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The optical anisotropy induced by a, saturating stationary field in a gas laser which is initially isotropic is
described theoretically. The calculation of the polarizability tensor shows that linear or circular anisotropies
can be induced depending upon the electromagnetic field polarization. The Jones matrix formalism is
extended to the nonlinear case. The experimental verification of the predicted linear gain anisotropy in a He-
Ne laser is obtained at 3.39 p,m. The Jones matrix for a probe field in this particular case is also calculated.
The corresponding linear anisotropy is attributed to Zeeman coherences between sublevels. Moreover, we
find that the maximum of this anisotropy is slightly shifted from the center of the line.

I. INTRODUCTION

Lamb's theory of the laser' has been success-
fully used to explain many experimental results
such as the Lamb dip, mode-coupling effects and
related phenomena. This theory works particular-
ly well for scalar phenomena. The model:includes
two parts: an active one (the amplifying gas) and
a passive one (the resonant cavity). Lamb intro-
duced the latter as a loss distributed in the former.
The field in the laser then obeys a Maxwell equa-
tion in which one includes a term that accounts
phenomenologically for attenuation. The different
optical devices in the cavity are then delocalized
(i.e. , they are assumed to be uniformly distri-
buted) and the equation mentioned above describes
only a "mean" field. These optical devices are
mirrors, windows, or Faraday rotators, for ex-
ample. However, the Lamb model does not per-

- mit the study of the variations of the electromag-
netic, (e.m. ) field along the axis of the laser. Yet
these variations exist: it has been already shown'
that, at a point, the two progressive waves con-
stituting a stationary mode can have two different
polarizations and that these polarizations can vax y in
the laser. This effect can be explained using the spa-
tial vectorial theory based on the resonance condition.
In this theory, each optical component of the cavity is
localized and represented by a Jones matrix. ' The
light goes back and forth in the laser and is trans-
formed by these components. In a stationary state,
the electric vector is one of the eigenvectors of the ap-
propriate products of Jones matrices; after a
round trip in the cavity. this vector remains un-

changed. This is called the resonance condition.
We have used this method' and have experimen-

tally verified its results in the case of cavities
containing linear-loss, 4" linear-phase, ' and cir-
cular-phase'anisotropies. However, in these
papers, it was supposed that for monomode lasers
the anisotropies of the amplifying medium' were
weak and could be neglected. It was sufficient to
know the Jones matrices of the optical compon-
ents in order to solve the problem of determining
the stationary state.

This approximation is very good in the case
where the polarizations of the two counter-propa-
gating waves in the amplifying gas coincide. If
this is not the case, there may be anisotropies
of the optical components which are of the same or-
der of magnitude as those induced in the amplify-
ing medium by the field. A competition could arise
and determining the field would then become a
complicated self -consistency problem. The aim
of the present paper is to provide an introduction
to that kind of problem by defining and calculating
the Jones matrix of the saturated "atoms+ field"
system.

The level degeneracy is shown to give rise to
anisotropies. Its importance has already been
shown by Doyle and White' but only in the case of
coupling between two modes with different fre-
quencies in the laser. An indirect study of the in-
duced ani:sotropy in a vanishing magnetic field has
been done experimentally by Delang and Bouwhuis"
and theoretically analyzed by Van Haeringen. .

"
However, experiments were done using a sealed
laser with unknown cavity anisotropies so that
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separation between the two kinds of anisotropies
could not be achieved. Dienes" has studied the
variation of the ellipticity of a wave propagating in
an amplifying medium. Im. Thek-De et al."and
Yu. A, Vdovin et a/. "have observed the interactions
of two waves with different and tunable frequencies
for various polarizations in an absorbing or am-
plifying medium. However, the saturated absorp-
tion experiment done by Shank and Schwarz" is
closer to the spirit of our study. They used two
progressive waves with identical but not variable
frequency. The resonance condition has also been
used by other authors in order to explain discrep-
ancies"' with the distributed-loss Zeeman laser
theory' and to describe some specific experimen-
tal results. ""

In Sec. II, it will be shown that the saturating
field of the laser generally induces anisotropies
in the gas and that the propagation matrix depends
on two different atomic quantities: populations of
the sublevels (scalar quantity) and Zeeman co-
herences (tensor quantity describing alignment).
The second gives rise, in particular, to the linear
anisotropy. In Sec. III we describe an experimen-
tal device designed to verify this effect. The laser
field is linearly polarized, the "atoms+ field"
medium exhibits a linear anisotropy and behaves as
an amplifying pniaxial crystal. To show the effect,
we use a small 1'inearly polarized probe field whose
plane of polarization is rotated to permit a phase
detection. We then find that the probe is more am-
plified when its polarization is perpendicular to
thai of the laser field. Furthermore, the experi-
mental result shows an unexpected effect indicating
that the maximum of this anisotropy is not at the
center of the line.

