant tori at the final
stage is guaranteed. Moreover, the continuous
passage from a completely integrable system to
a K flow strongly suggests that during the inter- '
mediate stages a stochastic transition should take
place, the features of which can be investigated
by means of numerical experiments. Actually,
we observed coexistence of invariant tori and a -
stochastic region,® as in the other examples of
stochastic transition. As a second feature, a sep-
aration of the stochastic region into invariant
components has been observed when our billiard
is sufficiently close to being completely inte-
grable. Some mathematical results, reported in
the Appendix, give a certain support to these nu-
merical results.

Todistinguish orderedand stochastic regions,
and to characterize the invariant components of
the latter, we employed two techniques: the
graphical analysis of the mapping induced in a
convenient section by the billiard flow, and the
numerical computation of its maximal Lyapunov
characteristic number. This latter technique has
been employed in several papers®*t+12; Ref, 12
contains in particular an analysis of its theoretical
support. As shown in Ref. 12, these techniques,
employed together, allow one to give an estimate
of the Kolmogorov (or metric) entropy® of sys-
tems of two degrees of freedom.

The outline of the present paper is as follows:
Section II reports some preliminary computations
concerning the extremal situations of the billiard
in the disk and in the stadion. Section III contains
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the description of the stochastic transition in its
intermediate stages. Section IV contains the nu-
merical estimate of the entropy; the method is
improved with respect to that of Ref. 12. The Ap-
pendix contains some mathematical comments
and remarks. This paper has been written as far
as possible in a self-contained way, but a famili-
arity with Ref. 12 can be useful.

II. EXTREMAL SITUATIONS OF DISK AND STADION

. A. Generalities

Let @ be a compact connected region of the plane
R?, bounded by a differentiable border I'. The dy-
namical system describing the free motion with.
unit velocity of a point mass in @, with the law of
elastic collisions at the border, is known as a
billiard in @. [For details and references, see
Refs. 7, 13, 14, and 18.] In a natural way one
1dent1f1es the b1111ard in @ with a flow {T%} on a
three-dimensional manifold (with border) M= @ XS?,
where S' denotes the unit circle, i.e., the set
of all two-dimensional vectors of Euclidean
length 1. The coordinates of a point (¢, v) € M will
be denoted by (q,,¢g,, 8), where (q,,¢,) are Cartes-
ian coordinates of the point ¢4 € @ and 0 is the angle
between the velocity vector v € S* and the ¢, axis.
Let lQl denote the area of . The normalized
measure dp, =(1/27|Q|)dg, dg,d8, which we shall
call Liouville measure, is clearly invariant under
the flow {T*}; the ergodic properties of {T*} dis-
cussed in the present paper are referred only to
this measure.'®

As billiards are not differentiable Hamiltonian
systems, the usual definition of completely inte-
grable systems cannot be directly applied. How-
ever, the main property of the latter systems is
that their phase space decomposes into the union
of invariant tori, on which the motions are quasi-
periodic (or periodic). It is easy to see geomet-
rically that such a decompositon takes place in
the case of the circular billiard, if one uses in its
phase space the global system of coordinates
(T,m, s) which is defined in the beginning of Sec.
IV, and if one considers the conservation of the
angular momentum L(q,, q,, 6) = ¢, sind — g, cos®b.
One can then consider the billiard in the disk as
a completely integrable system.

On the other hand, there exists a very particular
class of plane convex regions, in which the bil-
liards are K flows, as proved by L. A. Bunimo-
vich.® The simplest example is the so-called
“stadion,” which is a region whose border T is
the union of two equal parallel segments of length
2a> 0 and of two half circles of radius >0, as
shown in Fig. 1. I has a continuous first deriva-
tive.

As a first computation, we can apply to the sta-
dion and to the disk the already quoted technique
for computing the maximal Lyapunov characteris-
tic number (LCN). The definition of such num-
bers and the numerical technique are briefly re-
called in Sec. IIB, while the results of the com-
putations are presented in Sec. IIC.

