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We consider the infinite-order set of coupled, integral equations for the states of an atom in a very-narrow-
bandwidth classical radiation field. In the vicinity of a one-photon resonance for two-photon ionization, this’
set is reduced to a pair of coupled equations describing the response of the atom to the radiation field. This
set is derived by dropping terms of the original set whose lowest-order contributions to the radiation-
induced shift and width of the resonance are quadratic in the intensity. In the absence of simultaneous
absorption and emission, impossible except for two-photon processes from excited states, this pair can be
decoupled. The remaining uncoupled integral equation describes the ac Stark effect based on contributions to
the shift and width linear in the intensity. These contributions derive from radiative corrections to the
intermediate atomic state and depend on the virtual processes of ionization from and recombination into, as
well as emission from and reabsorption into, this state. A method for obtaining the exact numerical solution
is discussed. An approximate solution is obtained by use of the single-eigenfunction approximation to the
Green’s function belonging to the response function. This Green’s function has a pole at the static (unshifted)
position of the resonance; thus, this approximation is quite accurate very near the pole. The order of
nonlinearity is calculated as a function of the static detuning through the resonance and is shown to undergo
rapid fluctuations about the nonresonance value of 2. The error inherent in the single-eigenfunction
approximation to the Green’s function is estimated and found to range from about 1% to 27% corresponding
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to static detunings ranging from about 1 to 25 A, respectively.

I. INTRODUCTION

The recent experiments of Morellec, Normand,
and Petite! cogently document the need to develop
methods of calculating cross sections for multi-
photon ionization through a region of one or more
resonances. These experiments are performed
using a laser bandwidth of about 50 MHz, of the
same order as the free-atom natural linewidth;
thus, the resonance absorption can be studied un-
der single-mode conditions, eliminating the vari-
ation of the observed ion yields owing to photon
statistics. This, in turn, enables the study of the
rapid fluctuation of the order of nonlinearity [see
Eq. (1) and Fig. 7 of Ref. 1] through the narrow
region of frequency spanning the resonance.

To aid in the interpretation of their experiments,
Morellec, Normand, and Petite! make use of a -
method of calculating the cross section for the
three-photon ionization of H(2s) developed by Gon-
tier and Trahin.?® These authors include the cal-
culation of the radiation-induced shift and width of
the intermediate level responsible for the reso-
nance through use of a Schwinger-Dyson equation, ?
which allows a renormalized Green’s function to
be calculated. (For the use of ordinary Green’s
functions for “undressed states” see, for example,
work of Rapoport et al.,* Klarsfeld,® and of the
present author.®) In a more recent paper, Gontier
et al.” criticize the work of Gontier and Trahin
(which, according to these authors, derives from
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the quantum-electrodynamics method of Low®), on
the grounds that certain contributions to the amp-
litude for the process (diagrams) are multiply
counted or undercounted for “real photons.” These
defects are unfortunate because the form of the
theory, which closely resembles that of ordinary
perturbation theory, makes possible the interpre-
tation of the radiation-induced shifting and broad-
ening of the levels as a function of the laser flux
and frequency. The numerical evaluation of the
terms of the theory, however, is difficult, re-
quiring that multiple summations be performed
over complete sets of bound and continuum states
of the target. These sets were truncated?® by
omission of the continua, thus introducing a source
of error. Gontier, Rahman, and Trahin’ then in-
troduce a new technique, valid for arbitrarily
strong radiation fields, which is applied to a two-
level atom. They remove the difficulty of the in-
correct counting of diagrams. However, the math-
ematical structure of this theory is quite compli-
cated, making the physical interpretation of the
results perhaps not altogether transparent., For
example, the continued fractions form of the the-
ory does not explicitly exhibit expressions for the
level shift.

It is the purpose of the present paper to intro-
duce a method with the advantages of the renor-
malization Green’s-function method, 2*’ including
a diagrammatic analysis displaying the leading
radiative corrections, but without the theoretical
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flaw of the incorrect counting of diagrams or the
great hardship of evaluating the terms by means
of the direct-summation-over-states method. On
the other hand, we must limit the validity of the
present theory to field intensities (as measured
by the ratio I/I,, where I,=14.038 x 10'®* Wem™ is
twice the intensity corresponding to a root-mean-
- squarefield strengthof 1a.u. or 5.142 X 10°V cm™,
such that I/I,~ 1 indicates the approach to the
Coulombic limit) which are still weak enough for
ordinary perturbation theory to be valid in the non-
resonance region,

