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The amplification of noise in a laser amplifier is treated theoretically. The model for the active medium

and its description using density-matrix techniques, are tak'en from the theory of laser operation. The
fundargental concern of this investigation is the spectral behavior of the radiation in the nonlinear regime;

hence, the formalism is written from the onset in the frequency domain. The statistics of the light are

gradually modified by the nonlinear amplification process, and expressions are derived for the rate of change

of fluctuations in intensity as a measure of statistical changes. These expressions should be easily susceptible

to detailed experimental observations. In addition, the range of validity of Litvaks Gaussian-statistics

approximation is discussed with some detail. In the homogeneous-broadening case, the evolution of initial)y

broadband Gaussian radiation toward quasimonochromatic oscillations with laserlike statistics is extensively

explored in several numerical examples. The connections of this study with the time-domain work of Risken

and Nummedal, on self-pulsing in a ring-laser configuration, are clearly established. Finally, spectral-

narrowing and -rebroadening effects in Doppler-broadened media are discussed both analytically and with

numerical examples. These examples show the distinct contribution of pulsations in. the population ("Raman-

type terms"), and saturation phenomena. The predicted narrowing-rebroadening rate is compared with

expressions found in previous literature.

I. INTRODUCTION

Radio astronomy observations of anomalous
maser radiation from interstellar medium, as well
as the development of high-gain gas laser am-
plifiers, has renewed interest in the problem of
nonlinear amplification of broadband noise. 'The

amplified signals may be externally applied, or in-
trinsic to the active medium itself as in the case
of amplified spontaneous emission.

There are numerous theoretical speculations
about the cosmic maser radiation. However, to
the best of our knowledge, satisfactory relations
between the observed properties of such radiation
and the source parameters have not been well es-
tablished. In the case of high-power laser am-
plifiers, these may be intended to amplify a known
coherent signal, but noise inevitably accompanies
the output signal. In the linear regi. me, it is well
known that the amplified noise is spectrally nar-
rowed; but much less is known about the behavior
of the field in the nonlinear regime. It seems to
us that the main roadblock, in both cases, is that
there is no satisfactory theory of the underlying
amplification process. 'The present article is an
attempt to provide the elements of such a theory.

The problem of coherent light such as a pulse
propagating through a laser amplifier has been
widely investigated by numerous authors. ' ' Never-
theless, the propagation of incoherent light, white
noise or blackbody radiation, does not follow in
any direct way from these investigations because

of saturation effects and combination tones. These
effects not only contribute to change the spectrum
but also change the statistical properties of the
noise signal propagating through the amplifier.

In the past several years, a number of theoreti-
cal and experimental articles have been published
dealing with several aspects of the problem at
hand, e.g. , amplified spontaneous emission, spec-
tral narrowing and rebroadening, statistical pr op-
erties of the radiation, ' possible self-pulsing,
etc.' " In our opinion, many of the theoretical
contributions are inadequate because they are
either based on semiphenomenological, oversim-
plified rate equations (a dangerous procedure when
dealing with nonlinear phenomena); or they make
use of unwarranted assumptions concerning the
statistical behavior of the stochastic radiation
during propagation. Others, finally, are restricted
to the small signal regime. Therefore, we wish
to provide a formalism based on first principles,
and give a sound treatment of at least some de-
finite problems of nonlinear radiative transfer.

In order to limit the scope of this investigation,
the emphasis of this paper is on the well-defined
problem of a laboratory laser amplifier, with noise
as an input signal and one-way power flow. This
problem already contains most of the important
physical features, and indeed most of the complic-
ations associated with the nonlinear nature of the
general problem. The model is a basic one, and
limitations which are inherent to it can be dealt
with in later stages. For example, in many labora-



702 LIONEL N. MENEGOZZI-AND WILLIS E. LAMB, JR.

tory amplifiers as well as in interstellar masers,
the noise that is generated in the active medium
itself is often a weak source"; however, spon-
taneous emission can be included by adding noise
terms to the equations of radiative transport. '"'
Next, the' formalism developed here can be ex-
tended to allow for a two-way power flow, and
diffraction effects which, are of practical concern
in a long amplifier.

The model for the active medium, and its de-
scription using density-matrix techniques are
taken from laser theory. " Both the model and its
description have been highly successful in many
laser problems and the sa.me should be so for the
astrophysical problem, as well as for high-power
laser amplifier s.

The paper is divided into five sections. In Sec.
II we summarize the derivation of the field-medium
coupled equations for a two-level atomic system
under a steady-rate pumping mechanism. An im-
portant concern is the spectrum of the amplified
radiation, and the formalism is written in the fre-
quency domain. Section II also contains the de-
finition of a number of parameters which serve
to characterize the state of the active medium.
These parameters are of familiar use in laser
problems, and appear throughout this article. Sec-
tion III starts by describing the statistical nature
of the input incoherent radiation which is taken to
be Gaussian. Since the statistics of the light are
gradually modified by the nonlinear amplification
process, we study the rate of change of fluctua-
tions in intensity as a convenient measure of
changes undergone by th'e initial distribution, and
obtain theoretical expressions that are susceptible
to experimental tests. In addition, the range of
validity of Litvak's Gaussian statistics approxima-
tion is discussed with some detail. .Section IV be-
gins with a numerical analysis of the equations ap-
plied to the ca.se of fixed molecules (homogeneous
broadening). The evolution of initially broadband
Gaussian radiation toward quasimonochromatic
oscillations and laserlike statistics is explored in
several numerical examples. This section also
includes a stability test of the monochromatic solu-
tion, and clearly establishes interesting connec-
tions of this study with that of Risken and Num-
medal on self-pulsing in a ring laser configura-
tion. ".

In Sec. V, we consider the important case of
broad-line oscillations in Doppler-broadened med-
ia. Spectral narrowing and rebroadening effects
are discussed both analytically and with numerical
examples. 'These examples show the distinct con-
tribution of saturation, and pulsations in the pop-
ulation which give rise to mode-coupling phe-
nomena (called Raman-type terms, in several ar-

ticles'"'"). lf population pulsations are neglected,
our expressions for the spectral narrowing-re-
broadening rate reduce to forms previously ob-
tained by Casperson and Yariv. ' In general, how-
ever, mode-coupling effects can significantly alter
the rebroadening process as well as the spectrum,
and should not be ignored. The expressions should,
then, be checked out with more detailed observa-
tions in nonlinear amplifiers. Numerical exam-
ples in Sec. V were compared with. similar re-
sults obtained using Litvak's approach. ' 'The dif-
ferences we found, in conjunction with results of
Sec. III C, indicate that —in laser amplifiers-
the Gaussian approximation may be valid only for
nonsaturated media. Finally, every numeri cal
case of noise propagation is also compared with the
propagation of a pulse having the same starting
spectrum, but correlated phases ("coherent his-
tory, " as opposed to "incoherent histories" where
the phases are randomly selected. )

II. FIELD-MEDIUM COUPLED EQUATIONS

'The effect of the electromagnetic field on the
atoms of the active medium has been described
elsewhere. " Briefly, the model for the active me-
dium is taken to be a collection of two-level atoms
in thermal motion, and coupled only through their
dipol. e interaction with the overall field. The latter
will be considered to be linearly polarized in the
x direction and propagating along z,

(2 l)

the field is then represented by a scalar E(z, t).
The frequency of the transition between levels a
and 5 is designated by e = (e, —&~) &0, and both
levels are allowed to decay to lower states at
rates indicated by y„y, «ar. Furthermore, it is
assumed that the atoms are being steadily excited
to a or b by some unspecified homogeneous pump-
ing mechanism at rates

X = A,W(v), n =a or b, (2.2)
I

where A„is the number of atoms of mass M ex-
cited to state a. per unit volume and unit time, and
W(v) is the velocity distribution, e.g. ,

W(v) = (~"'u) 'expI-(vlu)'], u'=- (2uaT/M). (2.3)

The calculation scheme may be summarized as
follows: The electric field &(~, t) polarizes the
atoms according'to the laws of quantum mechanics,
and the atomic dipole moments statistically add
up to a macroscopic polarization P(z, t), which
enters as a source term into Maxwell's equations
for the field.

All the macroscopic quantities we shall deal
with, such as polarization P(z, t, v) and popula-
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tion-inversion density D(z, t, v) for atoms of a
given velocity &, can be expressed in terms of a
population matrix p(z, t, v) for the two-level (a
and I)) system"'":

p»(z, t, v) willbeneglectedbymakingarotatingwave
approximation. Then, p„(z, t, v), p»{z, t, v) as well
as p(z, t, v), are slowly varying and satisfy rela-
tions of the type (2.7).

P(z, t) = P(z, t, v) dv

P[Pbb(Z) t) )+Pbb(Z, t) )]

D(z, t) =jD(g(v)de,

(2.4)

A. Field-medium equations: Time domain

With considerations (i)-(iii) taken into account,
the coupled equations of Appendix A adopt the fol-
lowing form in terms of the slowly varying quanti-
ties (B„B,indicate partial derivatives):

[p..(z, t, v) —p»(z, t, v)] dv, (2.5)

where f) (assumed real) is the matrix element of
the atomic dipole operator between a and &.

The coupled equations of motion for p(z, t, v) and
E{z, t) have been discussed by a number of au-
thors, ""'" and for completeness are shown in Ap-
pendix A. These equations are reduced on the
basis of a few, additional assumptions.

(i) Discussion will be limited to a "noise-am-
plifier configuration" with noise generated exter-
nally (z & 0). The noise that is generated internally
in the amplifier (e.g. , spontaneous emission) is
often a weak source for many laboratory ampli-
fiers, ' as well as for interstellar maser's, ' and its
inclusion mill not appreciably alter the results.
The light mill be taken tobe aunidirectional running
mave of the form

E(z, t) = —,'[8 (z, t) e't»' "+ c.c.], (2.6)

where K = (d/c. Note that a choice of a different
frequency v, instead of ~, in the phase factor of
{2.6) would simply lead to a different phase for the
complex amplitude $(z, t) =

~ $(z, t) ~e
'@t"' .

(ii) In order that the reflected wave may be ne-
glected, we shall have to assume that the proper-
ties of the medium vary only slightly over a wave-
length. In addition, it is assumed that the ampli-
tude

~ h(z, t)(, and phase P(z, t), are slowly varying
functions of t compared with e' '. Hence,

«I~Ih( )I
" « lh(, t)l,

(2.7)

and similarly for &b(z, t). If higher harmonies are
neglected, p„(z, t, v) ean be written in the same
manner as the field; i.e.,

p„(z, t, v) = —,'[-ip(z, t, v)]e't»' ', (2.8)

where the factor (-i) has been included for con-
venience. Because of the refractive properties
of the active medium, the slowly varying ampli-
tude [-ip(z, t, v)], in general consists of a part in
phaee with h' = ~S(e ' ~, and a part in quadrature.

(iii) Generation of rapid pulsations in p„(z, t, v) and

(B, +cB,) g(z, t)

=--,'c»g(z, t) + — p(z, t, v) dv, (2.9)
0

(B~+vB.)p-(z) t) ")

=A, —y,p„——,'(p/if)[h*p+ Sp*], (2.10)

(B, + vB,)pb, (z, t, v)

= 4 —rbpbb+ '(b" /tt)[-&*P+ ~P*], (2 11)

(B, + vB,)p(z, t, v)

= -y„p —iXvp+(p/tt) 8[paa- pbb] (2»)
The second term in the "substantial" derivative
(B, + vB,) is responsible for the Doppler-shift term
-~E~p. Nom, we are in a position to neglect 8„
because for thermal velocities, v«, and»,
= (v/c)B, «B,.2O

Given initial conditions p(z, 0, v), p„(z, 0, v) for
the medium, and the boundary condition h(0, t) for
the field, Eqs. (2.9)-(2.12) in principle determine
$(z, t) for any z, t. Since $(z, t), p(z, t, v), and
p„„(z, t, v) do not change much in a time 1/(d, the
equations may be used in a wide range of physical
situations: from long signals, with duration 4t

, to ultrashort ones, y-»& At »co-'.
The spectral widths (b, v-ib. t ') vary accordingly
from Av« y~&& co, to y~&& hv&& &.

The radiation hitting the entry plane at ~ =0,
e.g., white noise or blackbody radiation, might be
regarded as a sequence of distrubances occurring
at random, and produced by a great many inde-
pendent sources. " Therefore, the light field is not
characterized by a given function S(z, t); but rather
by a stochastic variable; i.e., h(z, t) is a member
of a statistical ensemble and corresponds to a pos-
sible realization of the field. Equations (2.9)-
(2.12) which are particularly useful for describing
pulse-propagation phenomena, have been also used
in the time-domain analysis of noise amplification
in a nonlinear medium. "" ln this case, noise at
z =0 is considered as a very long input "pulse"
S(0, t), whose value at discrete t points are se-
lected within some prescribed probability distri-
bution. The calculations are, then, of the form of
an extended pulse-propagation calculation. Power
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spectra. is finally obtained by Fourier analysis of
correlation functions (g(z, t) g*(z, f+ T)). In prac-
tice, only a small, , temporal sample of the output
can be generated.

B. Field-medium equations: Frequency domain

Since our primary concern is the spectrum of
the amplified radiation, it is preferable to work
from the onset in the frequency domain. The rep-
resentation of noise disturbances by means of
Fourier series goes back many years: Lord Bay-
leigh suggested it for white-light representation,
Einstein and von Laue have discussed the normal
distribution of the random spectral amplitudes in
Fourier series representing blackbody radia-
tion. " Similar). y, we assume here that the field
(2.6) is periodic with some arbitrary period T
and write

g{ f)ei(zz-(ct) g [g { ) ic„z/c] -iu„t
n= —~

~i(Ks- ~ t) [g i(cz-(c)z/c]ne

x e ' 'z ' (2.13)

where the inverse Fourier amplitudes are given by

while $„(0)will also undergo fluctuations between
(0, 2)().