B. The Lyapunov characteristic numbers

LCN’s can be defined for a rather general class
of flows or mappings; for simplicity we restrict
ourselves to the case of a plane billiardina re-
gion with differentiable border. In the exposition

. we follow the work by Oseledec.'®

Denote by M the boundary of M, i.e., let M
={r=(q,0)eM: geT}, and by E, the tangent space
to the mamfold M at the point x efM For any t
apart from the denumerable set Q(x) = {t=0: T
CM}, the tangent application dT%: E, = Ept, is well
defined, and the following statements can be
proved.

For u; almost any x € M, and for any nonzero
tangent vector ec E,, the limit

lim (1/t) InlldTi(e)ll =\ (x, e)
td Qx)

exists and is finite (Il - || denotes here the Euclidean
norm in the tangent space, induced by the Euclid~
ean metric dq?+dq?+d6? in M), Moreover, \(x,e)
depends on the direction of. e, but not on its length
and as e varies in E, it can assume at most three
different values, the Lyapunov characteristic num-
bers of the flow {7} at the point x. Furthermore,
for almost any e<€ E,, Ax,e) takes its maximal
value A_,.(x), which turns out to be non-negative.

It is clear that A, is constant along the trajec-
tories of the flow {Tt}.

Roughly speaking, An;u measures the mean rate
of exponential divergence of the majority of tra-
jectories surrounding the one passing through x.

The theory of the LCN’s allows one to produce
an unambiguous definition of stochasticity by say-
ing that the stochastic region S coincides with all
points x €M through which pass trajectories with

Apax 0. It could be easily seen that S is empty for
the circular billiard. The stochastic region S is
clearly flow invariant; if flow-invariant subsets of
S exist, with the (empirical) properties of being
of positive u; measure and not decomposable in
the sum of smaller subsets of the same kind, we
shall speak of stochastic components.*

The numerical technique for computing Aax 18
described in Ref. 12 for the slightly different
case of a differentiable flow, and will be now
shortly resumed and adapted to the present
situation. The method is based on the approximate



identification of a suff1c1ent1y small vector ec E_
with a suitable segment &, of length |2|=lell, with
ends in x and in a close po1nt y€M. Denote by &,
the evolved segment, i.e., the segment withends in
Ttx and Tty; for all tlmes t such that |3,| is suf-
ficiently small, one has |2,| ~|ldTi(e)ll. By a
trick, which makes use of the linearity of dTt, one
can avoid the difficulty arising from the divergence
of the trajectories, and carry on the computation
for an arbitrarily long time. Namely, after a not
too long time 7,, one replaces the segment &, by
the segment 2,1, having an end in 772 and the same
direction as e,l, but with length lé(”l equal to the
original length llell (see Fig. 2). One can then
write, for ¢ not too much larger than'7,,

|e®| ~gllaTi(e)l,

where B, is the reduction factor, i.e., 8;=llell/
|e |'. At arbitrary, not too large, tlme intervals
Tayee+sThy. .. the procedure is iterated, and thus
one has

|aim] =B, x B, x -+ +x B lldTie)l,

for

n
t-> 7,20,
i=1

but not too large. At the moment ¢ at which the »nth
iteration has been done, one computes the param-
eter

llaTi(e)ll
ky(x, e)-- Z lnﬁ‘———ln el

For almost any 2, in particular, for a random
choice of &, if |&| is sufficiently small, one ex-
pects the following properties to be satisfied: (i)
for any ¢, the length |él is irrelevant; (ii) for
large ¢, the direction of & becomes irrelevant;
(iii) for large ¢, k,(x, &) approaches a well-defined
limit value that one identifies with A, (x).

Let us now turn to our particular billiards, and
see what follows from applying this technique.

C. A, for the stadion and for the-disk

Our numerical experiments have been performed
on a CDC-CY76, with a precision of 14 digits. The

FIG. 2. Illusti'atmg the procedure for computing A .«
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orbits have beén followed by a simple geometrical
algorithm, so that only round-off errors are pres-
ent. For practical reasons, we found it convenient
to perform the replacement of segments, as de-
scribed in Sec. IIB, immediately after a reflection;
we have chosen the first reflection after a fixed
time interval 7,. Typically it was T,=5, and |e|
~1,9x107,