J aco
dvg [pt, g (v, 8, f)p

+ p, , (v, z, f) p, ~ ]+c.c.,

point z; it is good only for a slice dz «X where X

is the wavelength. We attribute the same k to the
two progressive waves because we suppose ~E, ~

E, . We write in the general case,

E, = S x+e,y, E,= b~+e,y, (2)

where x and y are unit vectors and Ox, Oy, Oz de-
fine a right-handed Cartesian system [Fig. 1(a)].
One should notice that E, and E, can describe the
fields outside or inside a cavity. However, in the
latter case the two fields are not independent due
to the resonance condition. ' We take Oz as the
quantization axis. This is justified by the fact that
E, and E, can have a general polarization which
leaves only the propagation axis Oz as a symmetry
axis. Under these conditions the light beam E, with
polarization cr' for instance would be written

E, = $(x + t',y) .
We then describe the atomic gas in the conven-

tional manner" and consider only two-levels atoms
[Fig. 1(b)]. The standard state vectors are ~a, m)
and b, m). J, and J, are the angular momenta for
upper (b) and lower (a) levels, and m is the mag-
netic quantum number. The eigenvalues of the non-
perturbed Hamiltonian for the a and. b levels are
E and E~ with E &E, and E, —E,=8~ ~. The sys-
tem is described by a density operator p&, t& and
the polarization of the "atoms+ field" system for
the slice dz can be written

+&a, t) = Tr(p(g, t) &)

II. THE PROPAGATION MATRIX

A. Hypothesis

The physical system we are interested in is an
atomic gas interacting with a saturating e.m. field.
We have in mind the weak gain active column of a
single-mode TEM«He-Ne laser in which the field
E&, , &

results from the composition of two pro-
gressive waves having approximately the same
amplitude. Moreover, we suppose that the po-
larizations of these waves are different, and we
write

F &™i(+g - ke) + E e-i (cv t + kz) + c c(~,g)— ~ ~

where co is the angular frequency, k.the wave vec-
tor, and z is measured along the axis of the laser.
E, and E, represent amplitude and polarization of
the two waves. Moreover, we suppose E, and E,
to be complex in order that we may introduce a
phase factor. The expression (1) is written at the

where pt, ... (v, z, f) is the density matrix element
between the sublevels b „anda for the class of

MIRRORS

QUANTIZATION AXIS,

(a) {b)

FiG. l. (a) Definition of coordinate axes. The origin 0
coincides with one end of the active medium. (b) Two
degenerate energy levels a and b having a resonance
frequency co, &

and angular momenta J, and J~ .
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atoms having the velocity g along the Oz axis.
is the electric dipole operator and its matrix ele-
ments obey the selection rule 4m = +1 because Oz

is used as the quantization axis. The polarizability
tensor, the optical constants and the propagation
matrix will then be deduced from (P(, ,).

B. Calculation of the polarizability tensor

We must first calculate the matrix p(v, z, t). For
this purpose we use the evolution equation in the
laboratory, frame"

I

d—p(v, z, t) ——[X(, ,), p(v, z, t)].
exc + relax

(5)

The Hamiltonian

+(» t) p ~ E(» t)

contains the nonperturbed Hamiltonian Kp and the
perturbation energy —p, ~ E„,) coupling the atom
and the field in the electric dipole approximation.
Kp is diagonal in the standard base and recoil ef-
fects are neglected. We simplify the problem in
making ad hoc assumptions on the excitation-re-
laxation term [dp(v, z, t)/dt] „,„„.This term
should take into account truncation of the density
matrix (restricted to two levels), collisions,
Van der Waals interactions, and excitation (pump-
ing effect). Moreover, we should also include in
this term coupling between atoms belonging to
different velocity classes. We then focus our at-
tention on three different types of matrix ele-
ments: first, terms linking two levels such as
p, , (v, z, t) (optical coherence) and then two

m+1 mterms belonging to a particular state, i.e. , a pop-
ulation such as p, , (v, z, t) and a Zeeman coher-
ence such as p, , (v, z, t). Each of these three
types will be characterized by a different relaxa-
tion constant I". %'e obtain

8 8
ih —+v —+I",(0) p, , (v, z, t)

~8 'm'm

= [K„„,p(v, z, t)], , +iFn.„(Va)'m'm

9 9
ih —+v —+1",'(2) p, , (v, z, t)

. Bz m m+2

= [X(, ,), p(v, z, t)]. . . (Vb)

9 9
ih —+v —+1 k pk ~ (v, z, t)

Bg m+1 m

= [X(, , ), p(v, z, t)], , (7c)

In fact, collisions and radiation effects introduce
coupling between these equations. Atomic. param-

eters (describing populations and alignment) and
also optical coherences are hence modified. At
low pressures, however, collision effects are
small and the atomic parameters may be described
in the standard

~

o., m) basis" by the same relaxa-
tion rate; i.e. , I"(0)-1"'(2). However we shall
keep the notation of Eq. (7) so as to distinguish the
origin of the different terms.