The atomic medium response to the presence
of the chaotic field may also be represented by
Fourier series,

&)ei(ICz (ct-)

n= -o [p„(z, v)e"+/']e "zt,

(2.16)

D(z f t)) —p p = Q [D (z t))etcmz/c]e tcmt

since D(z, t, t)) is real.

(2.17)

(2.18)

X egg ~/c 8-cvm& {2.19)

The dc pumping terms (2.2) are also given the
form

Similarly, we will have use for the Fourier ser-
ies representation of the power per unit volume, "
delivered to the field by atoms of velocity &,

(-,'(u())) [g t'(z, f)p(z, f, u) + c.c.]

=(—,'alp) g g(()",(z)p„„(z,v)+ (z)t(pz, v))
m=--

g (z)e " =(1/T) [g(z, )p)e' "]e""dt,-&/2 =A„W(t))g (6,e'"mz/c) e '"m'. (2.20)

and where

K =&a/c, v„=nf, f =2n/T. '

(2.14)

(2.15)

For convenience, the amplitudes are shown with
factors exp(zv„z/c), and &u is assumed to be one of
the v„'s. In principle, if not in practice, the peri-
od T may be allowed to become arbitrarily large. "

Dealing with noise, the customary way of looking
at representation (2.13) is as follows. Suppose,
for example at ~ =0, we have an oscillogram of
E(0, t) extending from t=0 to t=~. The oscillo-
gram may be cut up into strips of length T. A
Fourier analysis of each strip provides a set of
amplitudes g„(0) =

~

g„(0)]e'+(') with uncorrelated
phases; these amplitudes will vary randomly from '

strip to strip. The representation (2.13) assumes
that this variation is governed by a, distribution
appropriate to the statistical properties of the
radiation, e.g. , at z =0, uniformly distributed ran-
dom phases and a normal distribution of ampli-
tudes with a standard deviation determined by the
power spectrum. In other words, ihe statistical
ensemble may be regarded as consisting of the
strip collection; and if ( ) denotes ensemble aver-
age, I„(0)=

~ g„(0) ]' will usually fluctuate around the
average value (I„(0)), which itself may vary with n,

m

The series (2.13) and (2.16)—(2.20), are inserted
into Eqs. (2.9)-(2.12), and one obtains a set of
coupled equations for the Fourier amplitudes that
couple 8„(z) with p„(z, t)) and L)„(z,t)) (see Appendix
B). Next, these equations will be given a more
convenient form.

For numerical analysis purposes, we will con-
sider a model with discrete atomic velocities

Et), =jf, . (2.21)

m(j) = (N~) ' exp[-(jf/Ku)'](f/Ku),

/)'/~ = Q exp[- (jf/Ku)'] {f/Ku) .
(2.22)

The distribution (2.22) is already normalized,
Z~) =1, and takes the appropriate limiting forms
in the case of homogeneous broadening (u-0),
where lim(t/(j) = 6& „and in the continuous spec-

where j is an integer, and f is the frequency inter-
val defined by (2.15). It could be a different one
f„of, but the essential physical features are still
present and computer evaluations of (Bl)-(83)
are simplified. Note that the Doppler-shift Ke&
frequencies are congruent with the discrete fre-
quencies of the spectrum. A convenient velocity
distribution is
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trum case (f=K&n-0), where (2.29)

lim~~= exp p gg
' d v u =p' '

N, = (A, /y, ) —(A, /y, ), (2.23)

which is the steady-state inverted. population den-
sity established by the pumping in the absence of
the radiation field,

y =[-'(1/y. +1/y, )] '

with dimensions of a rate,

(2.24)

)) =gml)) ". . = m)/)el/) (2.25a)

which is a dimensionless average of the Doppler-
shifted Lorentzian atomic response (at v„= &@),

over the velocity distribution. For &e =f/Ku, -O,

P = (y„/Ku)Z, (0,y.,/Ku), (2.25b)

where Z& is the imaginary part of the plasma dis-
persion function. '"" In the absence of atomic
motion [%(j)= 6/, ]P = 1, otherwise P (1.25 Another
constant of familiar use in laser theory is

G = (/dP 'N, /ctoffy, ),)P = GOP, (2.26}

which has dimensions of a reciprocal length and
represents the linear gain of a weak monochro-
matic signal at resonance with the atomic transi-
tion v„=~. 60 is the linear gain when there is
no atomic motion (u =0). In addition, a further
simplification is achieved by working with quan-
tities which are proportional to b„,p„, and D .
This is accomplished by the assignments

~ t)'.(~) „z p.(&»)y.~
11( )1/2 )lf N ( )1/2 P P)) &

~~

D (&,i)
0

(2.27)

Note that the new 8„(z),p„(z,j), and D„(z,j ) are
all dimensionless. "

The field-medium equations in the frequency
domain are finally given the form

s.h„(~) = —,
' ~ h„(z)+-,' G p p„(z,j), (2.28)

lim~ ) = (v' 'u) ' exp[- (v/u)'] dv = W(v) dv .
Concurrently with (2.21) and g2.22), the velocity-
dependent amplitudes are changed to

p„(z,j ) = p„(z, v/) bv, D (z,j)=D„(z, v/) &v,

with 4v =f/K. Equations (B1)—(B3) are given a
more compact form by defining a few constants of
familiar use in laser theory. " These are

(y.b/f) —f(n -j )
' (2.31)

P(m)=-,
( /~

. +
/~ ), P)0)=),y/f y/f

(2.32)

and where the origin for the frequencies has been
shifted to v by taking (v„—&u) =nf [see (2.13)]. In
Appendix C, we outline one of several methods
that can be used for numerical analysis of (2.28)-
)(2.30), see Eqs. C9-C12.

The above coupled equations govern the behav-
ior of any member of the ensemble. (i.e. , a gener-
ic T strip). The picture of an ensemble con-
sisting of many observation periods of length T
can be imitated by repeated numerical solutions of
(2.28)-(2.30), each time with a. different set of
starting conditions. Typically, the individual cal-
culations are extremely lengthy, and in actual
computer work one deals with a restricted number
of histories. In some cases, the results are ob-
vious on inspection, even for a small sample. In
some other cases, the results obtained from small
samples are overwhelmed by fluctuations. For.
this reason, a theory dealing with the propagation
of the power spectrum, (I„(z))=(g*„(z)h„(z)), in-
side the noise amplifier would be very useful, and
it has been sought by several authors. "'""0$-
viously, an adequate approach along this idea
should start from the basic set (2.28)—(2.30); for
example, the transport equation for the power
spectrum can be obtained from (2.28) and its c.c.
After ensemble average we get

d—(I„(z))= -z(I„(z))

+ k G g [(h*„(&)p„(&,j)) + c.c.] . (2.33)

From Eq. (2.19) we know that the second term on
the right-hand side of (2.33) represents the average
power delivered to the field at frequency v„=nf,
by atoms of different velocities v/ = (jf/KM). The
quantity, (@(z)p„(z,j)) needs evaluation at every
step s into the medium; however, in the next sec-
tion we show that this is not generally possible,
because the nonlinear medium changes the statis-
tics of the input incoherent radiation.

D„(z,f) =~(j)6. , —,'p S.(m) p[h*,p„+g,p~ ],
(2.30)

where
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III. STATISTICS OF THE RADIATION FIELD '
PROPAGATION OF THE POWER SPECTRUM

A. Nature of the input incoherent radiation

~(&8D) = II~(8,)d
I
8.I'd~„

k

(3.1a)

We begin by specifying the statistical nature of
the incoherent radiation hitting the entry plane
(& =0). The radia. tion field genera. ted by a therma. l
source is a well-known example of noise, in which
the ensemble distribution of each amplitude is
Gaussian. I,et d'Bk be the area element in the
complex 8» plane; i.e., d'8»=d(Re8») d(lm8»)
= —,d

I
8» I'dp». Then, the probability distribution

for the set (8»j of random, independent ampli-
tudes, is given by an expression of the type'""

=1, 0&x &1, denote the uniform probability dis-
tribution for x; and

(I'(I») =(I»&
' em[ I»&-&I»&]

the distribution for Ik. Then, by equating the
probabilities

lk ~x

(P(I») dI„= „~(x)dx =x,
0 0

we readily obtain that the numbers determined by

I„(x)= (IQ ln-(1 x) (3.5)

will be distributed according to 6'(I»). Similarly,
Q(x) = [2))x —7')'], will be uniformly distributed bet-
ween (-7), 7)).

From (3.1), one can readily see that

where &8g(o) 8„(o))=(I„(0)&~„,. (3.8)

c (8») = (»& I 8.I')) '

—I a, l'—
x exp

&~8 I,
&

dI8»I'd@»

are normalized by

(3.1b)

The above relation indicates that within the en-
semble, the phases of any two different spectral
components are uncorrelated. " If at the input
(a = -0), the incoherent radiation satisfies (3.6),
it is to be expected that similar relations will
hold at s~y0, i.e.,

c (8.)d I8.I'=1. (3.1c)

Note that (»))') is the uniform probability distribu-
tionfor Q», whereas ((I„)) 'exp[-I»/(I„)] is the dis-
tribution for I,." As suggested by Glauber, "the
Gaussian distribution should describe not only
thermal light, but is presumably characteristic
of many noncoherent macroscopic light sources
not necessarily in thermal equilibrium (e.g. , gas
discharge tubes).

An exclusive feature of Gaussianprocesses is
that they are completely, determined by their first
and second moments; for example, using (3.1) one
can see that

&8*.(a) 8»(~)) =&I.(~))&., » (3,T)

&8*.(a)p»(&)& =(8*.(&)p.(a)&~., », (3.8)

this is shown —for small signals —in Appendix D.
In other words, the relations (3. t), (3.8) in con-
junction with the Fourier-series representation
(2.13)-(2.19), imply that the statistics will pres-
erve its "stationary" character during propaga-
tion.""On the other hand, we will show that
the Gaussian features of the starting distribution
will not remain unchanged at s &0, especially when-
intensities are large and nonlinearities become
important. "

&8*,8,8*.8.&=& 8l8,)(8*.@, ~~, (3.2) B. Propagation of the power spectrum: Litvak's equations

(8*„h'„(t)times) 8*„8g=P I [(g]». (3.3)

In general, if E is an arbitrary function of the set
(8, 's],

Let us return to Eq. (2.33) for the propagation of
the power spectrum; i.e.,

~ (I„(~)&=-»(I„(a))d

&8*.8.FH8» 's])& =(4&»+[&V]', I
which is obtained by simple derivation of

(3.4)
+-.'6 Q [(8„*(~)p„(~,j)& +c.c.].

(E) = f ~ ~ . F )$4(1;)df;d(,

in conjunction with (3.1). In actual computer work,
a set of random numbers obeying a probability
distribution such as (3.1) can be obtained from the
random number generator which provides a seq-
uence of uniformly distributed random real num-
bers, x, between 0 and 1. For example, if u(x)

We shall now see that the above equation has a
limited utility in noise amplifier problems, be-
cause an adequate computation of (8„*(z)p„(z,j))
requires a complete knowledge of the statistics at
every pla.ce z into the atomic medium. Therefore,
at least in principle, there are disadvantages in
dealing with (2.33), as opposed to repeated numeri-
cal solutions of the basic set of Eqs. (2.28)-(2.30),
for an ensemble of different starting histories.
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To evaluate (h„*p„& we start from Eq. (2.29) for
p„(z,j); multiplying by $„*(z) and averaging over the
ensemble we get

&&„*(z)p„(z,j)&

=8 'j&(n-j)((8*8„jj&„+g, (8„"Bjj„,&), (89)
r(&~ n)

where for convenience we separate the saturation,
term from the mode-coupling terms. The D 's

given by Eq. (2.30) are now substituted into (3.9).
Since the phases of bvo distinct Fourier compo-
nents are uncorrelated at any depth z [Eqs. (3.7)
and (3.8)], we see that there is only one term in
D„8(lan) giving a nonzero contribution at the right-
hand side of (3.9). This term is

,'P-r-(n —l) [S,*p„+S„p(],

and (3.9) will, then, adopt the form

(8„"(n)p„(n, j)) 8 'jj(n-j) (W(j) (8„"8.) ——,'8 + [(8„"8„8,"p, ) +(8„"8.8, p,")]
q .

(3.10)

(8„"(*)p. (n, j))=8 '&(n j) (~(j)(j ) ,'8(j
& P-[(-8-,"p, & +(8,p,"&]

--'. l) P 8(n —() [(8„"8,8,"p„) +(8„"8,8„p,"&]).
t(& n)

The expression (3.10) shows that(g„(z) p„(z,j)) depends'on a hierarchy of higher-order correlations such
as Q„*P„@,*p,), and so on. This means that a computation of ($„*(z)p„(z,j)& requires a. full knowledge of
the statistics at the place z.

In an effort to overcome the above difficulty, several authors, '""2' assume that the Gaussian features
of the input distribution remain nearly unchanged during propagation. The statistics are then determined
by the first and second moments, and (3;10) has been given the form

—-', 8 Q 8(n -()[(j ) (8„"p„)+(j ) (8, p8&]), (3.11)

by factoring out high-order correlations in pair-
wise second-order correlations. For example, the
second line in (3.11) is simply ($„*h„&(D, ), as op-
posed to (g„*g„D,& appearing in (3.10). Equation
(3.11) with f-d]j and nf- ]j, may be readily rec-
ognized as equivalent to Eq. (8) of Litvak's article. '

Dealing with noise amplifiers, there are two
reasons which indicate that the validity of Eq.
(3.11) is questionable beyond the small signal
regime. First, even if the statistics are Gaus-
sian, the factorization used in the transition from
(3.10) to (3.11), e.g. ,

(h„*h„8,*p,&-(I„&(S,*p,&, quan

=2(I„)(g+p„&, q=n

(8+S„D.&-(l„&(D.&,

is not strictly valid because p, (or D, ) is a non-
linear function of the field amplitudes: p, =p,'
+pq +pq The above fac tor iz ation proc edure
implicitly assumes that ((j),*p, & (or (D, )) does not
depend on (I„); however, this is true only in the
first approximation p, =p,' ~ g, . In other words,
if one assumes Gaussian statistics, and applies
the correct factorization procedure (3.4) to Eq.
(3.10), it is not difficult to show that Litvak's
equation (3.11) only holds up to the fourth order in

the field amplitudes. In practice, the factorization
used in Litvak's equations may still be a good ap-
proximation at large signals since it provides the
leading terms. However, the validity of (3.11) is
still questionable because of a second, more im-
portant reasen: after the initial stages of noise
amplification, nonlinear effects such as. saturation
and mode- coupling phenomena gradually change the
statistical nature of the input distribution, and the
Gaussian assumption is simply not true beyond the
small signal regime. This is shown next.

