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Dynamics of critical concentration fluctuations in gels
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, The dynamics of concentration Auctuations in a gel near phase separation is described by a mode-coupling

theory. The scaling relations, E ~ 1/g' and f ~ 1/g, where ( is the correlation length of the concentration

fluctuations in the network, are obtained for the elastic constant of the network, E, and the frictional

coeAicient between the network and the fluid medium, f. The theory fully explains the experimental results

of Tanaka, Ishiwata, and Ishimoto on a polyacrylamide gel.

INTRODUCTION

A gel is an infinite cro'ss-linked polymer net-
work immersed in a fluid medium. The polymer
network concentration undergoes thermal fluctua-
tions in space and time. Recently, Tanaka, Ishi-
wata, and Ishimoto (TII) observed a critical di-
vergence and slowing down of concentration fluctua-
tions in polyacrylamide gel using laser- light scat-
tering spectroscopy'. Both the intensity and the
correlation time of the scattered light increase as
temperature decreases and appear to diverge at a
certain temperature. It was explained as critical
behavior associated with a phase separation of the
binary mixture of the network and the fluid medi-
um, namely, a shrinkage of 'the network in a fluid
medium.

In this paper we present a detailed theory of the
dynamics of concentration fluctuations in gels near
phase separation. We calculate the time correla-
tion function of the concentric, tion fluctuations in the
network by following the procedure of the mode
coupling theory developed by Kawasaki. ' (See also
the equivalent theory by Ferrell. ') Their results
have been successfully applied to explaining the
dynamical behavior of critical fluid mixtures. ' An
essential difference between gels and fluid mix-
tures lies in the presence of shear elasticity in
gels, which is absent in fluid mixtures. It will
be shown, however, that this difference has little
influence on concentration fluctuations of wave-
length comparable to that of visible. light. The
results of the present theory are in excellent
agreement with the observation of TII. The scaling
relations for the viscoelastic parameters of gels
will be obtained by comparing this theory with the
macroscopic theory of the dynamics of gels by
Tanaka, Hocker, and Benedek (THB).'

THEORY

The polymer network can be considered as a
homogeneous elastic body since the average dis-

tance between adjacent cross-link points (several
hundred angstroms) is an order of magnitude less
than. the wavelength of visible laser light. The net-
work concentration p(r, f) must satisfy the equation
of mass conservation:

= V ~ [p(r, t)v(r, t)]

where v(r, t) is the local velocity of the polymer
network. Kawasaki' has derived from Eq. (1) a
general formula for the correlation function of the
concentration fluctuations,

(2)«p'[q, ~]& =«p'[q]&/(- f~ —~[q, ~]),
where q is the wave vector, ~ is the frequency,
[q, &o] denotes the Fourier transform in space and

time, and [q] denotes the Fourier transform in

space only. Z is called the self-energy and is
given as

, k T dk k, ' (&p'[q —k])
p (27f), k (gp2[q])

„(v'[k, (v] )
(v' k])

where k~ is the Boltzmann constant, T is the ab-
solute temperature, p is the density of the whole

gel, and v is the amplitude of shear displace-
ment velocity. The direction of the wave vector
q is chosen as the z axis. To obtain the correla-
tion function (&p'[ q, &u] ) we must know both the
static correlation function (hp'[q] &, and the cor-
relation function of the amplitude of shear dis-
placement velocities (v'[k, &u] &. We assume that
the former can be given by the formula of Ornstein
and Zernike, '

«p'[q]&=& z
where g is the long-range correlation length of
the concentration fluctuations, thy constant R is
the Debye persistence length, and A is a constant.

17



TOYOICHI TANAKA 17

The latter can be calculated as follows. The shear
displacement velocity obeys the following equa-
tion of motion:

(v'[k, (o] )
v [k] ) —i ur - qk'/P (6)

v 82v g2u
~

e& =~ex' "ex' (5)

(v'[k, ~] ) 1 r. r
(v'[k]& r, —r -f]d-r, - f~-r,

where

where u is the amplitude of the shear displacement,
x, denotes the coordinate in the direction of the
wave vector k of the shear wave, g is the viscosity
of the gel, and p. is the shear modulus of the gel.
In the absence of the term pe'u/Bx2~ representing
the elastic restoring force, Eq. (5) reduces to the
equation for shear waves in a fluid. The solution
of E]l. (5), with the initial condition (u[k, (=0]v[k,
t=0]) =0, is

which can be further approximated as

(v'[k, ]d] ) p~

(„[k]) qk' '
since qk,'/p, -3 x10' Hz is much larger than the
frequency range of concentration fluctuations ob-
served in the light-scattering experiment by TII
(]d-3 x 10' Hz). It is important to note that the
shear modulus p, does not appear in E]I. (6) since
for k =k, the term representing the shear restoring
force in E]I. (5) is negligible.