Two supplementary equations, analogous to (7a)
and (7b), characterize the b level. X, and X, are
the excitation rates per unit volume of phase space
for atoms in states a and b. %'e suppose'

& = A] 8'( ), i = at 5

W(k) = (I/vt(&7T ) exp( —v /vt()

is the Maxwell velocity distribution for atoms. We
are looking for solutions of Eq. (7) developed in
Fourier series"

p, , (v, z, t)
bm + 1am

2P 1
2k +&p (v)e ((ddt + nkk) (n ()dd)

bm+ la
p =p n =-(2/ +1)

(8a)

p, , (v, z, t)

2t))

'kp, , (v) e '"k', (n even). (8b)
p =p n=-2p

In Eq. (8b) m'=m (population term) or m'=m+2
(Zeeman coherence term). The superscript 2p or
2P+1 refers to the field perturbation order. Opti-
cal coherences are odd functions of the field ampli-
tudes while the other terms (population and Zee-
man coherences) are even functions. Table I shows
the perturbation-iteration method used to solve (V).

In the first line of Table I there are only popula-
tion terms. The second line contains only optical
coherences which are proportional to the ampli-
tude of the field. Appearing on the third line are
second-order corrections to populations and also
Zeeman coherence terms. The following lines con-
tain third-orde. optical coherences and terms de-
scribing higher -tensorial-order J-dependent res-
onances" which will not be of interest here. Mak-
ing the rotating-wave approximation, Eq. (Vc) gives

h(v+nkv+iI", k)'k"„pk, (v)
m+1 m

=h(d„""„p, , (v)-E, [p, „'.,p(v)],

—E.[p, „'fp(v)], . (8)

with

h„=h( , (d(dk-nkv -il",k).
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TABLE I. Diagram representing the perturbation-iteration procedure to obtain the density
matrix elements. Superscripts 2P'or 2p+ 1 refer to the field perturbation order; subscript n
refers to a Fourier component. Starting with population terms in the first line one obtains
optical coherence terms in the second line and so on.

2P+ 1 ~ ~ -4

We then find

p, , (v, z, t)
m*1 m

m . -5(cot-kg)= E18

also (P(,„.This has been done so that the con-
stitutive relation for the polarizability tensors
n, &,&

and o.,&,&
(the indices 1 and 2 stand for the

propagation in positive and negative z direction)
can be written as

)k
(e, t) — l(~, t)+ 2&~,t) +

+ E e-i(~t +Re)g g [p 2P

m+1 m

~ F e $(cot ke) + (y .E 8"&(40t +kg) + C C1(g) 1 24') 2

xe ""-i)a'/' Recalling"

We have separated p„,, (v, z, t) into two pro-
gressive parts and this mill permit us to separate

(x + iy),
m m+1 m m'y1

one has

+ 00 2 /+1

P ~ ave g P g g 1& f(a&t +n-ks)-((&+ ~i~)+
m m+e

m P n =- (2P +1) e =y 1
Odd

x [(8, -ice,)pq, („,fp, , —„,gpss t )+(8,+ice,)

x(pg, „+fp, , -py, , + pg y )j).m+e m+2e m+2e m m-e m m+e m~e

6', &, , &
is a function of populations (first term in square brackets) and Zeeman coherences (second term in

square brackets) only. This remark permits us to define the following coefficients:

2/+1

dvg g g ~-„'e-*'""'"'Ip.„~„I'(.'lp...„(v)—.'lp~. „~„„(»)
n =-(2t +1)

06d

C;= t dvQ Q Q „'e""""'[p, , p.~, „,',p, , (v) —p~, p, , „,',p~, (v)].
m n

(15)
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Hence, retaining n = -1 useful components only

(P, (, t) = o.', ~ (S,x+ e,y) exp[-i((dt —kz)], (16a)

with Q., now independent of z:
)c;+c;+c;„c- i[c:—c-. c;+c;])

1

(i[et —Ck+C; —C,] Ck+Ck —C; —C, )
(16b)

C. Calculation of the propagation matrix

We can then deduce from n, the values of 0 and
the corresponding eigenvectors which will. furnish
the desired propagation matrix. This is done in the
following way. At a point z, the Maxwell propa-
gation equation for the nonmagnetic medium, and
for the complex part of the field we are interested
in, takes the form

82
curl cui i[E e-t(4lt ka]+ -[Ee i(4lt- -]kk

C2 9t2

82
[(jj E e t(Qlt kg] (17)Bt

The two values of k are shown to be

k, = ((o/c) [1+(I/2z, )(ck+ C ) a (1/2&,)a]. (20)

The propagation matrix P«, ) across the slice dz is
defined by

E1(8+ de) (ds) E1(a) & (21)

c;+c;+~

( i(ck Ck+ C;—C—,))
(28)

and give the transformation matrix

where E,(,) is the complex part of the field propa-
gating in the positive z direction. The eigenvector's
corresponding to the above k, values define a new
basis in which P«, ) is diagonal. In this basis

/e. 0)
(ug)

(0 e))
where e, =exp(ik, dz). The components of these eig-
envectors are

( —i(C; —C, —Ck+ Ck) )tV
C,"+C +& j

2

k,' = —,[1+p, ,c'(Ck+ Ck) a p, ,c'n],c

where

( -i(C& —C&+ C;—C,)

C;+Ck —&

-i(c;—c;+c:—c;))
C;-C,+& )

n = [(C C-)'+ 4C C-]'~'

For a gas, k=(o/c and, in first approximation,

(24)
which provides the desired propagation matrix in
the Cartesian frame,

, t)e, +e +(C;+C,)(e.—e ) ' i(ck Ck+C—;—C,)(e.—e ) -'|I

(i(C; C,+ C—
k

—Ck)(e, e)& ' —e,+ e —(C;+C,)(e,—e )(),-' j
(25)

Now let us suppose that the field amplitudes and po-,
larizations do not change very much in the active
column of the laser. The propagation matrix of the
entire column, i.e. , its Jones matrix P, is then ob-
tained by multiplication of the different P «,&.