C, Rate of change of fluctuations in intensity

A convenient measure of the change in statistics
can be obtained by studying the rate of change of
fluctuations in intensity, .

&[I„(z)]'&-[&I„( )&]'

[(I„(z))]'
Atz =0, where the statistics are Gaussian, Eq.
(3.3) shows that 8&.„(0)=1. By taking the derivative
of (3.12), we can write the fluctuations rate of
change as

(3.13)
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&I„') = -2j('&I„') +G g [&I.&.*p.) +c c ] (3.14)

and we are in a position to explicitly evaluate
[dq)„(z)/dz], p, because, there, the statistical
distribution is well defined.

The iwo terms of (3.13) are obtained in the same
way as Eq. (2.33), i,e.,

2 " (I„)=-2~(I„') + "
G Q[(g„*p„)+c.c.],

n n j
(3.15)

More explicit expressions for the right-hand side
of both (3.14) and (3.15) are obtained by the same
procedure that lead to (3.9)-(3.10). We write the
final result for (3.13) as

I

—g &(n —j ) P [(I„'S,*p,) + &I„'&,p,*)]+/ &(n —j)g "
[&I„S,*p,) + &I„S,p,*)]

(I„')

n - 1 q n

&(n j)g—2F(n —l) [(I„S„*p„I,) +(IPg, p,*)]+c.c.
j S~n

(I„')
+g n(n-j) g ,'S(n-1) "

-[&g„*p„I,) +(I„g,p,*)]+cc.
j l&n n

(3.16),

where

(3.17)

4GP '(I„)Q-( D,(j)) [&(n -j)]', (3.18)

As expected, the terms due to linear gain and
losses in (3.14) and (3.15), 'do not appear in (3.16)
since only nonlinear effects can change the statis-
tics. The first two terms at the right-hand side
account for saturation effects, while the last two
are contributions due to mode coupling.

Note that the terms within the square brackets
at the right-hand side of (3.16), are at least of
sixth order in the field amplitudes. During the
initial stages of noise amplification, a good ap-.

proximation can be obtained by neglecting popula-
tion pulsations, ~D„~ «D, . That is, substituting

p, by

p, (z,j)= P &(q —j) (q D, (~,j),
with

-1
jj, (z, j)=1k(j) ((+pl q(k -j)

Furthermore, since the starting ensemble is as-
sumed to be Gaussian, one can use the factoriza-
tion rules (3.2)-(3.4) to compute ensemble aver-
ages. If only the leading terms are kept, the main
contribution to (3.16) comes from saturation terms
(q =n),

dq)„(z)

g&P

2Gp (I„)
= —

( ), P (I„'Dp)
( )

(I Dp) [2(n -j)]
n n

For moving atoms, Eq. (3.18) can be given a
simple form in the Doppler-limit case (Ku» y„),
and provided that the spectrum remains broad com-
pared with y„. First, we write (3.18) more ex-
plicitly as

d„ = -4 GP (I„)
dz ~ o

~v(j)
(1++,l, qlk -j))

1-~y~ 2 n-j
+ah

(3.20)

where the second term is a simple derivative of
the first one. The Doppler limit can, now, be
easily applied, and a similar calculation is' de-
scribed with some detail in Sec. V, Eq. (5.16).
Here we only~note the final result, "

d„ 1" =-2G(I„) 1 [ /, (0)]
exp[-(v„/Ku)'],

(3.21)

where %'(0) =j) ' '(f/Ku), and in the Doppler limit
P=))' (y,p/Ku). If the Doppler limit does not apply,
Eq. (3.20) can still be written in terms of the plas-
ma dispersion function, and its derivative with re-
spect to y„/Ku. "'q'q

There are laboratory measurements dealing with
statistical changes on amplified spontaneous emis-
sion (ASE) j"'~ and there seems to be qualitative

Eq. (3.18) indicates that fluctuations in intensity
diminish with distance. The rate is more pro-
nounced at the line center, and also for the homo-
geneous broadening case, W(j) =6& „
dZ„ = -4 G, (I„) „[Z(n)]'. (3.19)
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agreement between the present theory and these
experiments; but more detailed measurements ap-
pear to be necessary for a strict comparison. Qn
the other hand, some observations on the statis-
tical properties of radiation from saturated OH
astronomical masers, fail to indicate significant
departures from Gaussian statistics. The authors,
however, list several effects which may prevent
the observation of such deviations. "

Goz

7=027
b

R= Q.5

OHERENT
ISTORY

0.05—

~ ~ ~ ~
l e ~ ~ ~ i ~ ~ ~ ~ i ~ I g ~

l
~ I I ~ l r ~ ~ t--]

0.09- j-y, b-l (a)-

IV. EVOLUTION TOWARD QUASIMONOCHROMATIC

OSCILLATIONS WITH LASERLIKE STATISTICS

A. Numerical analysis

D. =1 .N.*p. +~.p-.*-)

which give

I, =~g. ~'=(1-e)/e, D. =1/(1+I, ) =51,

p, =(Rg, . (4.2)

Figures 1(a) and 1(b) show the spectral evolution
of one of the typical incoherent histories, for dif-

, ferent depths into the medium. Depths are mea-
sured in dimensionless units of Go@. At z =0, the
spectrum is taken to be "flat": I„(z = 0) =2.5x10 '
for (n) &10, andI„(0) =2.5x10 ' for ~n~ &10; while
the phases y„(0)'s are a random set with values

This section begins with a computer integration
of Eqs. (2.28)-(2.30) for a homogeneously broad-
ened medium, w(j) =5,. „with not too small values
for the loss-gain ratio:

61 =g/G, , 0&61& 1 (above threshold) . (4.1)

The conclusions are obtained from an ensemble
consisting of a few different histories to which we
applied the numerical method outlined in Appendix
C. For every member, of the ensemble, the bound-
ary condition at z =0 is a low intensity, white
spectrum, and starting every time 4 ith a different
choice of initial random phases. The result was in-
variably a disappearance of the sidebands, and a
building up of the central frequency toward a final,
constant value predicted by coherent amplifier the-
ory."" That is, the radiation undergoes spectral
narrowing, and does tend towards a quasimono-
chromatic, steady-state output, with vanishing in-
tensity fluctuations, as in a single mode laser:
5(I-(I))dI. The steady-state values are easily
obtained from Eqs. (2.28)-(2.30) for the homogene-
ous broadening case, if one applies the conditions
for constant amplitude (d/dz —=0) and single mode
oscillations at the resonance frequency (S„=h,5„„
p„=p, 5„„D =D, 5„,),

0=-(RS, +p, , ,

Goz =0
0.00

-I5 -lo -5 0 5 IO I5

096-
~ ~ ~ ~ i ~ ~ ~ I

1
x ~ e e ) I I 1 l

J I ~ I ~ l l I ~ I

~& b+ (b)

f =0.2y b

R=0.5
~Goz = l50

Goz =50

0.48—

Oz =10(x2)

between (-n, m). The ratio between the frequency
interval and the different widths is f/y„=0, 2

(y, =y, =y„); and the loss-gain ratio has the value
8, =a/G, =0.5. For Comparison, Figs. 2(a) and 2(b)
show the spectral evolution undergone by a co-
herent history with the same initial spectrum.
Parameter values are the same as in Figs. 1(a)
and 1(b), but the initial phases are all taken to be
zero. Since we are dealing with discrete spectra,
the lines connecting the points in Figs. 1 and 2, do
not have any physical meaning, and are drawn only
for convenience; actually, the magnitude of the
spectral intensities ought to be indicated by vertical
lines drawn up from the zero base line. Finally, in
conjunction with Figs. 1 and 2, Fig. 3 shows twice
the power generation density,

+00) I I ~ ~
l

~ I 0 ~

)
~ I ~ I f/$/) l

I ~ I I
)

~ I x ~0
-I5 -IO -5 0 5 IG I5

FIG. l. Showing the spectral evolution of an incoherent
history at increasing depths (G, &) into the active med-
ium. At & = 0, the spectrum is flat I„(0)= 2.5 && 10
and phases fIt)„(0) were randomly selected; numbers on the
horizontal axis indicate detuning (nf ) from the atomi c
frequency u. Parameter values are: f/')I, q=0.2, y~
=yq =. y, q, R= 0.5. Numerical integration of (2.28)-(2.30)
withVPQ) =&, 0. The spectrum tends toward the solu-
tion (4.2).
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FIG. 3. Shows twice the power generation density
(4.3a) vs distance (t"p&), for both the incoherent and
coherent cases shown in Figs. land 2, respectively. The
curves show a different rate of saturation, with the. same
final value given by Eq. (4.2).

1.00-
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f =0.2 y, b

R= 0.5
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Goz =25

~ ~Gpz= IO{x2)
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FIG. 2. Spectral evolution of a coherent history with
the same initial spectrum as in Fig. 1(a), but the starting
phases Q„(0) were all taken to be zero. Parameter values
in Figs. 2(a), 2(b) are those of Fig. 1. The spectrum
tends toward the solution (4.2).

Figure 3 indicates that initially, the growth of
the total intensity [Q„I„(z)]for the incoherent
signal is faster than the corresponding growth for
the coherent signal. In the present case, this is
reasonable because the latter is a wave packet with
an initial time duration, b, v =(0.25/y) much short-
er than the periodicity time T =2v/f =2m(S/y). Cor
respondingly, at a given place z before the onset of
saturation, the coherent signal extracts power
from the atoms only during a small time ~7- «T,
and most of the energy pumped into the medium at
a rate A (Eq. 2.2) during the interval T»/y is lost
by radiative decay. On the other hand, the inco-
herent signal with the same initial spectrum, but
random phases, is an erratic function within the
time interval T. The interaction with the atomic
medium is less dramatic; however, the atomic
energy pumped during T is continuously extracted
by the field. The difference in the saturation rate
between coherent and incoherent signals is en-
hanced in Fig. 4. There, the parameter values are

—,
' Q [$„*(z)p„(z) +c.c.],

n

(4.3a)
1.00-

~ ~

I
~ I (

~ ~
I

I 0
I

~ ~
I

~ ~
I

~ $
I

~ $ i g g

as a function of G,z. This quantity acts as the
source term in the evolution of the total intensity,

G,
'

& g I„(z)= -8 P I„(z)
n n

+—g [S„*(z)p„(z) +c.c.], (4.3)
1

n

0.52

ERENT CASE

NT CASE

f=O. I y b R=O.5
z

I . . I ~, I si I I

0 15 50 45 60 75 90 105 120135 150

D, (z) =1——,
' Q[g„*(z)p„(z) +c.c;]. (4.4)

and from (2.19), we know that it is proportional to
the time-averaged power density delivered to the
field during T = 2n /f Because of.the balance be-
tween atomic and field energy, this quantity also
appears in the time-averaged population

FIG. 4. Twice the p'ower generation density (4.3a)
vs distance (Co~), for both coherent f&„(0)'s=0]'and in-
coherent [Qn(0)'s, random set] histories. Parameter
values are the same as in Figs. 1-3, except for a halving
of the frequency interval: (f/y, q) =0.1, y, =yq=y, q,
N. 0.5. Differences in the saturation rate are larger
than those shown in Fig. 3; however, the final value is
the same.
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x 1o ' for Irtl ~ 20 and I„(0)=1 2»&1o ' fo»«lnl
a30 (see Fig 6.). Comparing Fig. 4 with Fig. 3,
we see that rate of growth for the incoherent signal
has not changed much; however, the change is sub-
stantial for the coherent signal.