Since the billiard in the stadion is ergodic, the
limit value A .(x) for this system is u; almost
everywhere constant; and in agreement with the
idea that a K flow has strong stochastic properties,
it is natural to expect A, (¥) > 0. Actually, in Fig.
3, curves a and b show on a log-log scale the be-
havior of 2, as a function of #, for the stadion with
a=v=1, and two different initial points x. It ap-
pears clearly that a limit value has been ap-
proached, namely, A, =0.43. Several other initial
data have been considered with the same resuit.
Concerning properties (i) and (ii) given in Sec. II B,
accurate checks have been made. For example, by
choosing |e| ten times larger, the corresponding
change in &, at any £, is less than 10™%; by vary-
ing the direction of é, the change in %, is almost
10" for t=10%, about 10™* for ¢=10° and less than
107 for t=10* Also, the time interval 7, turns
out to be largely irrelevant: for example, by dou-
bling it, the corresponding change in &, is less
than 10™°, This accuracy in the measurement of
A is somehow higher than in analogous com-
putations performed on other systems'!'!2?; to this
probably contributes the relatively high accuracy
by which one can follow billiard orbits.

Curve c of Fig. 3 shows the behavior of &, for
a=0, i.e., for the disk. The difference with re-
spect to curves a and b is evident; for curve c one
has approximately %, =const X !, so that one is

‘allowed to take zero as the limit value. Similar

checks of accuracy have been made also in this
case with similar results.

While the billiard in the stadion (¢>0) is a K flow,
the billiard in the disk (2¢=0) is a completely in-
tegrable system, as already remarked. As a con-
sequence, the transition from positive to vanishing
a is in a sense abrupt; nevertheless, some con-
tinuity occurs. Indeed, for a << the billiard is
found to be very little stochastic, i.e., A ,, rapidly
decreases towards zero as a tends to zero. More
precisely, let y=a/7, and denote the area of the
corresponding stadion by

@=Q(a,r)=4ar + 72

The G dependence of A, at fixed ¥ is trivial:
Simple similarity considerations show that one has

Apax(?, @) =(Q/@NY2N (v, ®).
The vy dependence of X, at fixeds@= G(1, 1) has
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FIG. 3. Behavior of &,
in the case of the stadion
(curves a and b) and of the
disk (curve c).
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been numerically investigated, and the resulting
curve is reported in Fig. 4. One can observe the
rapid decrease of A, for vy—0, and a slower de-
crease for y—, with a flat maximum near y=1.
Vertical bars in Fig. 4 represent the uncertainty
by which A, has been determined: they corre-
spond to the residual oscillation of %2, around its
limit value. -

As a final remark, the “stabilization time,”
i.e., the time required for &, to reach its limit
valué, is larger when v is very small. One can
explain this feature by saying that, roughly speak-
ing, the time required by an erratic trajectory to
approximately fill M is very large when y is very

04l /" T —

03 /

0.2{

2 a 6 8 BRI

FIG. 4. Behavior of A,, as a function of vy.

small; presumably it tends to infinity when y tends
to zero. This is also one feature, by which con-
tinuity is exhibited.

III. THE GENERALIZED STADION
A. The global section

Consider the general case of a compact convex
region @, with differentiable border I'. Let g, T,
and denote by ¥ the natural parametrization of I
given by the length on I' oriented counterclockwise,
with origin in ¢, Denoting by |T'| the length of T,
one has clearly 0 <y< II‘ I

To any collision of the moving point with the
border one can associate the coordinate ¥ of the
point of collision and a coordinate a, given by the
oriented angle from the inner normal to I'" at the
point of collision to the emerging velocity vector.
Let N be the cylinder parametrized by the coordi-
nates (¢, @) with 0<¢<|T| and || <37, ie., the
set of all possible collisions. N can be naturally
considered as a global section'® of the billiard
flow; indeed, given a trajectory, to any collision
with the boundary a new collision certainly follows.
The flow {T’} on M induces then in a natural way a
homeomorphism ¢ of the interior of N into itself,
obtained by associating to each collision the next
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B now to the description and the numerical study of
: B the generalized stadion. For practical convenience,
we shall use on N the slightly different coordinates
(n,s), with n=9/|T'| and s=sina. As proven in
Refs. 7 and 13 (see also Ref. 14), the normalized
measure on N,

dv,=(1/2|T|) cosa dy da=3dnds,

is ¢ invariant.