' P
is similar to expression (25) but e. and e„stand
now for exp(ik. I.) and exp(ik L), L being the active
column length. Notice that the C~, C'~, C,, and C,
coefficients entering k are, foilowing Eq. (16), in-
dependent of z and are also implicit functions of
!E, ! and ! E, ! . We have then extended to nonlinear
media the definition of the propagation matrix pro-
po sed by Jones3 for linear crystals. This extension
is only justified when. the medium is such that the wave
vectors do not depend on z. It corresponds to
weakly saturated laser media and in this case we
do not have to take into account the spatial harmon-
ics appearing in (14) and (15) where only terms with
n= —I are retained. Expressions of the C~ and C,

coefficients obtained by a second-order perturb-
ation theory are given in Appendix A.

D. Two particular cases

with

, ( e, +e —i(e, —e)))
circ

(i(e, —e ) e, + e
(26a)

e, = exp(2i)tL/)() (1+Ck/a, ) . (26b)

Having obtained the general expression for P
we can now study two important particular cases.
Suppose, first, that the polarization of the field
is circular (either o' or o ). Zeeman coherences
then vanish be&ause they. can only exist via two
interactions including the two polarizations v' and
O'. This fact can be seen from Eqs. (A10) and
(A11) of Appendix A. In this case, C;=C, =O, and
one obtains
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This matrix is diagonal in the circula, r basis (1, i)
and (1, —i); It ha, s the symmetry oI the saturating
field. Using a probe field one observes Faraday
rotation (dispersion effect) and/or circular dich-
roism (absorption effect). This experiment has
already been done by Wieman and Hansch, "using
a progressive circularly polarized saturating
field, outside the cavity.

A second important case is the linear polariza-
tion of the field. Let x be the polarization axis.
From symmetry considerations one must have

C~ = C~ = C~ and C,' = C, = C,. In deriving these equa-
tions one has to take into account that in the ab-
sence of any magnetic field only the absolute va-
lues of nz have a physical meaning. The propaga-
tion matrix is

e, = exp(2ivL/A. )[1+(1/e, )(C~+ C,)] . (27b)

In this case a probe field will show birefringence
and linear dichroism. It is this last effect we will
describe in Sec. III.

E. General properties of the propagation matrix

In the general case, the two e.m. progressive
fields do not have the same polarization. P is not
diagonal in an orthonormalized basis containing one
of the polarization vectors. The two wave vectors
[20] will then be necessary to describe the field.
In order to find the physical content of P, it is
convenient to use the Jones matrices ¹' They
are defined as a generalization of the notion of
wave numbers by the relation

where

(e. 0)
Io ej

(27a) dP
N= —P-'.

dz

The calculation gives

, (i[k, + k + (C;+ C,)(k, —k )& ']

(—(C~ —C~+ C; —C,)(k, —k )4 '
(C; C; C;+C,)(k, k -)~ '

I

&[k, +k -(C;+C-,)(k, -k )&-'])
(28)

The discussion of the different terms appearing in
N can be done using the eight Jones matrices 0.'
In our case it is simpler to use the Pauli matrices.
N can be written as a linear combination of these
matrices and the unit matrix as follows:

N = ~&i (k, + k )! !+ 2~ (C,'+ C-,}(k, k
t'1 oq z . /1 0)
&0 1) &0 1)

+ (C; C;)(k, -k )! 0i

(C; C-,)(k, —k )
~

(1 0)

(29)

'The factor of the first matrix is

2z(k,'+k ) =i(&/c)[1+ (1/2E, )(C~+C~}]. (3o)

(C;+ C,)(k, —k ) = (i(u/2e, c)(C;+ C,) . (31)

Its real and imaginary parts give rise to linear
dichroism and linear-phase anisotropy (optical
Kerr effect} of the active medium. Zeeman co-
herences are responsible for these phenomena.

Its real and imaginary parts give rise to the mean-
amplification and phase-shifting properties of the
medium. It depends only on the population of the
levels.

The factor of the second matrix is

'The factor of the third matrix is

(C;-C-,)(k. -k )=(i~/2~, c)[C,' C;].

Its real and imaginary parts give rise to circular
dichroism and circular birefringence (optical Far-
aday rotation). It depends on the ellipticity of the
saturating field which acts differently according
to the m values of the sublevels.

The factor of the last matrix is

1
(C; —c,)(k, —k ) = {QJ/2&,c)(c,—c',) . (33)

Its real and imaginary parts give rise to linear
dichroism and linear birefringence which are paral-
lel to the bisectors of the coordinate axes.