Figure 5(a) shows the magnitude lD„(z)l of
pulsations in the population for both the incoherent
and coherent cases at t",z =10. Parameters are
the same as those in Figs. 1 and 2 [note that for
m&0, we have plotted lD lx10]. As expected,
pulsations (m g0) are smaller in the case where
the phases are not correlated [see Eqs. (Cll) and

(C12)]. This is no longer true deep into the atomic
medium because of the faster pace at which the
sidebands disappear in the coherent pulse case,
see Fig. 5(b) for G,z =40. Indeed, a close inspec-
tion of Figs. 1 and 2 shows that the spectral nar-
rowing rate is larger in the coherent case than in
the case with uncorrelated phases. This can be
explained because of the different saturation [e.g. ,
D, (z)] in both cases, as indicated by Figs. 3 and
4

Spectral changes during propagation may be
related to changes in the fraction I„(z)/Io(z) of the
line-center intensity at the frequency v„=nf,

I„(z) ~I 1 dI, 1 dI„
dz Io(z) Io Io dz I„dz (4.5)

o051O oo 5 IO I5

FIG. 5. Magnitude )D~(z)~ of pulsations in the popu-
lation —Eqs. (2.17), (2.30) with%'( j ) = 5:, 0

—for both
the incoherent and coherent cases shown in Figs. 1 and 2.
In Fig. 5(a), Goz =10, while in Fig. 5(b) Goz =40. For
m & 0, we have plotted ~D (z) lx 10. Interpretation of
these results appear in the main text.

the same as in Figs. 1-3; but the period T has been
doubled by diminishing the size of the frequency
interval to f/y„=0. 1. Correspondingly, the num-
ber of "modes" has been doubled, and I„(0) = 1.25

1 dr„, 1" =-(r+-,'G, —[8+(z)p„(z) +c.c.],
n

(4.6)

and represents the "effective" gain coefficient at
p„. At small signals, the effective gain depends
mainly on detuning; however, as the signal geows,
it also becomes a nonlinear function of the field
through saturation (D, ) and mode-coupling effects
(D„). Substituting p„(z) given by (2.29) into Eq.
(4.6), we can finally write (4.5) as

From (2.28) with VP(j) =6J „we see that each term
within curly brackets of (4.5) has the form

=-—G, [( —}!(a}}D,(g}+——p ((,"(z}8„(z}B„(ir}+t:.f..)
———,~(n)Q Bg(z)8„(z)D (z)+c.c;2I'

0
(4.7)

In the present case, pulsations D are much
smaller than D, (see Fig. 5). Therefore, the first
line of (4.7) is sufficient to explain the different
narrowing rates associated with the coherent and
incoherent cases, D, (z) is larger in the coherent
case [see Eqs. (Cll) arid (C12)]. As sat'uration sets
in; Do(z) gradually diminishes from its starting

' value D, = I, toward its final value D, =@., and the
first line of (4.7) indicates the ensuing decrease

of the narrowing rate. Finally, note that in the
linear regime where D, =1 and D =0, Eq. (4.7)
gives

(4.6a)

Since the ratiol„/I dimoinishes with distance, after
a few steps into the active medium it is possible
to define the spectral width as the separation be-
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in Fi . 6. Pulsations are shown at Go~

=10, still in the linear regime (see Fig. 7); an or
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th asymptotic value of the sing le mode solutione
is I~ = (1 —6I)/6l = 1, whereas the linear passbanand

[ GP(P) =K] is v, =r„[(1-6t)/61] '=y„. In one
se we consider (a) r„/f=r/f=ri/f=case we

dth for
the atomic levels (b) r„/f =10, r, /f = y, /f =1.

The horizontal line in Fig. 6, repre resents the
"flat" spectrum at the input; „0 =0 =1.25x10
n!&20 and& (0)=1.25X10 ' for!n!&20. Then &20, an

s of the spectral components are all
,0) =0. Thus, the input signal is a wave pac e

wi a, i .
' =-' ' much smaller thanwith a time duration 47 =&y, muc

th 'od T =(2v/f) Frequencies, . v„=nf, are
measured in units of f, and n =0 stands or
atomic transition frequency (d. The spectrum for
both cases, (a) and (b), at the distance Gpz 10 ls

b the lower and upper curves respec ive y.
Figure in ica e6 d t s that in the initial stages
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average population inversi:on, implies that, at
least during the initial stages of the amplification,
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FIG. 9. Spectrum for cases (a) and (b) described in
Fig. 6 is shown at different distances Gp inside the
amplifier.

and this is apparent in Fig. 8 showing the magni-
tude ~D (z)~ of pulsations in the population for (a)
and (b), at G,z = 10. (Note that for m & 0, we have
plotted ~D ~& 10). From Fig. 8 one can see that
Dp 0 98& while D,' =0.86; and this diff e'rene e
in conjunction with Eq. (4.7) partially explains the
different narrowing rates associated with cases
(a) and (b). Figures 9(a)-9(c) compare the spec-
trum at different distances inside the active medi-
um. For convenience, the spectrum for case (b)
has been multiplied by a factor of 2 in Fig. 9(b).

B: Monochromatic limit

The expressions (4.2) for quasimonochromatic
oscillations are independent of the size of the fre-
quency interval f; and in the numerical examples
so far discussed in Sec. IVA, the interval was
taken to be f=0.2y„and f=0.1y„. We have also
explored the "monochromatic limit" (f=0) for
quasimonochromatic oscillations at the atomic
transition frequency (h„= ho&„o). For convenience,
we started near the limiting value ~h, ~

= [(I —(R)/
(R]' ' subdivided among several components 8„,
and with increasingly smaller values for f. The
rate at which the total intensity and power genera-
tion density of Eq. (4.3) grow toward their limiting
values (1 —(R)j(Rand 1-6I, do not change signifi-

.cantly. However, the narrowing process, i.e., the
prevalence of the central mode over the side ones,
slows down considerably by diminishing f because
of the increasing coupling (~P(m)) among the
modes. " For small values: f & 0.01 y„, we were
unable to observe appreciable narrowing beyond a
spectral range 4v =0.05y, &, in a reasonable amount
of computer time.

The behavior described above, can be understood
by taking a closer look at our basic equations in
the monochromatic limit f =0. In this case, the
field amplitude (2.13) can be written

amplification, the time-average power generation
density [see Eqs. (4.3).and (4.4)] is higher in the
case (b) than in (a); the population inversion den-
sity has a longer relaxation time in the former
case, and the energy pumped into the medium is
more efficiently extracted. Figure 7 shows (twice)

(4.9)

However, the set (~$„('j can no longer be interpre-
ted as describing a spectrum since the (8„'s)
simply are complex vector components (phasors)
with a resultant 8. Only 8 has a definite physical
meaning as the field amplitude. The total intensity .



714 LIONEL N. MENEGOZZI AND WILLIS K. LAMB, JR.

will now be given by

which, in general, does not reduce to g„j@„~'.
The individual components, h„(z), still obey Rqs.
(2.28)-(2.30), but now

(4.10)

for all n, m. Since we are interested in the evolu-
tion of the amplitude (4.9), instead of (2.28), we
consider the sum

can develop. On the other hand, if all the side-
bands decay, the narrow line solution is stable;
although one cannot preclude the possibility of
there being a stable broadband solution as well.
Nevertheless, numerical computations with a range
of different starting conditions did not provide any
indication of this possibility.

Depending on the choice k k
= (ek)* = ee ', or

e k
= —(ek)*=-ee ', the perturbation in (4.13)

represents an amplitude modulation (AM),

h(z, f) = 8, +2&(z) cos[vk(t- z/c) —p(z)],

&,$(z) =--,'zS(z) +-,'G, g p„(z) . (4.11)
or a frequency modulation (FM),

n

From (2.29) and (2.30) in conjunction with (4.10)
we get

&s[~.*p„. s+ h,P. ..]]
n n l q

If the indices n, l, q, are unbounded, the above
equation can be written in terms of the field am-
plitude (4.9) as

gp„=(l ——,
' kk"F p„+(l(lQ pf);

n P

and a similar expression for Q, p„*. From these
equations, one obtains

gZp" 1+@(I)k '

which allow us to write (4.11) in the form

G, 's, S(z) =-,'[8/(1+I) —.6t]. (4.12)

C. Stability analysis.

We will now test the stability of the monochrom-
atic solution by including with it small sidebands
with complex spectral amplitudes e~, e ~, at each
side of the steady state, b„shown in (4.2). Then,
the series (2.13) for the electric field amplitude
reduces to

$(z, t) = 8, +e,(z)e "k~' '~']

(Z) 8+ (ilk (0-z/c) (4.13a)

If a sideband grows, the monochromatic solution
8, is unstable,

,
and eventually a broader spectrum

Note that the steady state predicted by (4.12) a-
greeswith(4. 2). However, the individual compon-
ents of S =Q„S„, still evolve according to (2.28),
and may or may not individually arrive to a steady
state. As a matter of fact, numerical results in-
dicate that they go on changing, but keeping a con-
stant S."

Pk =&(&)[&kD'."+ &.dk], P .=Pk*,

k
= -~(~)[&A+&k&O"],

We only need the explicit expression for

(0) 1 —F(k)I()
(+5'(k)ii(k)I ) '

(4.14)

(4.15)

(4.16)

Note that the bracketed expression in (4.16)
appears because of the second term in (4.14); i.e.,
because of population pulsation, while the first
factor accounts for saturation effects.

A sideband will grow or decay depending on
whether its net gain,

k= k
= — +~2 [ kPk C. ~ ]

(4.17)

is positive or negative. Since

(R = —,'(1/I, )(S,*polio] + c.c.),
a simple inspection of (4.5)-(4.7), in conjunction

$(z, t)

= k exp i sin[v (t 2/c) - .-((z)])
. 2e(z)

0

The gain for AM perturbations is always larger
than for FM, and we will therefore consider only
the first case.

We seek a solution of the coupled Eqs. (2.28)-
(2.30) up to the first order in the small field am-
plitudes,

hk(z) =[&oink,0+&k(z)~kg +&-k(z)6k, -kl& &-k=&k
&

(4.13b)

p„(z) =p~o~+P„(z), D (z) =Df„'l+d (z). (4.13c)

Substituting the above expressions into (2.28)-
(2.30), we readily see that the zero-order terms
are given by the steady-state values (4.2): D~']
= 60 „p „'=(RS,~„„and for the nonvanishing,
first-order amplitudes we have the pair of equa-
tions
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with (4.17), will show that instability 9» & 0, if
any, arises from pulsations in the population. In-
deed, for moderate values of (R, the main contri-
bution to P„comes from the first term in (4.14}
and in this case, the right-hand side of (4.17) is
simply —[1 —Z(k)]DO~' & 0. This result is just the
first term in (4.17), which is responsible for spec-
tral narrowing. On the other hand, we shall see
that for small values of 6t= ~/Go, the contribution
of the second term of (4.14) can make (4.17) posi-
tive. In this case, the last two terms (4.7)—mode
coupling due to pulsations —are able to overcome
the spectral narrowing due to the first term.

Equation (4.16)and the definitions (2.31)and (2.32)
for 5)(k) and 6:(k), allow us to write 9 ~ explicitly in
terms of I, =(1 —$.)/6l, the spectral location of the
sidebands at each side of cv

$y = &a/'Yaa g

and the ratio

(4.18)

a'=r. /r. o =r~/W. b, «g- l.
After simple manipulations, the criterion for in-
stability 8„& 0, can be modified to read

(4.19}

-&:+4m(». -~) -2a'(~.'+f.) (4.20)

g(SIO- g)' -2(ID+ID) & 0,
i.e., instability occurs for

(4.21a)

I, = —

+ - (4 +3@)+[(4 +3@)'-g']'~'. (4.21b)
1- (R

If (4.21b) is satisfied, then, sidebands will start
to grow in the spectral range

(4.22)

where r, are the roots of the polynomial (4.20),

~l =a I-'(». —a) +[-'(Sf.-r)'- 2(f'. +f.)1"].
(4.23)

For example, if g=1, the narrow line solution is
unstable for intensity values Io ~ 7+2v' 12 =13.93,
or equivalently, forloss-gainratios 6t=(1+&o) '
& 0.0'7; if g&& 1, instability occurs for I~ - 8 or
6ls 0.11. Figure 10 shows the instability range
(4.22)-(4.23) versus the intensity I, of the narrow
line solution, for three different values of g: 1,
0.4, and 0.1. The upper and lower limits ~„r,
are indicated by the upper and lower branch on
each curve. Numbers on the vertical axis measure
frequencies in units of y,&. The figure also shows

while less than zero, would mean that I, is a stable
steady-state. The left-hand side of (4.20) has a
maximum at each side of ~,

((q)~„=a E(SIO —Z) .
The maximum value is positive (instability), for

9.0-
8.2

5.0

l.8-
]pl . I ~ I . I

8 I2 16 20

g =O. l

l . I ~ I . I ~ I a

24 28 32 36 40,

FIG. 10. Spectral range of instability of the narrow
line solution (4.2). Frequencies are measured in units

. of y, q on the vertical axis, while numbers on the hori-
zontal axis stand for the intensity of the narrow line solu-
tion &0=(1—R)/R. The upper and lower frequencies r+,

of the instability range, (4.22), (4.23), are. indicated
by the upper and lower branch on each curve. The values
of g=y~/y, q =yq /y~q associated with the three curves,
starting with the upper one: g= 1, g = 0.4, g= 0.1. The
figure also shows the Habi frequency in units of y, q

( P go/ky, g ).

the value of the Rabi frequency (p 8,/ky„).
The relation (4.21b) which defines the threshold

for instability, can be readily recognized as equiv-
alent to Eq. (3.10) in an article by Risken and
Nummedal, which deals with self-pulsing in a
ring-laser configuration with one allowed direction
of propagation. In the ring laser, the field is per-
iodic in space with the cavity length as the period,
and if the single mode operation is unstable, the
instability can only grow in time: real wave vec-
tor and complex frequency. . In our case, the field
is periodic in time and the instability can only grow
in space: complex wave vector and real frequency.
The similarities between both problems are ob-
vious, and indicate the possibility of self-pulsing
and soliton propagation in a long laser amplifier
with a high degree of atomic inversion. This prob-
lem deserves attention and will be dealt with in a
future publication. Finally, we would like to men-
tion that the stability of the narrow line solution
can also be easily discussed by using the time-
domain picture represented by Eqs. (2.9)-
(2.12) ""
V. BROAD LINE OSCILLATIONS: DOPPLER-BROADENED

MEDIUM

A. Stability analysis for the narrow line solution

In the case of Doppler (inhomogeneous) broaden-
ing, Eqs. (2.28)-(2.30) stiQ admit a steady-state,
narrow line solution. As in (4.2), the steady-
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state solution is obtained from (2.28)—(2.30) by
considering constant amplitude (d/dz =0), single
mode oscillations at the resonant frequency,

[I.=I.6„., p„(j)= p.(j )&. ..D.(j)=D.(j)6.,],
~I, + —,

'
G Q [P,*p,(j ) + c.c.] =- 0,

p.(j)= p '~(-j)~p.(j),

10

&.(j)=~(j) '—pÃ-.*p.(j)+'c l, . (5.1a)

where W (j), p, G, and K)(j ) are defined by (2.22),
(2.25), (2.26), and (2.31), respectively.