B. The generalized stadion

»0
-0

Consider four points P,,...,P, at the vertices
of a square of side-length two, and four arcs of

FIG. 5. The generalized stadion. circle I'),...,I', disposed as in Fig. 5, with com-

‘ ' mon tangent in P,,...,P,, thus delimiting a sym-

collision. If @ is strictly convex, one can extend metric convex oval-shaped region @. Let 6 be the
the homeomorphism in a continuous way to the distance from the center of I', to the side P,-P, of
whole N, defining ¢ on the curves a=+37 as the . the square; then one has the stadion for 6=0, and
identical mapping. One is then allowed to identify a circle for 6=1. One can call this region the
these curves, thus considering N as a two-dimen- generalized stadion.
sional torus, and ¢ as a homebmorphism of this * At variance with the case of the preceding sec-
torus. In general, if I is a curve of class C?, tion, where for any value of a>0 one had a K flow,
k> 2, then ¢ is a diffeomorphism of class C** of the ergodic properties of a billiard in the gener-
the torus N. alized stadion for 0<5<1 are not known theoreti-

After these preliminary considerations, we pass cally. Numerical experiments indicate that the
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continuous variation of 8 from 1 to 0 induces in the
system a stochastic transition, with coexistence
of ordered and stochastic regions for any 5+#0,1.

Our basic tools have been the already explained
technique for computing A_, , anda graphical study
of the mapping ¢:N =N, introduced in Sec. IITA.
We employed for N the coordinates (7,s), choosing
the origin ¢, of the coordinate 1 in the middle point
of I',.

For each fixed value of 0, several initial data
% €N have been considered, and the points
X, ¢x,...,p™,... have been marked on N. The
different character of the trajectories is then easily
visualized. ‘A periodic orbit in M, undergoing &
collisions before closing, gives rise to 2 isolated
points in our figures; orbits of quasiperiodic type
should instead appear as a set of points densely
filling suitable closed curves. Concerning A .,
one expects to find numerically a vanishing value in
any region where quasiperiodic orbits prevail. Fi-
nally, a stochastic orbit should appear as a set of
points filling densely a certain area, and corre=-
spondingly A .. can be expected to be positive.

This actually occurs, and coexistence of differ-
ent kinds of trajectories has been observed for
any 6+#0,1. Figure 6 refers to 6=10"%, and shows

BENETTIN AND J.-M.
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a large stochastic “sea,” filled by a single orbit
(symbol +), with a couple of small “islands” in
which one finds quasiperiodic orbits (e.g., symbol
B) around a closed orbit (symbol A). By increas-
ing 8, many other islands become evident. For ex-
ample, Fig. 7 shows for 8=0.6 a quite complicated
structure: within the stochastic sea, filled by a
single trajectory, one can see many islands apparent-
ly surrounding closed orbits. Atleastfor the simpler
among these, it is possible to compute the coordi-
nates of their traces in N, by means of elementary
geometrical considerations (see Fig. 8). They cor-
respond with high accuracy to the centers of the -
islands, as appearing for example in Fig. 7. One
can notice, within the sea, several “white holes”:
they correspond to other more complicated chains
of islands, and one is led to suppose that islands
of any size exist, being eventually dense in the sea,
as conjectured in Refs. 4 and 5 in a similar setting.
Figure 9, which is an enlargement of a detail of
Fig. 7, seems to confirm this conjecture.
Concerning A, we found as expected a vanishing
value in the islands, and a positive value in the sea.
Moreover, up to 6=0.75, we found just one sto-
chastic component: a single orbit fills it, and A_,,
is constant within it. Considered as a function of

S
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FIG. 7. Graphical analy-
sis of ¢ for 6=0.6.
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FIG. 8. Iliustrating the more simple periodic orbits.
The coordinates of the collisions, relative to 6=0.6, are
indicated.
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8, M. decreases when 6 passes from 0 to 0.6, and
seems to be constant between 0.6 and 0.75. In the
latter interval, numerical computations are par-
ticularly hard: the stabilization time increases
very much, and a typical orbit requires a very long
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time for invading the sea. To these facts a sub-
stantial change in the properties of our system is
associated. Indeed, for 6= 0.76, one finds that the
sea has been subdivided into more than one sto-
chastic component: A trajectory starting in one of
them fills it, but never goes out, and correspond-
ingly A .. is constant within each component, but
‘assumes, in general, different values in the dif-
ferent components.