We have now reached the following conclusion.
The propagation matrix P describes the propaga-
tion of the saturating field -in the active column of
a weak gain laser. Its elements are functions of
the polarization of the field itself. Usually, the
actual polarizations correspond to those of the
eigenvectors of the geometric laser cavity. It is
seen now that in special cases, the active medium

. will also play a role in the determination of the
laser eigenvectors for instance in the locking re-
gion of the Zeeman laser where the polarizations
of the two counterpropagating progressive waves
are not colinear in the case of a Doppler centrally
tuned laser. '
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e~„=e~ cos2~~te '~&,

e» ——e~ sin2~~te '~&.

(s4b)

(34c)

The probe field appears as a small perturbation
to the laser field which is also slightly modified
because of the reaction of the laser. Let S,be this

III. EXPERIMENT

A. Analysis of the experiment

Among the different properties presented by the
laser medium, we have chosen to confirm experi-
menta, lly the linear anisotropy of the gain. In fact,
a linearly polarized field which induces this aniso-
tropy is what one usually finds in a laser. How-
ever, the matrix P„,obtained in Sec. II applies
only to the field of the laser itself. Usually, the
two counterpropagating waves in the cavity have
the same polarization whose direction is a princi-
pal axis of the propagation matrix. In that case
the laser polarizations are independent of the in-
duced anisotropy, and it is necessary to use a
probe to test it. Figure 2 shows a diagram of
laser and probe fields (paths and polarizations)
in the test cell together with a definition of the
coordinate axes. The probe rotates at angular
frequency 2'~. The expected anisotropy signal is
not exactly described by the matrix P„,of the laser
field but rather by the propagation matrix of the
probe. We have then to determine this perturbed
propagation matrix.

'The origin of the coordinate axes is at the point
where the interaction between the probe and the
atoms begins. We shall neglect the angle betw'een
the laser and the probe light propagation axes.
The probe-field vector e~ can be written at z = 0,

e~= e '"'(e~„~+e~, y"), (S4a)

with

stationary field

probe

cell 2

FIG. 2. Diagram of laser and probe fields (paths and
polarizations) in the test cell.

new laser field. We suppose that it is polarized
in the x direction and we designate by &f&~ the phase
of the probe relative to that of the laser field at
z = 0. The total field at a point z in the test tube
is given by Eqs. (1) and (2) with

h, = 8, + e cos2(o t e '~, b, = h,

e, = e~ sin2+~t e '~&, e, = 0.
(s5)

(d
y2 (g e-((s)t ee) + e e(e-e)

2c
= p (o'(n +da )(b e ""'ee)+ e e(ee) (37)

and leads to the eigenvalue problem,

The probe field induces a change of the polariza-
tion

d(P, =o. e e'e'+da ~ E e ""'ee) (36)l(g) 1 P 1 1

+1 is the polarizability containing ~ „andd+ 1

stands for the variation of a, due to the probe.
The Mwcwell Kq. (1V) applied to the total f'ield (35)
is written

+d~ — k — 2 &o~c dQ, 2.
=0. (s8)

»+ dn» — k —,—

y p.,~
C

Now we shall use the coefficients C&, C&, C'„and C, calculated by a second-order perturbation theory. in
Appendix A and we obtain

11 ffy+ ( ) (fg l( 1 2) re(P) Pt(P) rl(2) rl(2)

a»'. identical expression but with a minus sign before r,'(2) and r~(2).

fh 'e*"~" r,'(O)
' rI(O) ' r.'(2) ' r, (2)

do.'»'. identical expression but with a minus sign before r,'(2) and r~(2) .

(S9a)

(39b)

(39c)

(39d)
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k '» 's'2 r.(o)
' r;(o) '» "o ) r.(2)

' r, (2)

I '» '22) r.(o)
' r', (o)

' '» "s'2 r.(2)
' r, (2)

(39e)

(39f)

Equation (38) gives the following eigenvalues:

co' 2N S
(k2 ) 0 g(]) 0 g2(l I ) 1 3 1 2

P,&02 C' i2kv„2R ' ' ' I's (0) I"(0)

+ . ' I,S, etc os2 (de cos (((2 ', , ', y ',+ ' +2([o.„—n„+b„($2)]'—b, ($2)].'~', (40)

where

b(bs(=, , '1S, sssssst tosssbss, ' s, '. (),
BN S2 S3

x p &@ x l p (4la)

64K
10g222 '22 f . 2 S, —S, S, —S, , S, S,

k2 ' ' 2 ~ 2 I", (0) I", (0) 2 I'"(2) I", (2)
(4 lb)

Taking into account that ep«8, we shall neglect
coupling terms (e2$, terms) versus main saturation
terms (h 2, terms). In this approximation the cor-
responding eigenvectors given by (23) a.re also
found to be along x and y. Calling then k„and k,
the two above k eigenvalues, the output probe
field may be written

e~„&~&

=e~„exp(ik„L)x, (42)

e»&» =e 2e x(pik I.)j. (43)