From the l.ast two equations we readily obtain
the steady-state dc population difference for
atoms of velocity Kv, =j f,

D,(j)=, , . (5.lb)
1+IOCjj j

Hy using (5.1b) in conjunction with (3.17) for &(j ),
the condition for constant amplitude can be writ-
ten as

p
' QD.(j)~(j)

0 ' I I I ' I I I

0.5 Oc4 0.5 0.6 0.7 03 0.9
FIG. 11. Narrow line solution in Doppler-broadened

media. The figure shows Io from Eq. (5.2), vs the loss-
gain ratio (5.3) for two values of the Doppler width:
~&=lop, q and ~&=50',q. Reference 38 contains an
expression for &o in the Doppler limit case.

1+I, , q,', (1+I,)+(ff)' G
'

As in (4.1) we define the loss-gain ratio, and use
the same symbol

61=()(/G), 0& Q, &1 (above threshold). (5.3)

However, the reader should note that G = GOP [see
Eqs. (2.25)-(2.26)]. Equation (5.2) allows the
computation of Io in terms of parameters of the

system, and can be readily solved by iterations:.
Fig. 11 shows Io vs (R for Ku = 10y„and Ku = 50y,,~.
Note that for a fixed (R (abscissa) different Ku

values imply different degrees of inversion in the
active medium ((R = z/Gop). For this reason we

also give the values /=0. 159 and P =0.035 asso-
ciated with Ku =10y,~ and Ku =50y,» respec-
tively. "

Contrary to what happens in the homogeneous
broadening case, we shall see that the:narrow
line solution becomes unstable for quite small
values of I,. Indeed, because of atomic motion
there are atoms with different Doppler transition
frequencies: v, = &u(1+ v,./c). Depending on the
value of Ku, a wide range of radiation field modes
may be driven by these atoms. That is, besides
the Io oscillations, noisy sidebands may start to
grow. For moderate to large shift values, Ku &y„
to Ku» y, »- the sidebands cannot be quenched by
the I, oscillations, since the second-order "hole
burning" effects of Io are effective only over a
range KAv -y, a.

The stability analysis can be done as in the
homogeneous broadening case, Sec. IV. Again we

include sidebands e~ and e „at each side of go,
Eq. (4.13b), and assume

p.(z,j ) = p."(j)6...+P,(z,f)6. ,
+P .(z i)6. -a-

D.(z,j)=D.' (f)6,.+d, (z,j)6.,,
+ (d, (z, j)5

(5.4a)

(5.4b)

where

d, (z, j) = [d),(z,j)]*, P,(z,j ) = [P„(z,-j)]*. (5.4c)

We now seek a solution of (2.28)-(2.30) up to the
first order in the small amplitudes. The zero-
order terms are given by the steady-state values
(5.1)-(5.2), and we need only the resultant expres-
sion

p, (z, j) = p '&(& j)~,(z)D.' (j )—
1--,' 6(t)I, Z(j)

1+ -,' 6:(k)[X)(k —j ) +n(k j)+]I, '

,which is a simple generalization of (4.16). As in

(4.16), the bracketed expression in (5.5) appears
because of population pulsations d», while the
first factor accounts for saturation effects. A

sideband wil1. grow or decay depending on whether
its net gain,

I~~I' dz

( ."(c)('.(,j) cc.c.] a), (C.C)
~

~ ~

leal
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is positive or negative.
Figures 12(a) and 12(b}show 9, versus the spectral

location of the sideband in units f =y, ~ (=y„y~).
The net gain i:s positive (instability} above the
horizontal line and is negative below the line. In

Fig. 12(a) Ku = 10y„and P =0.159, the lower curve
represents the net gain when I, =0.1(8=0.95),
while the upper curve shows the gain when the
resonant mode is ID= 1 ((R =0.68). In Fig. 12(b)
the values of Io are the same as in Fig. 12(a)
but KM=SOy, ~ and P =0.057.'~

Contrary to the case of stationary atoms, in the
present case, the values of (R needed for instabil-
ity are much closer to threshold ((R=1); also,
mode-coupling effects are no longer essential in
determining the instability of the narrow line
solution. To show this we neglect the bracketed
terms in (5.5), and consider only the first factor
which contains saturation effects. Corresponding-
ly, the right-hand side of (5.6) adopts a form
which does not depend on population pulsations
but only on saturation D,(j), exp[-(v„/Ku)'J&(1+I, ) ', (5.9a)

The summation in (5.7) can be handled analyti-
caHy if% (j) is much broader than Z(j): Ku»y, &,
"Doppler limit. " In this case, the factor Z(j)
in the denominator clearly indicates that satura-
tion effects are i.mportant only near the center of
the line v~~y, ~. That is, the Io oscillations do
not significantly deplete those atoms capable of
feeding the sidebands, Kv&= v~&y, ~. Then, the
sidebands can grow nearly exponentially as long
as the gain (first term in 5.7) is sufficient to
overcome the losses. More explicitly, we express
6 as the left-hand side of (5.2) and evaluate both
terms of (5.7) in the Doppler limit approxima-
tion, "

9,=J'' 'N(k) —,kf&y„, KM»y. ,~(0)
O

(5.8)

From (5.8) we can readily obtain a rough criterion
for instability,

Z 1+I,Z, (j) (5.7)
and a gross estimate of the instability band

y„& v, &(Ãu)[ln(1+I, )J'' (5.9b)

005(I ~ ~ ~

/
~ ~ 0.

(
~ I WF}. . ~

Gz

+ O.OI 5

+0.0 I .+0.007-
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FIG. 12. Instability of the narrow line solution in Doppler-broadened media. Sideband noise will grow or decay de-
pending on whether its net gain gz, Eq. (5.6), is positive or negative. The figures show 8& vs the location of the side-
band (~~/y, q) in units of p, q, the net gain is positive (instability) above the horizontal line. In Fig. 12(a), E&=10',q,
P =0.16, the lower .curve represents g~ %hen &0=0.1, and in the upper curve ID=1. In Fig. 12(b) the Io values are the
same, but K=30&, p, P =0.06.
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Note that the right-hand side of (5.9b) and the
linear passband

v, = Ku[ in(1/(R)]'1',

have, roughly, the same size."
(5.9c)

B. Spectral narrowing and rebroadening.

A number of experimental and theoretical ar-
ticles have been published dealing with the spec-
tral behavior of the radiation in nonlinear ampli
fiers. ' "''" In the course of amplification, the
linewidth of the radiation first narrows, leading
to some applications in spectroscopy. ""In
general, however, as the signal passes through
enough gain medium to build near-saturation in-
tensities, the linewidth of the radiation rebroadens
again. Several theoretical articles on the subject
are based on semiphenomenological, oversimpli-
fied rate equations and their treatment is inade-
quate. Hence, we wish to discuss indications
given by our formalism which is based on first

I, g (5, 5, (z 1)+c c )).

By using (2.29) in the form

n (zj)=5„'Z,Z(n j) (5).( )D.(z, j-)

(5.10)

5

cQ 5 ( )D„c„(zj))z, (5.11)
PWO

Eq. (5.10}is written

principles.
As in Sec. IVA, we will discuss changes in the

fraction I„(z)/I,(z) since they are directly related
with spectral changes during propagation. For a
generic member of the ensemble we have

d I„(z) I„, 1
dz I,(z) I, z G — [8()P()(z, j) + c.c.]

= ——"Dp ' Q [Zj(j) —D(n —j)]D (j)+-,'1 Q 51( j)p 88„D„(,j)+c c)d I„(z)

j Q %0

Q (51 (n —j ) Q 5: „5zD(jz) + c.c.
P &0

(5.12)

with p, G, K)(j), and Z(j) defined by (2.25), (2.26),
(2.31), and (3.17) respectively. Note that (5.12)
is a generalization of (4.7), the first sum accounts
for unsaturated gain differences and saturation
effects, while the last two sums include mode-
coupling phenomena.

In gas amplifiers with Ku&y„, the effects of
saturation are significantly different from those in
homogeneously broadened amplifiers. In the in-
homogeneous case, the onset of saturation not
only decreases the gain-narrowing tendency, but

may eventually produce rebroadening and restore
the radiation to its Doppler line shape. This

occurs because the center of the lirie saturates
first, while the wings continue to grow nearly
exponentially. For simplicity, let us start with
a situation where pulsations do not contribute
much [e.g. , small coupling because of uncor-
related phases, see Appendix C, Eqs. (C11) and
(C12)]. Then, p„(z,j) will be approximately given
by the first term in (5.11) with

(5.13)

and the transport equation for the spectral inten-
sities adopts the explicit form

— I„(z)=I„(z) -~+GP 'g . &(n-j) 5 (5.14)

with 5))lj( j) defined by (2.22).
We wish to determine for every depth z into the active medium, the sign and magnitude of (5.12}which

is now approximately given by the first sum on right-harid side, i.e.,

d I„(z) I„, 'VV(j)

dz I,(z) I, ~ Z j 1++, ( I)zz( (Ij)
(5.15)

Analytical results are possible in the Doppler limit (Ku» y„), and provided that the intensity spectrum
remains broad compared with y,~. For example, we can write '
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&~?(j) . ~(n)p, .g(q)
1++,I,(z)Z(V i)-1+I„(z)g,Z(q)

l.00-

~(n) [p/w(0) ]
1 [P/~(0)]l. ( ) 0.48

(5.16)

And Eqs. (5.14), (5.15) are given much simpler
forms

0.05
IO 20 50

&„(z)=Z„(z) -z+Gd exp [-(nf /Ku)']
dz (5.17)

+ 0.0 I I

0.00

d Z„(z) Z„1 exp[ —nf/Ku)']
dz J,(z) J, 1+do(z) 1+J„(z)

(5.18)

wherey

Z„(z) = [p/W(0)) I„(z)

= [ny, ~/f ]I„(z)'= ay, ~ I(z,'v„) if f s y,~.

(5.19a)

(5.19b)

Equation (5.17) can be integrated in closed form,
but we only need the saturation value

(d/dz) f J /J }
f„=0.5 Ku R=0.5

Gz

~5 20 25 30 &5
FIG. 13. Spectral narrowing and rebroadening in

Doppler-broadened media. In this example, the effects
of mode coupling are assumed to be small, and only sat-
uration effects are considered. Figure13(a) shows J„(z)
vs G&, both for + =0 and &f = 0.5&I (lower curve), Eqs.
(5.17}-(5.20}. The loss-gain ratio is 8= 0.5, and the
Doppler limit K»&yq hasbeen assumed. Figure13(b)
shows the sign and magnitude of G (d/d&) J„(&)/Jo('&} vs
G&, Eq. (5.18). Note that the initial gain narrowing is
reversed because Jo(& saturates before than J„(&).

Z„(~)= [exp[- (nf /Ku)'] —6l+0, , (5.20)

where 6l is the loss-gain ratio (5.3). Expression
(5.20) becomes negative for nf&Ku[ln(1/8)]'I' and

this. is physically unacceptable, However, we
shall see that numerical solutions of the exact
coupled equations (2.28)-(2.30), closely approach
a "truncated" version of (5.20) in situations where
mode coupling does not contribute much compared
with saturation effects (~D ) «) D, ~).

Figure 13(a) shows J„(z)versus distance (Gz), both
for nf=0. and nf=0. 5Ku (lower curve). The loss-
gain ratio is (8 =0.5 and the Doppler limit has been
assumed. The vertical lines indicate distances
where the intensities attain half their saturation
values Z„(~). Figure 13(b) shows the sign and.
m agnitude of the rate (d/dz) [J„(z)/ j'0(z) ]versus dis-
tance (Gz) as described by (5.18); as in Fig. 13(a),
8, =0.5 and nf =0.5K'. The horizontal line is the
zero base line. Note that initially there is spectral
gain narrowing; however, this process is rever-
sed by the onset of saturation. Numerical results
indicate that the inclusion of mode-coupling ef-
fects —last two terms on the right-hand side of
(5.12)—do not change much the qualitative fea-
tures shown in Fig. 13(a); but it can alter the
rate of rebroadening as well as the spec'trum, and
in general should not be ignored. This is shown in
Figs. 16(a), 19, 21, 23.

h .(z) = [g.(z)]*, e = .(5.21a)

which means that the field amplitude h(z, I), Eq.
(2.13), is now taken to be real. This phase con-
straint represents, to some extent, a departure
from a realistic representation of noise; never-
theless, the justification for its use is based on
a comparison with a calculation in which the con-
straint is not used. Later, we shall see, at least
in one case, that the effects of (5.21a) are easily

C. Noise amplification in Doppler-broadened media: Numerical

analysis

In this section we will describe and interpret
numerical results obtained by computer integra-
tion of the set of Eqs. (2.28)-(2.30), applied to a
few situations in Doppler-broadened active media.
In each case, an "ensemble" of five different his-
tories is built up, and for every member of the
ensemble we applied the numerical method of
Appendix C. - The boundary condition at z= 0 was
of low intensity, broad spectrum', and starting
every time with a different set of randomly selec-
ted phases P„(0) with values between (-w, ~).