Figure 10 shows the separation of the sea into.
stochastic components when it firstly occurs, i.e.,
for 8=0.76. Figure 11 shows the situation for
8=0.85 (because of the symmetry of the whole pic-
ture, only a quarter has been reproduced). Cor-
respondingly, Fig. 12 shows the curves Ink, vs In¢
for 0=0.85 and initial points chosen in three differ-
ent components. Different limits are clearly ap-
proached. By increasing 0, the number of stochas-
tic components increases rapidly: 11 for 6=0.85,
and at least 13 for 8=0.9, so that N appears to be
divided into thin strips. In the limit 6=1, as s is
an integral of motion, N is covered by an infinite
set of invariant lines, and once again continuity
is exhibited. '

When, by increasing 8, a stochastic component
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divides into invariant parts, correspondingly A,
undergoes a bifurcation. The whole situation is
illustrated in the branched graph of Fig. 13; ver-
tical bars, as in Fig. 4, represent the uncertain-
ty by whlch Anax has been determined. Notice that
they are small for small 0, but appreciably larg-
er for 6> 0.6, where the stabxhzatlor} time is
considerably greater.

IV. ESTIMATE OF THE ENTROPY

A. Abramov formula and Piesin formula

In this section we give an estimate of the en-
tropy of the billiard flow in the generalized stadion.
We recall that if R is a transformation or a flow,
which preserves the normalized measure y, then
h,(R) denotes the entropy of R with respect to
measure K. (See Refs. 7, 17, 18, and 25 for de-
tails.)

As in Ref. (12), for computing the entropy of our
billiards we shall use Piesin’s formula.'!®* How-
ever, at variance with respect to Ref. 12, this for-
mula will not be applied directly to the billiard flow
{T‘}, but to the transformation ¢ induced by the
billiard flow on the global section N. Then, by the

+7000 +8000 «9000 Tl

Abramov formula (see Ref. 20 and Sec. 15 of Ref.
18), we shall finally obtain h, ({T‘})

Consider the general case of a billiard in a con-
vex region @ of area IQI , with differentiable bor-
der I'. In M=Qx S', besides the already employed
system of coordinates (q,,¢,, ), let us introduce
new coordinates (7,7,s), where 7 is the time run
after the last collision and (7, s) are the coordi-
nates of this collision (see Sec. IIIA).

It is easy to see that the determinant of the Ja-
cobian 8(q,, ¢,, 6)/8(7,7, s) is constant and equal
to |I'|. Consider now a point x= (7, s) € N, with
s#=+1, and denote by I(x) the “time of first return”
of x, i.e., the smallest >0 such that T*x € N.
From the Abramov formula one obtains immediate-
ly
(¢>) 2th(¢)

/, l(x)de Tl Um, sy dnds |

where v;, as in Sec. IIIA, denotes the normalized
¢ -invariant measure on N: dv, = sdnds.
But since

W, {Tth =

9(q,,45,9)
d t 192 = Iﬁ
€ a(7,m,s) =7
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FIG. 11. Graphical analy-
sis of ¢ for 6=0.85 (en-
largement of a quarter of
the figure).

FIG. 12. Behavior of
k, for 6=0.85 and initial
points chosen in three dif-
ferent stochastic compo-
nents.
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FIG. 13. Behavior of A,
as a function of 6. The
different branches for
6=0.76 refer to the dif-
ferent stochastic compo-
nents. An enlargement of
the region where these

0.3] \ 07

branches appear is in-
serted; symbols +, —, etc.
in it make the correspond-
ence with the different sto-
chastic components, as
appearing in Fig. 11.

We shall suppose A%(x) = 22(x); A¢(x) will be de-
noted also by A2_.(x). The numerical technique for
computing A2, (x) is very similar to that described
in Sec. IIB: Given a point.x € N, and a sufficiently
small segment f with ends in x and y€ N, one com-

0.2 §
\l
\I
| | | h—| | ) |
0.1'{ | | | 1\| . vl\ |
==
0.2 04 06 08 ) 10 S
one has
j Z(n,s)dnds=j dends=T%,— f dq, dq, d6
N M M
_2mlQl
e

so that one finally obtains the equality

IT|
huLl({Tt}) = mhvb(¢) ’

which is at the basis of our computation.