Moreover the probe field is also amplified in the
volume of the cell not filled by the laser beam.
x&„&is the isotropic factor describing this am-
plification. The output signal will then have the

intensity

epx(L) '+ epy(L)
'

= z(„)I2egcos2200~te ~~ s+in 22(duvet" ~], (44)
I

where k' is the imaginary part of k(Imk). Assuming
that k' is weak, one can make the first-order ex-
pansion

] + 2k~L (45)

The phase-detection output will give anly the 4~p
modulated s ignal

~= I(('(v)I esb(k . k2~)& (46)

with

Im [(o(„—cs„+b (sts ))' b, (p,)]'~2..
0

(47)

The difference nyy Q22 represents the limit of
the gas anisotropy when the intensity of the probe
vanishes:

~0 ~ S2 S3
11 22 ji2 1( 1+ 2) rs (2)

+ rt (2) (

We have already seen that it is only due to Zeeman
coherences. As described later we have modulated
the phase Q& of the probe in order to avoid spurious
interference effects between laser and probe
beams. Note that this modulation also simplifies
the above expressions (41a) and (41b) of the small
b„($2)and b, ($2) terms. The expression for the

signal obtainable by the apparatus of Fig. 4
Scheme 2 described in Sec. III(B) is then in first
approximation

2coLK0 S2 S3" . S*
= s.((' r (3(' r (3))"'""*'

(49)

The experiment has been done using 3s2(J3= 1) and

3p, (J', =2) levels of Ne". In this case S,/S, =21
and we can neglect the contributions of the 3s,
level. " In these conditions, the signal (49) is
proportional to Re(I, +I,). Figure 3 shows this
function for various values of y =r„/kv„.We
notice that function I, is narrower than function

I, according to their definitions (A18) and (A17),
given in the Appendix. Physically, I, describes
the saturation caused by the progressive waves
while I, describes saturation due to two counter-
propagating waves interacting with the same atom
velocity group.

We should notice that in our experiment the con-
tribution due to linear dichroism is separated from
that due to linear birefringence. This is in oppo-
sition to Wieman and Hansch's experiment in which
circular dichroism and birefringence are inter-
mingled. "



EXPERIMENTAL AND THEORETICAL STUDY OF THE. . . 741

Arbitrary . units

y-0, 3

& =0,4

FIG. 3. Theoretical cur-
ves showing the real parts
of the functions I f, I 2 and
I f +~ 2 [see Eqs. (A17) and
(A18)] versus (co -co,~)/kv~
for three y values (y =I",g
km'). Full line, y =0.3.
Dashed line, y =0.4. Dotted
line, y =0.5.

0 X

B. Experimental apparatus

In order to have a matching of the probe and
laser frequencies it would be possible to use a
part of the output laser light. Rotating the probe
polarization would then permit us to detect the gain
anisotropy via a phase detection. However, this
method does not permit one to give the zero signal
we would expect if the saturating field was absent
because switching off the laser also switches off
the probe. This is why we have set up the exper-
iment as pictured in Fig. 4. 'The active column is
made of two separate tubes filled with the same
He-Ne gas. The first tube has 3, gain sufficient to
maintain the-laser operation even when the second
one is switched off. The probe goes through this
test tube and one finds the zero signal. We then
observe the anisotropy signal.

The monomode laser works on the 3.39 p, m line
of Ne" (3s, —3P, levels). The cavity is 38 cm long
(c/21. =394 MHE) and contains the following between
its end mirrors M, and M, (see Fig. 4):

(1) A Brewster windows-ended tube 14 cm long
and 1.5 mm inside diameter. It maintains oscil-
lation and, thanks to the Brewster windows, a fixed
linear polarization of the field in the first part of
the laser.

(2) An antiref lection coated half-wave plate 2X;
which can be used to change, in a controlled man-
ner, the orientation of the linear polarization in
the second part of the cavity.

(3) A test tube 12 cm long which constitutes this
second part. This tube is closed by two windows
which are almost perpendicular to the laser axis
and do not modify appreciably the linear polar-
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.I
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t

I
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FIG. 4. . Diagram of the experimental setup. Tube 1
maintains the oscillation. Tube 2 is the test cell. The
2'A,, plate, turning at co&, rotates the polarization of the
probe at 2'&. The polarization of the laser field in the
test cell can be varied by the 2A,; plate.

ization of the laser field. A pipe connection be-
hveen the two tubes assures us that the composition
and the pressure of the gas in them are the same.
The diameter of this test cell was chosen to be
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4.5 mm to allow the propagation of the probe beam
along an axis making a. slight angle (=0.5') with
the laser beam. We put two diaphragms with two
holes at the ends of the cell to achieve separation

, for the beams outside, and maximum overlapping
inside. The overlapping volume is approximately
equal to half the volume of the cell. Preliminary
adjustments of these diaphragms were made with
an auxiliary 6328 A laser. Outside the cavity we
put the following'

(i) A half-wave plate ~X, which receives the fixed
linear polarization of the output laser field emerg-
ing from the end mirror M, . 'This plate is rotated
at a constant rate of 3 Hz and this causes the plane
of polarization of the emerging beam (the probe)
to rotate at twice -this frequency.