Because of the expense of performing the calcu-
lations, we have restricted ourselves to cases
where the spectrum is symmetric around the
atomic transition frequency n =0,



720 LIONKL N. MKNKGOZZI AND WILLIS E. LAMB, JR. 17

I ' ' ' I

0.50
(a)

u =100y,b

(c)
+Yf I ~ ~ I i I ~ ~ ~ ~ I r ~ r ~ I e ~ e ~ ~ ~ ~ ~ ~

0.016 „
(d)

Gz= 45

f =4),
ab

Gz=0-

0.25 0.008-

0.0

0.00
0 5 10

Kg)~- an~
15 20 25

«ff I 1 ~ ~ ~ I ~ ~ 4 a I ~ s I ~ I I ~ ~ ~ S I

W

II

0.000
0 1 —m 4 5'

~ ~ ~ ~ I ~ ~ ~ I w ~ ~ ~ I ~ ~ ~ 0 I 0 ~08~8
Gz =45

h,
h,

+Tf l a ~ ~ ~ I W ~ ~ I ~ y I I I i ~ I ~
l

~ ~ ~ ~

Gz =45
8.0 , I ~ I ~

I
~ I I I ~

{e)-

0.4

0.0

4.0

I ~ ~ ~ I ~ ~ 0 ~ I I 4 i I I ~ ~ ~ ~ I ~ I ~ ~ ITr
0 5 10 15 20 25

STORY-
00y b

0.6

0.0
0 5 10 15 20 25 0 0 I i ~

'
I ~ I ~ I s I ~ I I I

0 6 12 18 24 30 36 42

FIG. 14. (a) Evolution of an incoherent history in Doppler-broadened media, Eqs. (2.28)-(2.30), vs dimensionless dis-
tances G&. With a large "mode separation" f =4 y~q, and random phases $„(0) (n &0, p „=-Q„), mode-coupling effects
are very small. A Doppler limit case Kg=100 y, p, with Sf=0.6, y, =yq =y~p, and p=0.03. The spectrum is symmetric
around the atomic transition frequency and only one side is shown. The starting spectrum is flat I„(0}=0.01 and ex-
tended over a frequency range 2 M. (b) The spectral intensities l„(s) in the saturation region G& =45, see Fig. 14(e).
The figure also includes the smooth spectrum obtained from (5.19a), (5.20) with parameter values given in Fig. 14(a).
(c) Phases p„(&&0, (It) „=—Q„) of the incoherent history at @&=0 and GO=45. At &=0 the phases are selected with a
random-number generator. (d) Shows )D (s,j =0)~vs m for 6&=45, one can see that Do» )D ~, i.e., mode coupling
effects contribute little. (e) The evolution of the total power generation density and losses vs G&. The horizontal line
indicates the saturation limiting. value (H5~ I„( ) = 7.6 obtained from (5.19a) and (5.20) with parameter values given in
Fig. 14(a).

understood. If one uses (5.21a) together with Eq.
(2.18) (D „=D„*)then, the set of coupled equations
(2.28)—(2.30) allow us to show that

(5.21b)

(5.21c)

where we have also taken into account that VP( j)
='()V(-j), Eq. (2.22). Furthermore, the relations
(5.21) are maintained during propagation, i.e.,
they are constant of the motion of Eqs. (2.28)-

(2.30).
In the first case me consider an extreme Dop-

pler-limit case Eu= Iooyab~ and with little mode
coupling compared with saturation effects, ~D
«D, . Equations (C11)and (C12) show that this can be
achieved by starting with random phases P„(0)
(for n&0, and P = -P„), and by taking a relatively
large "mode separation" f&y. Figures 14(a) to
14(e) show the evolution undergone by one particu-
lar history. Distances are measured in dimen-
sionless units Gz, and frequencies in units of
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f=4y, ),. The-atomic inversion is measured in
terms of the loss-gain ratio @=0.6; and for sim-
plicity we have considered y, = y, =y„. Given y„,
f and Ku, the resultant P, Eq. (2.25a), is P
=0.028." Since the spectrum is the same at both
sides of the atomic transition frequency, only one
side is shown in the figures.

The initial spectrum at Gz=0, Fig. 14(a) is
taken to be "flat", I„(0)= 0.01 for all n's, and ex-
tended over a frequency range of 2Ku, while the
starting phases [Fig. 14(c)], are selected with a.

random-number generator. Figure 14 (a) shows
the initial narrowing tendency, and also shows
the start of the rebroadening process around
Ca =15, where the nonlinear saturation regime
appears to start [see Fig. 14(e)]. In Fig. 14(b)
the vertical lines drawn up from the zero base
line indicate the magnitude of the spectral inten-
sities I„(z), in the saturation region Gz =45. This
plot also includes the results obtained from ex-
pressions (5.19a) and (5.20) with the same para-
meter values. These expressions apply in the
Doppler limit, and in a case where only saturation
effects are important, which up to a certain ex-
tent, is the situation in our numerical example.
Indeed, Fig. 14(d) shows iD (z,j =0)

i versusm for
&x=45, and from the graph one can see that Dp
» iD„i, i.e., mode-coupling effects contribute
little. Later on, we shall see that the fluctuations
of I„around the "theoretical curve" in Fig. 14(b)
will, to some extent, wash-out after an average
over a few different histories. Finally, Fig. 14(e)
discloses the evolution of the total power genera-
tion density [see Eq. (2.19)],

ly five different sets of random phases {I)„(0)'s.
The spectral characteristics of the different mem-
bers of the "ensemble" are shown in Fig. 15(a).
For reasons of economy, we stopped the numeri-
cal integrations at Os=30. , since for this distance
both power and losses were close enough to their
saturation value, see Fig. 14(e). The last history
in Fig. 15(a) corresponds to that one previously
.discussed with some detail in Figs. 14(a)-14(e).
After averaging over the ensemble, we obtain the
spectrum shown in Fig. 15(b). The smooth curve
in Figs. 15(a,b) is the spectrum in the absence
of mode coupling, already shown in Fig. 14(b).

In every one of the different histories, Fig.
15(a), there is a dip at the center of the spectrum.
This dip appears because of some mode coupling
introduced by the constraint (5.21a) among phases
at both sides of the central frequency. The cen-
tral mode is more affected than the side modes
by this type of combination tone. It is convenient
to show this with some detail. Since iD, i

«D„
Eq. (2.29) may be conveniently written

p.(z, j)=~ '&(~-j)D.(z, j)

&&[S„+S„,(D,/D, )+ S„„(D,/D, )

+S„,(D,/D, )+S„.,(D /D, )+" ],
and only a few terms need to be taken into ac-
count. Substituting the first term of the above.
expression into (2.30), we obtain an approximation

+ S Se &s({I p j)].

and losses

{RQ I„(z),

versus distance Gz. The horizontal line indicates
the saturation limiting value 6tZ„I„(~)= V. 55 for
the "independent modes" situation described by
Eqs. (5.19a) and (5.20).

The results discussed, so far, in this section
describe the behavior of a generic history. These
calculations were repeated five times, each time
starting with different initial conditions: essential-

Now, we wish to compare the effects of typical
mode-coupling terms on the power delivered at
two different frequencies, say S,*po(z, j) +c.c. and

S,*p,(z, j) +c.c. Because of the overall factors
'D(-j) and S(1-j) in front of the expressions for
p, and p„respectively, the leading terms of D„/
Do for use in each ca,se are (p, ) 0)

(D./D. ),—.=--.'~( p)[S*,S. S„S.*]'",
(D, /D. ),=, =-2&(v)[S,*,S, +S„,S,*]+' '

Substituting these terms into the above forms for
p, (z, j) and p, (z, j) we obtain

p(z j) = 0 '&( j)D,(z, j)jS, —-2[&(1)h', ( S*,S, + S, S,*) + F(1)+ S,( S+S, + S,S+)

+F(2)h,(S*,S, + S,S,*) +F(2)*S,(h,*h, +h, S~)+ . ]),

p, (z, j) = p 'u(l j)D,(z, j)I{S,——,'—[F(l)h, ( S,*S,+ S,S,*) + F(1)*S,( S,*S,+ S,S,*)

+F(2)S,(S*,S, + S,Sf) +F(2)*S,(S,*S,+ S,S,*)+ ~ ~ ~ ]]..

(5.22)

(5.23)
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FIG; 15. (a) An "ensemble" of five different histories obtained with five different sets of starting random phases
(t)„(0)'s. The spectral intensities are shown at Gz =30. The last history in Fig. 15(a) corresponds to that one shown
in Fig. 14. The smooth curve is the spectrum. in the absence of mode coupling, already shown in Fig. 14(b). Parameter
values are those of Fig. 14{a). (b) The figure shows the average over the ensemble" shown in Fig. 15(a), and the
smooth curve is the spectrum in the absence of mode coupling, Kqs. (5.19a), (5.20). They are indeed close; this shows
that mode-coupling effects contribute very little in the present situation.

Depending on the degree of phase correlation, we
may distinguish three cases.

(i) Uncorrelated phases: The first term in each
parenthesis has a larger contribution than the
second term, both in (5.22) and (5.23).

(ii) Uncorrelated phases with the constraint
(5.21a): The first and second term in each paren-
thesis have the same contribution in the case of
p„however, this is not so for p, because the sec-
ond term has a smaller contribution. Correspond-
ingly, the central mode is more affected by the
extra mode-coupling effects, e.g. , dip at the cen-
ter of the spectrum

(iii) Correlated phases: Dealing with pulse prop-
agation, the contributions of both the first and
second term in each parenthesis of (5.22) and
(5.23) are nearly equal.

The strength of mode-coupling effects depend on
the factors 6'(m); then, dealing with noise, the
spurious effects of the phase constraint (5.21a) are
likely to increase by diminishing the size of the
frequency interval f [see Eq. (2.32)].

In Fig. 16(a), we compare the spectrum obtained
in three different situations, all of them at a dis-
tance close enough to saturation, Gz =30 [see also

Fig. 16(c)]. The upper curve shows the analytical
results (5.19a)-(5.20), which with the present
parameter values (Au= 1 0@0,» f =4@,» y, =y, =y,»
(R=0.6) is an approximate representation of the
spectrum obtained by the ensemble average of the
incoherent histories. The next curve represents a
coherent pulse-propagation history, the initial
spectrum was the same as in Fig. 14(a,): I„(0)=0.01
for all n's; however all the initial phases were
taken to be Itt„(0) =0. From the point of view of
noise, this is a "pathological" history and was not
taken into account in the ensemble shown in Fig.
15(a). Finally, the lower curve is the spectrum
obtained from a numerical integration of the trans-
port Eq. (2.33), where the power ($„*(z)p„(z,j))
was taken in the Litvak's approximation form,
Eq. (3.11).'

Figure 16(b) shows the evolution undergone by
the phases ttt„(z) of the coherent history. It is in-
structive to compare this figure with Fig. 14(c)
for an incoherent history. Next, Fig. 16(c) com-
pares the evolution of the total power generation
density versus distance: (i) the upper curve rep-
resents the ensemble average of incoherent his-
tories [see Fig. 15(a)], (ii) the curve in the middle
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FIG. 16. (a) Shows the spectrum at Gz =30, for three different cases. The upper curve shows the analytical result
(5.19)-(5.20), and is an approximate representation of the average shown in Fig. 15(b). The next curve represents a
coherent-pulse history, the starting spectrum( was the same as for the incoherent histories I„(0)=0.01; however, the
initial phases were all $„(0)'s =0. The added phase correlation increases mode-coupling effects and the spectrum
evolves differently. The lower curve is the spectrum obtained by numerical integration of {2.33), using Litvak's ap-
proximation (3.11). Parameter values are those of Fig. 14(a). (b) The evolution undergone by the phases @„(z)of the
coherent history, Fig. 16(a). This figure should be compared with Fig. 14(c) which shows the evolution for an incoher-
ent history. (c) Shows the total power generation density vs distance Gz. (i) The horizontal line indicates the satura-
tion limiting value 5'„I„i~), obtained from (5.19a), (5.20). (ii) The next curve is the resultant average over the
ensemble of incoherent histories. (iii)' The second curve represents the coherent history. (iv) The lower curve are
results obtained using Litvak's approximation, Eq. (3.11}.

represents the coherent history; and (iii) the lower
curve shows similar results in the so called Litvak's
approximation. Again, the horizontal line indicates
the saturation-limiting value for the "independent
modes" situation already shown in Fig. 14(e).

The difference between the saturation values as-
sociated with the incoherent and coherent signals
can be explained by the same type of reasoning
already used in Sec. IV. Namely, the wave packet
has a time duration AT=(Ku) '=10 'y ', which is
much shorter than the period T =2m/f =1.5y '.
Correspondingly, the wave packet extracts power
from the atoms only during a small time, and
most of the energy continuously pumped into the
medium during T is lost by radiative decay. Qn
the other hand, the incoherent signal with similar
spectrum, but random phases, is an erratic func-

tion in the time interval T, its interaction with. the
atoms is less dramatic, but the energy pumped
during T is continuously extracted by the field.
An alternative explanation takes into account the
fact that pulsations D are larger, and D, is small-
er in the coherent case, as compared with the
same quantities for the incoherent signal.

Because of the considered range of parameter
values, Figs. 15(a)-16(c), the results of the nu-
merical integration of the transport Eq. (2.33) in
conjunction with Litvak's approximation (3.11) can
be discussed analytically. As we shall see, this
procedure will clearly show that the main error of
(3.11)—at least in this case —resides in the as-
sumption of Gaussian statistics. Population pul-
sations do not contribute much in the situation at
hand, and Eq. (3.11) may be approximated by

I

(&."( )P(r j)) = P 'Pl(r 1)(j(r))Irr(j) —!l) F-[( &,"P ) +(((,P.")]—lP[(&."P ) +(&P.")II, (5.24)

where the mode-coupling terms (n&f ) have been
left out. A simple inspection of the exact Eg.
(3.10) in conjunction with its present form (5.24),
show that the apparent "extra" terms in (5.24).
originate in the factorization of fourth-order cor-
relations, e.g. ,

(S„*S„h,*p,) =(1+5„,)($„*8„)(8;p,),

as approximately allowed by Gaussian statistics,
see Eqs. (3.3) and (3.4).