Now, for determining %, (¢) we will make use of
Piesin’s formula.'® Properly speaking, this for-
mula has been proven in the hypothesis that ¢ is
of class C?; this requires that I' is of class C3,
while in our case I is only of class C'. Notice,
however, that in the spirit of a numerical com-
putation, the question of the differentiability of I
in the four points P,... P, is not very meaningful,
as one can always imagine that suitable regular-
ization in a small neighborhood of these points has
been made. We thus suppose that Piesin’s formu-
la works well also in our case.

Piesin’s formula says that

\

h,,L(¢)=fN<w;>oxg’(x)>de,
_ oG

“where A?(x) and A¢(x) denote the LCN’s of ¢ at the
point x. Their definition is perfectly analogous to
that given in Sec. II B for the flow {Tt}; one has
simply to replace the time ¢ by the number of itera-
tions of the mapping. Their properties are also
analogous, but, since N is of dimension two, at
most two distinct values are present.

putes the parameter &, (x, 7), expecting that for a
random choice of f it approaches the limit value
A2.x(x). Concerning the norm, we notice that in
'the tangent spaces to N we used the same norm
ll « 1 as in the computation of k,(x, &) in Secs. Iland

I, |

It is easy to prove that one has A2 (x)= -2?(x),
v; almost everywhere. Indeed, by applying to our
case theorem 1 of Ref. 10, one finds that for v, al-
most everywhere it is

A2(x) +A2(x) = lim(1/x) In|det dp?| ,
now

where detd¢} denotes the determinant of the Jac-
obian matrix of the application ¢" at point x, com-
puted in the coordinates (¥, @). Let p(x)=cosa,
for x=(y, @) € N. As the measure cosadpda is

¢ invariant, one has |detdg,| = p(x)/p(¢x) and
consequently, .

o p(o*x)

doi| = ——.
|det ¢x| o p(q) x)

Applying now the Birkhoff ergodic theorem to the
function In[p(x)] [it is easy to see that In[p(x)]

e LY(N,v;)] one obtains that for v; almost every-
where one has

s 1 nl _ 13 13 k=1
lim In|detde!| =lim > kz; In[p(¢*x)]

n=

1 Z
- llm; Z In[p(¢*x)]=0.
kel

We have thus 22(x) = -2?(x),? so that in our case
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Piesin’s formula reduces to the equality
By (@)= [ Aul) vy ().
v !

B. Numerical estimate of the entropy

Now, to apply Piesin’s formula for computing
h,,L(¢>), we shall use the assumption that 22, (x) is
v; almost everywhere constant, within each sto- -
chastic component of ¢. This is not proven, but
the numerical evidence is strong; in any case,
for initial points in the same components, we
found the same A2, (the same happens also for
X,.a Of the flow {T%}). With this assumption one
obtains that the integral in Piesin’s formula re-
duces trivially to a sum, and one has

huL(¢) = Z VL(Si)Af,i ’
i

where S,,S,, ... denote the stochastic components
of ¢ and A} ; denotes the maximal LCN in S;. A
rough estimate of vL(S,.) can be performed directly
on the figures. A practical method is that of (auto-
matically!) counting the number of symbols in each
picture. Inthis way one obtains an estimate of h,,L (@),
and consequently of 72, L({T"}), for any value of 8; the
result for the latter is reported in Fig. 14. No-
tice that, at variance with the measurements

of A, (Figs. 4 and 13), here it is not possi-
ble to give an estimate of the errors, be-
cause the uncertainty in the measurements of
v;(S;) is not known (probably the measures are
over-estimated, since microscopic islands are
not visible in our rough pictures). Figure 14 gives
a weak indication thats, ({7*})1is nota monotonically
decreasing function of Certainly, this may be
an illusion produced by the errors. Notice how-
ever that the arc of positive slope occurs just be-
fore the first observed separation of the stochastic
region into invariant components.

V. CONCLUDING REMARKS
Our numerical experiments show that the sto-
chastic transition can take place for systems of
[ar®
04
s .
02

0.1 ) .