(ii) Attenuators which ca,n weaken the intensity
of the probe.

(iii) Several mirrors to achieve the light path

L, indicated in Fig. 4. One of these mirrors is
. mounted on a P.Z.T. supplied by a ramp generator.
This device permits us to get rid of interference
effects between probe and laser beams by a rapid
modulation of their relative phase angle &f&~.

Using this apparatus we obtain:
(a) Laser light intensity I vs frequency. A slow

frequency tuning was obtained with the mirror My
mounted also on a P.Z.T.

(b) The variation of the gain anisotropy dd (in-
tensity of the probe signal modulated at 4&v&) vs
frequency. M is detected by a phase-sensitive
amplifier whose reference frequency is 4 times
the rotation frequency of the &X, plate. The two

curves I and M can be simultaneously recorded
and we have also recorded the normalized gain
anisotropy M/I using a ratiometer (Fig. 4, Scheme
1).

(c) The curve proportional to the calculated sig-
nal. The parameter K&„& takes into account the
isotropic gain in the nonsaturated part of the gas
tested by the probe. K&„& is obtained by chopping
the probe and measuring its output intensity pro-
portional to Ic&„g Using a f.irst ratiometer as in-
dicated in Fig. 4 (Scheme 2) we obtain hl/tc'&„&I.

Then a second ratiometer normalizes this quantity
according to the intensity of the saturating field.
This last ratio characterizes the anisotropy as
a function of the frequency in the third perturbation
order and is given by Eg. (49).

C. Experimental results

I

First we have to obtain the null signal when the
test tube is switched off. As has been said before,
the end windows of the cell are not exactly per-
pendicular to the axis of the laser. The Fresnel
transmission coefficients for the two polarization

(a) ~e . 'I+I, ~f' jl )

(b)
I I~I IIIII I+II I~" + + gag++E I II I NITS II)(ISSSIIII~I ISSPll+gSSES&++

~~K~~ I ia~~ q~Is II I& &4
l Ill II I I II 155I I

' ~ I ISS IRWSM IRIIWI I

IFIFF I I I II I%II I%I II MS
W ~

~I
(c) Il

Ioo 19Q ]BOO 27pO 36OO

FIG. 5. Observation of the optical anisotropy induced

by the saturating field. (a) Portion of the probe modu-

lated at 4~& (test tube switched on). (b) Portion of probe
output modulated at 4'& with the polarization of the laser
field rotated by 90' as compared to preceding curve.
This rotation has been obtained from a rotation by 45'
of the 2A,; plate. (c) Signal in phase with the rotation of
the ~X, plate (one cycle corresponds to a rotation of 90').

amplitudes e&„and e~, are not the same and this
gives rise to an undesired anisotropic signal.
These windows act like a partial polarizex' and it
is easy to compensat'e their effect using another
parti. al polarizer. For this purpose we have simply
used a laser window properly oriented in front of
the detector. After that the test tube is switched
on and we obtain a 4&~ signal as shown in Figs.
5 and 6. In Fig. 5, the lower curve (Fig. 5c) shows

a reference voltage obtained via the photodiode in
the chopper system coupled with the rotating 2X,

plate. Each time the laser and probe polarizations
are parallel, the probe gain is minimal. This sit-
uation happens at angles separated by 90 of the

2X, plate. If we rotate the &X& plate by an angle
45', the laser polarization is changed by 90' and the

respective positions of minima and maxima are
interchanged as shown in Fig. 5b. In this case
instead of Ec(. (35) one has, for the field,

8, =e, cos2u), t e "n, 8, =0,
(25')

e, =b, +e&sin2m~t e «~~, e, =h, .
The equations indicate the above polarization
change. 'This change results in replacing e~„

. by e~, and vice versa in the preceding equations,
.which simply leads to an opposite sign in the de-
tected signal (49). The experimental results shown

in Figs. 5 and 6 agree with this prediction. The
order of magnitude of M/e~2 is 4% when the dis-
charge current is 12 mA. This is comparable with

loss anisotropies introduced by a SiO, plate and

usually defined' by the ratio (r„—r~)/(r„+ ~r). This
ratio is of the order of 11% for a Brewster window

and corresponds here to 2%. Simultaneous record-
ings of I and AI/x'&„g' are shown in Fig. 6. The
total pressure was 1.2 Torr (Ne"/He'= —,'). We
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distribution, energies, lifetime, and angular
momentum of the levels. . .) and also on the para-
meters of the field (amplitude, frequency, polariz-
ation. . .). It corresponds to the matrix of a
medium made up of an, "atoms+field" system. In
this medium various anisotropies occur and we
have chosen to verify experimentally one of them:
the linear gain anisotropy which appears when
the laser field is linearly polarized and which re-
sults from Zeeman coherences between sublevels.
The described experiment is new and shows the
predicted effect. Such a P matrix will be used in

the application of the resonance condition for the
research of the eigenvectors each time one of the
two following conditions are satisfied: (i) the an-
isotropies of the cavities and those of the active
medium are of the same order of magnitude; and

(ii) the two counter-propagating waves have dif-
ferent polarizations. The use of a P matrix can
also be justified in problems of saturation spec-
troscopy. Our experimental result shows a dif-
ferent displacement of the nonlinear anisotropy
signal versus the Doppler profile. This leads to
effects on the output light of the laser and may be
related to the asymmetry of the Lamb dip. Fur-
ther studies are in progress to show its depen-
dence on polarization and frequency in particular
cases.
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APPENDIX. A

In this appendix we calculate in a second-order
approximation the coefficients C~, C~, C,', and

C, defined by Eqs. (14) and (15). The calculation
is similar to that usually found in the literature.