From Eq. (5.24) we obtain the power density in
terms of the intensities
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l[(d:(r)P(r I)) r~ ~ [=() 'Id()) I 'I &"(~ I)-»+ 2 I; d (d ))-)+ II 1+ I, (5.25)

Eq. (5.26) is similar to (5.14) except for the satur-
ation factor (1+(I)) ', which originates in the
"extra" terms of (5.24), that is, in the assumption
of Gaussian statistics. We now consider the Dop-
pler limit KM +& y*, and that the intensity spectrum
remains broad compared with y* [these conditions
are clearly satisfied by the numerical solution
shown in Fig. 16(a)]. Hence, we can apply the pro-
cedure already used in (5.16) to obtain

dr " " (I+(I))'I'+[d/W(0)[(l) ) '

(5.27)
I

The first term in the denominator departs from
unity because of blackbody statistics. In the pre-
sent case we can write (1+(I))'I2 =1+~ (I„') [see
Fig. 16(a)] and (5.27) can be given the same form
as (5.17), but with a different scale factor. That
is, instead of (5.19a) we now have

4 =([P/~(0)l+'-](I. & (5.28)

where Z* has the same form as the Lorentzian
(3.17) except for the modified width, y*=y, (,(1+
(I„))'I'. Using (5.25), the transport Eq. (2.33) is
given the form

(I„(~))= (I„( )) —~+ GP-'d ~ I

r,

m(j)z*(n-j)
1+ ' -Zd'(4-j)-

1+(I,)
(5.26)

Gz =45 Gz=45 Gz=45

I

of noise amplification in Doppler-broadened media.
The parameter values are taken to be: (R=0.4,
KM =25y„,f = y„, y, = y[) = y, (, , with a resultant
P =0.068; as opposed to values used in the previous
example: 61=0.6, ICu =100y, (, , f =4y, ~, P =0.028.
The spectrum at G~ =0, is again a low-intensity,
"flat" spectrum, I„(0)=0.005 for all n's; and
every history starts with a different set of ran-
domly selected phases (for n& 0) with the phase
constraint (5.21), P „(0)= -(t)„(0). In this example,
the "smoothening" effects of Doppler shifts are
diminished by taking a smaller Ku, and mode-
coupling phenomena will have a larger contribution
because of the smaller size of the frequency inter-
val. For these reasons, one should expect large
amplitude fluctuations, as well as some enhance-
ment of the effects related with the constraint
(5.21a). Indeed, we found that the central mode is,
now, much more affected by the side modes,
and in turn this effect further modifies mode
coupling and saturation patterns. Correspondingly,
the phase constraint (5.21a) ran counter to its in-
tended purpose (saving computer expenses), since
a larger number of histories are required to
soften its spurious effects. This was not so ob-
vious in the first numerical example of Fig. 15(a)
since there, mode-coupling effects did not contri-
bute much.

Figure IV shows five different histories at Gz

Equation (5.28) together with (5.19a) indicate that nu-
merical results shown in Figs. 16(a), 16(c)—which
compare intensities I( ~ obtained using Litvak's
approximation [(2.33) and (3.11)], and those ob-
tained from an ensemble average of histories
obeying the exact [(2.28)-(2.30)]—should be ap-
proximately related by"

1~ I I ( I ~
~ OI )'

I)~I)y I

Il
Ol I ~

I I [ sale
T T

I I ~ I

~=~a, «=»Yn, ~=0.4

Gz =45

~I)~ ()~
Il~ Il~y I)~

Gz =45

10(IOO (l ~ Il ~ y~ Il~

& I, i, ,
t'"",;..

1.70

—0.85

I[„[=(1+—,'[)[P(0)/)6]j 'I
=p+-,'(~y.„/f) 'tanh(». ,/f)'I 'I. . --(5.29)

Kith parameter values at hand, the first factor at
the right-hand side of (5.29) is =0.7, which roughly
agrees with the differences between the upper and
lower curves in Figs. 16(a) and 16(c). The above
relation does not hold for. small values of f (&y„),
because mode-coupling effects are, then, impor-
tant and have been neglected in the above deriva-
tion.

Vfe consider, now, a second numerical example

~ (l(I ~ ()
I I ( I (I~ Il Il(l
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FIG. 17. A second numerical example of noise ampli-
fication in Doppler-broadened media, Eqs. (2.28)-(2.30) .
Parameter values are 8 =0,4, Eu =25', &, f =y &,
y~ ='jI~ =")~~~, p ~0.07. The figure shows the spectrum
for five different histories at Gs =45. At @=0 the spec-
trum is flat: I „(0)=0.05 and every history starts with
a different set of random phases $„(0) with the con-
straint (5.21a) . Explanations in the main text. The
smooth curves are obtained from (5.19) and (5.20).
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=45, a distance well inside the saturation region
(see Fig. 18). Fluctuations are quite large, and
more so for those histories where the central
mode has been more affected. The individual re-
sults appear useless, unless one is prepared to
compute a large number of different histories.
However, in spite of the vast diff erences 'among
the members of the "ensemble", one can see from

. Fig. 18 that the evolution of the power density
[also the losses (RQ„ I„(s)]versus distance isnearly
the same for all of them; the small spread is de-
picted by the shaded area, while the solid curve
stands for the ensemble average of the power den-
sity. The different histories also share a common
spectral range, which appears to be nearly the
sa.me as the passband (5.9c),

v, =Ku[ in(1/(R)]" .
These characteristics will allow us to obtain
useful qualitative information from our small en-
semble, without further computer expenses.

The ensemble average is shown in Fig. 19 by
the vertical lines drawn from the zero base line;
and the lower curve depicts a spectrum described
by expressions (5.19a) and (5:20); that is,

'tV(0) exp[-(nf /Ku)']. —(R
n

(5.30)

with VP(0) = v x(f/Ku) =0.023, p=0.068. Let us re-
call that (5.30) apply in a case where mode coup-
ling is negligible compared with the effects of

saturation, and also KM» y, & was assumed. Our
restricted ensemble does not allow a strict com-
parison between (5.30) and the ensemble average;
this would require a larger ensemble to smooth
the average. Nevertheless, a qualitative compari-
son is still possible since the spectral range (=a~),
and total intensity (g(I„)=6.34(R ') are well de-
fined at saturation di'stances (see Figs. 1"I and 18).
With this in mind, Fig. 19 shows the upper curve
with the same functional form as (5.30); but in-
stead of %"(0)/P has a different amplitude A. The
magnitude of A(=0.36) is determined by fitting the
total intensity,

VpP (I„)=2A(R ' f exp[-(v/Ku)'] —(R] dv,
n 0

(5.31)

to the saturation value shown in Fig. 18. Since the
lower curve in Fig. 19 does not take into account
the effects of mode coupling, differences between
this curve and the upper one, somehow provide a
qualitative measure of these effects in the present
situation. Figure20showslD (s, j)lversus~ for j=0
at t ~ =45. These magnitudes were obtained from
the evolution of the last history shown in Fig. 1V.
The ratios g) /Da~ should be compared with those
associated with Fig. 14(d) belonging to the first

~
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FIG. 18. Total power generation density vs distance
Gz. The upper solid curve is the ensemble average. In
spite of the vast spectral differences among members
of the "ensemble, " the power density is nearly the same
for all histories. The small spread is depicted by the
shaded area. The horizontal line represents the limiting
saturation value, St+ I„(~), in the absence of mode
coupling, Eqs. (5.19), {5.20). The lower curve is the
power density one obtains using Litvak's approach
(2.33) and (3.11).

.0 I ' ' I ' ' I « I ' ' I ' ' I '
I

' ' I ' ' I ~0.
0 5 6 9 l2 I5 l8 2I 24 27

FIG. 19. Spectrum after average over the ensemble
is depicted by the vertical lines. The lower curve is
the spectrum in the absence of mode coupling, Eqs.
(5.19) and {5.20). A strict comparison of this curve with
the average is apparently not possible; this would re-
quire a larger ensemble to smooth the average. Since
all histories have nearly the same spectral range and
total intensity, Q„I„(a), a qualitative comparison is
still possible. Indeed, the upper curve has the same
functional form as the lower one, but its amplitude is
determined by fitting the total intensity to the upper
saturation value of Fig. 18. Differences are clearly
due to mode-coupling effects.



726 LIONE L N. MENEGOZZI AND %ILLIS E ~ LAMB, JR

Oolo II s I s ~ t t

Gz= 45

0.005 .

It

O.OOO
0 I 2 —m~5 6 7

FIG. 20. Shows ~D (z,j }~
vs m for j =0, at Gz =45.

These magnitudes were obtained from the evolution of
the last history shown in Fig. 17. The ratios ~DJDO(
should be compared with those associated with Fig. 14(d) ~

one can see a significant increase in mode-coupling
effects.

numerical example; one can see a significant in-
crease in mode-coupling effects.

The curves shown in Fig. 19 appear again in
Fig. 21 together with the lower curve which repre-
sents the spectrum obtained by numerical analysis
of Eqs. (2.33) and (3.11) in the so-calledGaussian
statistics approximation (i.e., Litvak's form)
Similarly, the lower curve in Fig. 18 shows the
evolution of the power generation density in the
same approximation. Finally, Fig. 22 shows the
phases associated with the last history in Fig. 17; i.e.,
Q„(z) for n& 0, at Gz =0 and Gz =45.

In the case at hand, the spectral behavior of the
incoherent histories of Fig. 17, and the behavior
of a coherent history having the same initial spec-
trum and $„(0)'s =0, are quite different. Differ-
ences are larger than those shown in the first
case, Fig. 16(a), because mode-coupling effects
are now more important. Figures 23-27 show the
evolution undergone by a coherent pulse during

amplification. Parameter values are, again, those
of Fig. 17; i.e., %=0.4, Ku =25y„, f =y„, y, =y„
= y„, and P =0.068.

Figure 23(a) shows the spectrum at successive
distances inside the amplifier Gz = 0, 3, 6, 9, 12, 18.
Initially there is gain narrowing, and the rebroad-
ening process starts between Gz =9 and Gz =12, at
the onset of the saturation regime (see Fig. 24).
Figure 23(b), shows the spectrum at Gz =18 and
Gz =45, in the saturation region. While the pass-
band for incoherent histories was approximately
given by (5.9c), i.e. , t~ =24y~; now, the spectral
range is much larger (&40y„). Spectral intensi-
ties and the total power generation density, Fig.
24, are substantially smaller than those shown in
Fig. 21 and Fig. 18. The magnitude of pulsations
in the population ~D (z,j =0)( at Gz =45, are de-
picted in Fig. 25. The values are approximately
two times larger than those of Fig. 20 for an in-
coherent history. The phases P„(z) at Gz =0, 6, 12,
18, 30, 45, are shown in Fig. 26. Finally, a per-
spective view of the amplification undergone by the
spectrum of the coherent history inside the ampli-
fier, appears in Figs. 27(a) and 27(b).
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9 8
+v —p„(z, t, v)

= -(y.,+t~)P., t(t'&@-)&(z, t)(P,. P„), —(A4)

~ba= ~a~~

where c = (e,p, )
'~' is the velocity of light and

(A5)
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at successive distances inside the amplifier Gz =0, 3,
6, 9, 12, 18. Initially there is gain narrowing, and the
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APPENDIX A: FIELD-MEDIUM COUPLED EQUATIONS

It has been shown elsewhere, ' ' " that the
equation of motion for p(z, t, v) and the field equa-

0 5 IO

FIG. 25. Magnitude of pulsations in the population
~D~(z, j =0)( at z=0 and Gz =45. C'oherent history of
Fig. 23.
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FIG. 26. Evolution undergone by the phases ft)„(z) of
the coherent history, Fig. 23. Numbers on each curve
stand for distances Gz.

=45

co =(d, —co~&0 is the atomic transition frequency.
The constant z with dimensions of (length) ', is
phenomenoiogically introduced as one simple way
to deal with possible linear losses in the back-
ground medium. The damping constants y„y,
« ~, and y,~(& 2(y, +y,), if collisions are taken into
account), are introduced to represent the decay of
levels a and b, and of the atomic dipole moment.
The pumping rates, X, and X„are given by (2.2).

APPENDIX 8: FIELD-MEDIUM EQUATIONS-FREQUENCY

DOMAIN

Substituting the series (2.18) and (2.16)-(2.20)
into Eqs. (2.9)-(2.12), one obtains the correspond-
ing field-medium equations in the frequency do-
main. These equations couple only $„(z) with

p„(z, v) and D„(z,v),

9,$„(z)= —2~$„(z)+- p„(z., v) dv,
2 ce,

p„(z, v) = —"[y,„—i(v„—a& —Kv)] '

x Q $,(z)D„,(z, v),
l

D (z, v) = [(A,/y ) —(A,/y, )]W(v)6„,

--'(&/@)[(y, -iv )
' (y, -iv„) ']

xQ [SP, ,„+S,p,* „].

0.00
v„=45f

FIG. 27. A view of the arnplification undergone by
the spectrum of the coherent history (Fig. 23) inside the
amplifier.

A transition to a continuous spectrum" is
achieved by letting v„=nf - v, f -dv, and $„(z)- $(z, v)dv, p„(z, v) - p(z, v, v)dv, D„(z,v)
-D„(z,v, v)dv, as well as 6„,-6(v)dv. The sum-
mations over l and q become integrals; e.g. ,

APPENDIX C: A METHOD FOR NUMERICAL ANALYSIS

OF EQS. (2.28)-(2.30)

The transport Eq. (2.28) for the field amplitudes
may be dealt with by any of the well-known inte-
gration routines; e.g. , "predictor-corrector" ~

methods. For every z step into the active medi-
um, it is necessary to compute the polarization

Q - $(v')D(v —v') dv',
s

and the spectral amplitudes $(z, v), p(z, v, v),
D(z, v, v) will now have dimensions of [v '], [v 'v '],
[v 'v '], respectively. In the main test, these
equations are given a more convenient, compact
form by writing them out in terms of new dimen-
sionless Fourier amplitudes.
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components p„(z,j) in terms of the set (S~'sj.
Hence, we wi. ll concentrat'e on the pair of coupled
Eqs. , (2.29) -(2.30).