02 04 0.6 08 10 B

FIG. 14. Estimate of the entropy at different values of
6.

very simple geometrical nature. Billiards seem
to us to be rather interesting systems from the
point of view of numerical investigations: Indeed
they are sufficiently simple to be easily handled
with a computer, but nevertheless physically sig-
nificant, and several theoretical investigations on
them are presently available. Of course the final
goal would be that of proving theoretically the exis-
tence of the numerically observed phenomena.
Concerning the existence of separated stochastic
components, we remark that numerical evidence
of this fact has been obtained recently by Carotta
et al.?" for a completely different model, namely, a
chainof particles interacting via a Lennard-Jones po-
tential. We believe that the existence of several
distinct stochastic components in the intermediate
stages of a stochastic transition is not an excep-
tional phenomenon, but probably a very frequent
one. Unfortunately, it is not so easy to put it in
evidence by numerical methods in all interesting
situations.
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APPENDIX: SOME MATHEMATICAL COMMENTS

As already remarked in the Introduction, the
ergodic properties of a billiard in the generalized
stadion for 0<8<1 are not known theoretically.
Features like coexistence of an ordered and a
stochastic region, separation of the latter into
invariant components, and positivity of entropy
for 0<6<1 are only numerical results. Never-
theless, in light of some theoretical results of
Lazutkin® and of Dvorin and Lazutkin,?? it is pos-
sible to draw a heuristical picture that partially
explains the numerically observed features. These

_theoretical results refer to billiards in strictly

convex regions with sufficiently differentiable

border, so that they are not directly applicable
to our billiards. However, as remarked in Sec.
IV A, the question of differentiability in P,,...,

' P, is not very meaningful from the point of view

of numerical computations, and it is natural to
suppose that this is not the essential point.

Let us give a short summary of these results.
Consider a strictly convex, compact region @ of
the plane R? with differentiable border I'. A closed
convex differentiable curve LCQ, L+T, is called
a caustic in @ if any trajectory of the billiard in
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@, which once is tangent to L, is again tangent to
L after each reflection. For example, the
caustics in a disk are all the circles coneen-
tric with the disk. Clearly, if L is a caustic
in @, then each trajectory traversing once the re-
gion limited by L traverses again such region after
each reflection; it easily follows that the presence
of one caustic in @ is sufficient to ensure that the
billiard in @ is not ergodic with respect to the
Liouville measure. .

In general, the existence of caustics is not evi-
dent. In Ref. 21 it is proved that if I is sufficient-
ly differentiable, then in any neighborhood of I' in
Q, infinitely many caustics exist whose union is a
set of positive, plane Lebesgue measure.

Suppose now that a given stochastic trajectory
(i.e., a trajectory with positive A_,,) undergoes a
collision (71, s) with the border, with ls| sufficient-
ly close to 1. Such a trajectory certainly traverses
the anulus between two caustics, crossing the
more external one but not the more internal. The
same clearly happens after each reflection, so
that the trajectory is in a sense “confined” to the
anulus. )

This picture seems to be rather appropriate for
heuristically interpreting the numerical results
of Sec. IIIB. Indeed, it is evident that all orbits
tangent to a given caustic give rise to traces, in
the section N of the flow, belonging to a curve s
=s(n), while orbits confined (in the above sense)
to an anulus limited by two caustics L, and L,
produce traces in N which are confined in the strip

between two curves s,(n) and s,(n). The separa-
tion of the sea into an increasing number of invar-
iant components when 8 ~1 is then interpreted as
the appearence of an increasing number of caustics
(of course, only the caustics which are sufficiently
apart from I' give rise to macroscopically observ-
able stochastic components).

Concerning now the stochastic properties of our
billiards, let us make a final remark. It is well
known that the very strong stochastic properties
of Anosov systems and certain related systems?*-?
are accompanied by a relevant feature, i.e., that
such systems admit of infinitely many periodic
orbits of hyperbolic type, with arbitrary large
periods.?% %

Now, it is proved in Ref. 22 that for a residual
set (in the sense of Baire category®) of billiards
in compact strictly convex regions, with border
of class C",8 <7<, the diffeomorphism ¢ has the
above property. It is then not so surprising that
in the case of the generalized stadion, stochas-
ticity is numerically observed even for 0 not too
small. In our knowledge, no other property of
billiards in strictly convex regions, concerning
the stochastic properties, has been proved.
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