We suppose that Zeeman coherences are in-
itially zero and, in first order, we write for the
populations

',p, . = [A./r.'(0)]tV,„),'op, , = [A,/I,'(0)]W,„,.
(Al)

A, (A, ) is the number of atoms in the excited state
g (5) per unit volume and time. I",(0) [I'o(0)] is
the a [b] level population relaxation coefficient.
We suppose it is real and independent of the velo-
city v and of the magnetic quantum number m.
9'&„&is the normalized Maxwell velocity distribu-
tion function. If we define

0
oPa o (v) oP (v)= ( q ~ )

'+() +o~()

we obtain, using Eq. (9), optical coherences in
first order

N08"(„)
iP|I qu (v) = —

~ +2+&e2)P o~a
1

N0%( v) ~

gPo „,(v) = ——
~ (~&+&ex)Po

We are happy to thank Professor M. Trumper
for his active interest during the preparation of
the final manuscript, and also J. Guilloux, J. L.
Steinhardt, and H. Qehanno for construction of
parts of the experimental apparatus.

In second order we then obtain populations which
are the diagonal elements of the density matrix
and we also obtain Zeeman coherences linking two

sublevels with b, m =2. Using (Va) and (Bb) with

m =~ ' we can write

i8'I",(0)'p, , (v) = —E(p. , p), ,

Defining

+ =Sg = gg+SeI Sg = Sg —Leg

s,'= S, +ie, , s, =S, -ie, ,
(A5)

one obtains

+
W ~a b S~ + I a b

(A6)

Following the same procedure one obtains also
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2 N0W() 1 1 2 + 2 12
opb b(~) @1I(0) ~I&, Z ( )b a Sz + )ba ( Sz )

Sl +' P'b a
-,Sl

Calculation of the second-order Zeeman coherences is performed using the same method

ml",'(2);p, . (~)=-E i, g '„p(~) (AB)'

n =&1 a
m m+2

nPb
m m+1 m+1 m+2

n =+1

—P, b nI a b ~a b „~nIb am+1 m+2 m m+1 m m-1 m 1 m+2n=+1 n =+1

1
a n~a bm+3'm+2 m m+3n=al

(A9)

One should notice the cancellation of the two last
terms because optical coherences with 4m = 3 do
not exist in this perturbation order. One then de-
duces

In second order, one then obtains

o =
o "~"~ "'~"~ ' o('o) '& ('oi)Z b a

2 N08'( )
oP, , (2))= )I, b P, ,

m m+2 zhI' (2)

1 1, g 1 1
S1S1 — -

g +S2S2
~1 1 1 1

(A10)

An expression for p, , can be deduced from
(A10) by replacing m"-"m'—2 and taking the complex
conjugate. One also obtains

2 ' +0 + 2- + 2 ~l ~l
Cb g (Illa& I f21 s2 I ) ~, (0)

+ ~,(0)

+(f I' I'+&.Is. l') —,
' + ——'

r,'(0) p;(0)

2 N0W'(„)
&Pb b )(2)) z i b a ) a bm+2 2AZb(2) m m+I m+1 m+2

If we define

W'
„(vg

x S282 ~~ ——+ S1S
1 - 1 1 1

(All)
1

(g)) g )2 ( I) (2)

We shall use these expressions to write the C~,

Cb, C; and C, coefficients using E(ls. (14) and (15).
In zero order, the C~ and C~ coefficients are

r +
C'=

I
dVQ (iz, b ~'X W&„&

1 1

(ooU )' x '"' I "")' (A18)

-N0S
(f)& (A12)

x = ((d —up„)/)'zv„and y = 1,'b/i'22)„. (A13)

where we have to take 0= &u/c. 2„&is the plasma
dispersion function. " g =x+zy where

lll tl'le Dopplel' 1illllt, 'the illlaglnal'y pal't of $

vanishes and I, describes a I.orentzian. Z& &) and

Z&'&~ stand respectively for the real and imaginary
part of the plasma dispersion function. The sums
over m appearing in Eqs. (A15) and (A16) are

Moreover, we took I"ambm+1 (A19)

(A14) +ambm+1 ) bm+1 am+2
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I a~bm+j. I ambm-y (A21) N S S
C, ~@,(2),( )

I„s,-s, +I,s, s, , (A22)

These sums, "as well as the integrals I, and I„'
appear frequently in the literature. Expressions
for the coefficients depending on Zeeman coher-
ences are
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