In actual computations, one considers a limited
number of spectral components 8„; say N of them
on each side of the conventional origin &.
—N, . . . , —2, —1,0, 1,2, . . . ,N. Then, we have a
total of 2N+ I field "modes, " and (2.29)-(2.30) may
be given the explicit form

l =+X

p„(j)=p''L)(rj-j) p &,D„,(j)
l = N

v =n+N

= p-'u(n j) g &„,D, (j), (Cl)

D (j)=m(j)5„,- sP8:(m)

q = jest'- m

x g [&;V,. (i)+&,. p (j)'], (C2)

where 0- m ~ 2N, D „=(D )*, and the z depen-
dence is omitted. Note that we are also restric-
ting the number of population pulsations D„: —2N
& p, &+2¹

Substituting (CI) into (C2) we get

0&m ~2N,

q =&-m g =q+~+E
n qq(j)=l! „——,(F(m) p ( g q,".q, , „n(q+I j)n„—

N g =q+m N

q+N

+. Q q„.q,",„n"(q-j)n,),V=-q-N
(C3)

with

q). .=lq(m)(g'q, "q,.„n(q+m-jl

(C4)

where for a fixed m, both p sums have extreme
upper and lower limits p. ~=+ 2N, p,~ = —2N+m. By
inverting the order of the summations, Eq. (C3)
can be rewritten as"

V=+2K

D„=V(j)5„,— g 8 „D„, 0& m &+2N
p, =- 2N +gg

q = jiI - g

6'„„=—,'F(m) P [S,S~, ,„n(q+ ij, —j)
q= N

+ h,*„„h„„us(q —j)]. (C.8)

The dependenc'e of Q„„on the velocity. index j,
and coordinate z, 'is not shown explicitly.

Normally, it is convenient to extend the infer-
ior limit of the sum (C4) from p, = —2K+ m to
p = —2N, this may be done by si-mply taking 8

q

+g' q,",„q,. n"(q-j)). (Cq)

The extreme upper and lower limits for the (I) and
(II) q sums in (C5) are indicated in Fig. 28. De-
pending on the value of the index p, the matrix
elements Q„„which enter in (C4) adopt the fol-
lowing explicit forms: For p, &0: q=-N

q=N-m

q =N- (m-w)

q= N

&& [&(q+m -i)+&*(q —i —j)].
(C6)

q= N-m

(i q

For p. &0, and p. &m,
q=N" m

+„„=a'8'(m) g [$,*$,. „u(q+ m j)— -2
I
q

q=-N

For p&0, and p ~ m,

+ h,*,„&„„&*(q—j)]. (CV)
FIG. 28. The summation domain for sums g and

in E(Is. (C5) and (G4).
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D =m(j)6

with

g =-2N

—2N ~m ~2K

(C9)

(C10)

= 0 for p & —2K+m. Up until now, we have only
considered m ~ 0, the E(l. (C4) can be generalized
to include the negative m values by noting that
D.

( (= [D(„(]*. This finally leads to

g"-+2N

braic equations in the 4N+ 1 pulsations for each
j value: Z»3R»D» ='W( j)6„„with R„„=6„,
+8 „. In principle, the D„'s may be obtained by
matrix inversion methods; however, this is sel-
dom necessary. For example, at small signals,
ID»I » ID» I

with p+0, and the second line of (Cll)
and (C12) which are shown below:

2N

D„(j)= w(j) —2»eg 8 „.D„(j))+ o, o g=l

=~(j)[i+&Do] '

and where the +( ( ~ » are given by (C6)-(CB),
and el ml y

=—0 if p & —2K+m.
Expression (C9) represents a, set of 4N+ 1 alge-

+N ~1

=W(j)(1+ g P, A',D(e-j)
q-"~N

(C11)

D„(j)=— g ~„,„D„(j)
fltefft g Q m)

= —[~.../(1+ ~„,.) ]D.
q =N" m

—.'6-(m) g S,*S„„[x(q+m j)+u*(q j)]
.a=- N

q-"N-m

1+2F(m) g [I,S(q+m j)+I, ,„D—"(q —j)]
Do, (C12)

coincide with results that could be obtained by
using perturbation theory. As the signal grows
up, the D„'s at ~+ &z can be obtained by iterations
starting with the value of the D„'s at z.

The approximations in (Cll) and (C12) show that
D„I « ID, I

holds, not only at small signals(,S,*S,&(q —j) «1); but also in the case where
the spectrum is (luasimonochromatic (4v& 1„y~),or
there are several components separated by fre-
(luencies

I
v„—v„„,I

» y„y~. The expression (C12)

also indicates that pulsations contribute significant-
ly less if the phases are uncorrelated.

APPENDIX D: RANDOM, UNCORRELATED
PHASES-STATIONARY STATISTICS

We now give arguments implying that if the
phases of the radiation field are uncorrelated at
some place z [e.g. , see (3.6) ], the response of the
active medium is such that the phases will remain
uncorrelated at z+ &z. The starting points are
the field-medium coupled Eqs. (2.28)-(2.30),

s,S„(z)= —2j(:S„(g)+2GQ p„(z,j),

p, (z, j)=P 'n(n j)Q S,(z—)D„,(z, j)
l

P' (Dj)e(W(j)P, lP=P P P(e ()P[P;p ., +((p, ,' ..„.]),,
l

(Dl)

(D2)

(S„*S,S„*S,S~S„„„~,),=

~ ~ I ~ ~ ~

(D3)

The expression for p„allow us to compute the

and the assumption of random, uncorrelated phas-
es at the place z,

polarization to any order in the field amplitudes,
p = p"'+ p"'+ p"'+ . This procedure is cer-
tainly valid at small signals, and sufficient for our
plausible arguments. Using the iterative expan-
sion of p„ in conjunction with relations (D3), one
can see that

&S.*p~&.= (S„*p„)6„,,',
&p.'pA&, =

& I p„I'&6„,,
~ ~ ~ ~ ~ ~ ~
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+-'[()'& S*S ) ] t),z'+ ~ ~ ~ (D5)

where the right-hand side can be evaluated with
the help of the transport Eq. (D1). From (D1) one
can show that

The relations (D4) imply the, t if the field is sta-
tionary, the response of the atomic medium is also
stationary (see Ref. 31).

To compute &h~Sz), , z, for a small bz into the
medium we write

«„*&,).,..= «„*&,&„[.«.*~.&].~

S,&$„*$„)=—«&$„*$„)+z'GQ [&S„*p,)+ &h„pf) ],
()',&S„*h„)= «(),&b„*b,)

+-'GQ [&s.&.* p~&+&&.'s.p, &+" ],
and these equations, in conjunction with (D2), (D3),
and (D4), imply that (D5) becomes

(D5)

The arguments may now be repeated for a new
slab, further into the atomic medium.

~W. E. Lamb, Jr. , in Lectures in Theoretical Physics,
edited by W. Brittin and B. Downs (Interscience, New
York, 1960), Vol. II.

2A. Icsegvi and W. E. Lamb, Jr. , Phys. Rev. 185, 517
(1969).

3F. A. Hopf and M. O. Scully, Phys. Rev. 179, 399 (1969).
48. L. McCall and E. L. Hahn, Phys. Rev. 183, 457

(1969).
5L. Allen and G. I. Peters, Phys. Rev. A 8, 2031 (1973),

with a list of related articles by the same authors.
6A. Yariv and R. Leite, J.Appl. Phys. 34, 3410 (1963).
~L. W. Casperson and A. Yariv, IEEE J. Quantum

Electron. 8, 80 (1972).
H. Mae(3 a and A. Yariv, Phys. Lett. 43A, 383 (1973).

~M. M. Litvak, Phys. Bev. A 2, 2107 (1970).
P. L. Bender, Phys. Rev. Lett. 18, 562 (1967).

~~N. Evans et al ., Phys. Rev. A 6, 1646 (1972).
P. Go].dreich and J.Kwan, Astrophys. J.190, 27
(1974), with a list of related articles by the same
authors.

~3M. Miller and A. Szoke, in Third Rochester Confer-
ence on Quantum Optics, June, 1972 (unpublished).
See for example, W. E. Lamb, Jr., in Quantum Optics
and Electronics, Les Houches 1964, editedby
C. DeWitt, A. Blandin, and C. Cohen-Tannoudji
(Gordon and Breach, New York, 1964), Lecture XV.

~~See for example, M. Sargent, M. Scully, and W. Lamb,
Jr. , Lase~ Physics (Addison-Wesley, Reading, Mass. ,
1974), Ch. X.

~6H. Risken, K. Nummedal, J.Appl. Phys. 39, 4662
(1968).
H. Schlossberg and A. Javan, Phys. Rev. 150, 267
(1966).
W. E. Lamb, Jr. , Phys. Rev. 134, A1429 (1964).

~~L. Menegozzi and W. E. Lamb, Jr. , Phys. Rev. A 8,
2103 (1973).
F. rom Eq. (2.9), one can see that the energy conserva-
tion theorem takes the form

Bi, Q(g ~ t) + Bgg(z, t) = —Kg(z, t) + (4cuP)

x f[8*(z,tt)p(z, t,v) + c.c.] dv,

with

Z (z, t) =-,'z, (h(z, t)(', S(z, t) = ,'z, c)8(z, t) ('-
The integrand represents the power per-unit-volume
delivered to the radiation field by atoms of velocity v.

This power has a familiar expression in terms of the
overall field and polarization

(4'+P) [g*{z,t}p(z,t,v ) +c.c.] =-E(z,t)P {g,t,v).
2~N. Wax, Selected Papers on ¹iseand Stochastic

Processes (Dover, New York, 1954), see especially
S. O. Rice's article.

22F. Hopf, Optical Sciences Center, University of
A rizona, "Noise Amplifiers" (unpublished) .
Formally, the transition to a continuous spectrum is
readily accomplished with the following substitutions
for (2.15), (2.14), and (2.13):

f =(2r/T) ~dv, v„=nf v,

E„(z)z'S"'
+ T/2

[ g(+ t)e'l(Ez -cdt)]
T -T/2

dv +
[ ~ .] exp(ivt} dt =dvg(z v)ei ~' ')

2r

[h„(z) exp(i v„z/c)] exp( tv„t)-
n=~

+ co

v}ei( 1/c/c)] e- ivy

B. Fried and S. Conte, The Plasma Dispersion Func-
tion (Academic, New York, 1961).
In the Doppler limit: g=(y~~/Eu) &&1; and in this
case, the expression (2.25) admits a simple analytical
form (see 2.22, N ~r2)

tt =Q'ut(2)~(i ) =~(o)Q
( /f'), +

=%'(0) x [(wy Jf )/tanh(~, &/f )]
= (p ~/Ku)r' /tanh(~ ~/f )

Note that for f Spab [alreadytanh(33 =0.995] above
expression for P closely agrees with the more con-
ventional one for the case of a continuum of atomic
velocities.

p —{7+y/Ku)Zi {0,)/~&/Ku } (]/~&/Ku)r, for g (g 1



2 LIONE L N. MENEGOZZI AND WILLIS E. LAMB, JR.

~6The dimensionless intens ity

i.= (('I h. I'/~'v~. ~).

usually called saturation parameter, admits a simple
interpretation in the case of weak, incoherent radia-
tion at resonance with the transition a b. In this
case, I„represents the ratio between the stimulated
(A, ) and spontaneous (y) emission rates. Indeed, if
the frequency spread is of the order y, q, Fermi's
golden rule gives

'

~, =~xn-')(H», ('p, =~~a '~-,'S h-„('(i/ay, &).

and

A, /y = ~ vr I- .

~YJ. H. Parks, . Esfahan SymPosium on fundamental and
ApPlied Laser Physics, edited by M. Feld, A. Javan,
and N. Kurnit (Wiley-Interscience, New York, 1971),
p. 867.
L. Mandel and W. Wolf, Rev. Mod. Phys. 37, 231
(1965).

~~R. Glauber, Phys. Rev. 131, 2766 (1966), see p. 2780.
3 Strictly speaking, the distribution is Gaussian in terms

of the random variables Re(g&) and Im(g&). The com-
plex wave amplitude g(O, t ) is a sum of Gaussian ran-
dom' variables.

~The relation (3.6) in conjunction with the series repre-
sentation (2.13), indicates the "stationary" character
of the statistics. That is, if the phases are not cor-
related; then, all ensemble averages are independent
of the origin of time; e.g. ,

3 F. Hopf, 1974 IEEE International Quantum Electronics
Conference Digest of Technical Papers, p. 41 (unpub-
lished).
The complex function &(&„/&u, y, q /&u) is, in fact,
a function of a single complex variable

f =(v„/EN) +i (y & /Ku),

and its derivative is given by (Ref. 24)

dZ(f )

d&
=- 2 [1+HZ(g) l.

H. Gamo, S. Chuang, paper presented at the Third
Rochester Conference on Coherence and R. Optics,
June, 1972 (unpublished).

36H. Gamo, H. Osada, paper presented at the Annual

Meeting of the Optical Society of America, Tucson,
Arizona, October, 1976 (unpublished).

VW. E. Lamb, Jr. and L. Menegozzi, 1974 IEEE In-
ternational Quantum Electronics Conference Digest
of Technical Papers, p. 41 (unpublished).
Equation (5.2) shows that except for the modified width
of the Lorentzian, y*=y, t, (1+ID) ~, the sum at the
left-hand side is similar to the definition (2.25') for P.
An explicit solution for &0 can be obtained if y*«A~,
i.e., n= (y, ~ /Ku) «1 and not too large values of Io
(Ref. 25),

(1+I ) = . 7t'

g 2 e

[~(~&-2n) +2n]&

(g*(0, i ) g(0, i+ r)) ~g (l„(0)) expt i (v„——~) T).

3~P. Goldreich et al. , Astrophys. J. 179, 111 (1973);
see p. 113 and Appendix A.

3~G. Birnbaum, Proc. IEEE 55, 1015 (1967).
J. Parks, D. Ramachandra Rao, and A. Javan, Appl.
Phys. Lett. 13, 142 (1968).

4~J. Hambenne and M. Sargent III, Phys. Rev. A 13,
784 (1976).