Integrating E]l. (3) using Egs. (4) and (9), we now
obtain the correlation function (see Ref. 2)

2

]ap' ]i, ~]) =A(—

where

'g
~ ~

p, pg (7) ', &( &),
k T

6m' '.
From macroscopic measurements of the period

and the decay rate of shear oscillation (k-1 cm ')
of a 2.5/q polyacrylamide gel, we determined that
q-3 cp and p-200 dyn/cm' at room temperature,
which gives 4 p.p, /rP - 20' cm '. With this value
the integrand in Eq. (3) has a smooth distribution
in k space and the average value of k' is approxi-
mately k', —= q'+ I/$' F10" cm '. Thus, for k which
contributes to the integration, where 4pp /q'«k',
Eq. (6) reduces to

and E(x) = —,'[1+x'+ (x' —1/x)arctanx] . In the hydro-
dynamic regime (qt'«1), this can be written as

3 . I
(sp'[g, ]d]) =A — . („ / ), . (12)

COMPARISON WITH EXPERIMENTS

Let us now compare this theoretical prediction,
I' = (k~T/6]]q()q', with the experimental observa-

jo

(}0 cm /sec)

FIG. 1. Decay rate
I /q2 of concentration fluc-
tuations in a 2.5% poly-
acrylamide gel measured
by Tanaka, Ishiwata, and
Ishimoto using laser light

. scattering spectroscopy
(Ref. I). The solid line is
the pred'iction of the pre-
sent theory I/q =k~T/
(Gx g$).

~W
4

~44

0 -20 0
!

20
T( C)

60 80 100



DYNAMICS OF CRITICAL CONCENTRATION FLUCTUATIONS. . .

where f, is a constant. This expression corre-
sponds to the result of the mean field theory. '
Since the concentration of the polymer network
(2.5/o) is very low, q may be taken to be propor-
tional to the viscosity of water, q (T),

q =[@(20'C)/q (20 C)]q. , (14)

where g(20'C) is approximately 3 cP, as stated
above. In Fig. 1 the decay rate I'/q' experimen-
tally measured by TII, and I'/q'=ksT/(6mq$) cal-
culated from Eqs. (13) and (14) are plotted against
temperature (f, was chosen to be ll A).' There is
excellent agreement throughout the temperature
range of the measurements.

DISCUSSION

In order to examine the viscoelastic properties
of a gel near phase separation, we compare Eg.
(12) with the result of the macroscopic theory on
concentration fluctuations of a gel by THB":

(15)

where N is a constant proportional to the number
of segments constituting the polymer network, and
E and f are macroscopic parameters. E is the
longitudinal osmotic elastic modulus of the network
and f is the frictional coefficient of the network in,
the fluid medium: f times the velocity of the net-
work relative to the fluid medium is the drag
force exerted on the unit volume of the network.
From the comparison, we see that

E =N, ($,/$)'ks T

and

f =N, (g, /$)'6vq$, (17)

tions of TII. From the intensity of light scattered
from the gel, TII found that (b p'[q])~ T/(T —T,)
for qg«1, where T, is the spinodal temperature,
at which the amplitude of concentration fluctuations
diverges. From Eq. (4) we see that (&p'[q]) ~P
for qg«1. Thus

(13)

where N, =N(B/$, )'. It is interesting that these ex-
pressions are the same as those for an ideal solu-
tion of N, ($,/()' spheres with radius $. Equations
(16) and (1V) can be interpreted in the following
way: the network of a gel consists of No unit seg-
ments. At high temperature, where $ = $„ these
unit segments undergo diffusive movements in-
dependently. As temperature decreases and ap-
proaches the phase-separation temperature, the
movements of the unit segments become correlated
over a distance $. There are N(f, /$)' such cor-
related regions which undergo independent dif-
fusive movements. This (g, /$)'dependence is due
to the nonuniform concentration distribution in the
correlated region used in the Ornstein-Zernike
theory. ' If the concentration were uniform in the
correlated region, the number of regions should be
proportional to (g, /g)'.

Tanaka, .Ishiwatg, and Ishimoto determined the
elastic modulus E as a function of temperature
from measurements of light intensity scattered by
a 2.5/o polyacrylamide gel. ' By comparing their
results with Eq. (16) it is found that N, is 1.3
x l0" cm '. This indicates that approximately 60
mono-acrylamide molecules constitute one unit
segment. The rms end-to-end distance of the unit
segment is 15 A= & 60 x 2 A if it is assumed that
the molecules (size -2 A) are connected through
flexible bonds. This value roughly agrees with
the value $, =11 A we have used in calculating the
decay rate I'.

In conclusion, it has been demonstrated that the
dynamics of concentration fluctuations in the poly-
mer network of a gel near phase separation can be
well described by the mode-coupling theory. By
comparing the present theory with the macroscopic
theory of THB, the critical behavior of the visco-
elastic properties of gels has been clarified.
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The decay rate (E/f) q shown in Eq .. (15) can also be
obtained by substituting into Eq. (1) the "terminal
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elastic restoring force.