We accomplish this separation into a resonance
and nonresonance region of validity by use of sev-
eral steps. First, we write down the exact equa-
tions for the states of an atom coupled by the
classical radiation field, We have cast the equa-
tions in integral form by use of the Coulomb
Green’s function. This enables us to pick out the
Green’s functions in a particular region of fre-
quency which have poles. These are just the poles
of the T function on the negative energy axis for
the hydrogen atom*® and for complex atoms as
well.® Inthe complex-atoms case, additional in-
tegral terms exist, causing a shift relative to the
hydrogenic pole through the interaction of the “op-

tical” electron with the atomic field. Next, we
" truncate the infinite-order coupled set by keeping
only the terms containing the “response” states
constructed by use of the singular Green’s func-
tions. We then solve this reduced set of integral

equations nonperturbatively and use the solutions
(“response” states) to calculate the amplitude for
the process. Obviously / /10 must be small enough
so that (i) the ordinary validity criterion for per-
turbation theory holds in the nonresonance region,
enabling the truncation of the infinite-order cou-
pled set and (ii) the radiation-induced shifting and
broadening of the levels is still small enough that
the vicinities of the resonance lines are locatable
by inspection of the unperturbed spectrum of
atomic states. In other words, these criteria
imply intensities at which a “spectroscopy,” in
the usual sense of resonance peaks superimposed
on a smooth background, is still possible.

II. THEORY

A. Derivation of the equations describing resonant absorption
induced by very-narrow-bandwidth radiation

We consider the case for the two-photon ioniza-
tion of H(1s), in which a series of 1s-np (n=2)
resonances occur.’ The structure of the equations
for the series 2s -ns +#nd, considered by Gontier
and Trahin?® would be more complicated owing
to the coupling of the equations for the s and d
response functions through their mutual coupling
with the p response function, but no new difficul-
ties are introduced in principle. The set of radial
coupled equations describing H(1s) in a radiation
field of arbitrary intensity is given by
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This set is the Fourier transform of the time-de-
pendent solution ¥(T,#) of the Schrodinger equation
for the atom plus the classical radiation field. The
pair of Fourier transforms are defined by

¥(T,t)= [mdw e i9te (F, w), (2)

where the four-dimensional function ®(¥, w) is de-
fined by the integral equation
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where we have used the definition that 21Faw, is
1/1, in atomic units, where F is the flux and o the
fine-structure constant. The kernel of Eq. (3a)
is defined by the Coulomb Green’s function®-®*°
G,. The set (1a) is derived by a partial wave res-
olution based on the expansions
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[See the Appendix for complete definitions of
g,(r,7"; w).] Thelightisassumed polarized along the
polar axis in the laboratory frame and to be in-
cident on spherically symmetric targets; this con-
dition enables use of the same axis for the spatial
quantization of the target states and the suppres-
sion of the aximuthal quantum number in Eq. (4b).
All frequencies, w, w', w,s, and w,, are in dimen-
sionless multiples of atomic units.

The intensity in Egs. (1b) or (3b) can be treated
as a parameter rather than as a function of fre-
quency w as a result of the physical assumption
that the laser bandwidth is very narrow. Thus we
are treating the intensity (and therefore the ampli-
tude of the classical field) as a constant over this
interval. This is in contrast to the assumption by
others!!®=11® of 5 pylse shape function depend-
ing on time which, for example,!!® can exhibit
a maximum at some time ¢, proportional to our
(I/I,)*'? and then decay on either side of this point.
Under these conditions, appropriate for strong
pulsed-laser fields, the line shape through the

J
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resonance will depend critically on the pulse width
and its assumed shape. These experimental con-
ditions are in sharp contrast to those described by
Morellec, Normand, and Petite,! in which the
lines for resonance absorption are very narrow
with shapes governed by the ac Stark shifts. We
note here that it is this assumption of a constant
field amplitude during the duration of the absorp-
tion which makes the simple §-function behavior
of the Fourier transform U(F,w, w') possible. In
turn, as we shall see in Sec. IIID, the §-function
behavior, appropriate for absorption in very-nar-
row-bandwidth fields, leads to.a method for ob-
taining the nonperturbative solution to a truncated
version of the infinite-order coupled set given by
Eq. (1a).

B. Recovering the results of perturbation theory
from the iterative solution of Eq. (1a)

The form of the coupled equations (1a), with
5 function interactions in the frequencies w and w’,
is transparent with respect to the development of
a perturbation theory. Recognizing that I/I, in
Eq. (1b) is small except for fields whose strength
approaches the Coulombic limit, an iterative so-

lution of Eq. (1a) can be developed. On the first

iteration we obtain

X, w)= ¥, (7)8,,0(w - w, )+ fwdr' 7%, (r, v ;o8 w — (0, ¢+ w,)]+ 6[w =(w, = w,)[JU,,(r" ) b r") . (5)

We note that the o' dependence of the integrands is completely specified on the first iteration through the
product of the terms in curly brackets in Eq. (1a) and 6(w - w,,), appropriate for the 1s eigenfunction.
Hence the integration over w’can be performed immediately, causing w’ in the interaction [Egs. (1a) or
(3b)] to be replaced by w,,, so that Eq. (5) emerges. The existence properties of the 3j symbols in Eq.
(1b) restrict 7 to I=1. Use of Egs. (2) and (4) then gives the well-known response function®® for the atom

plus one virtual photon
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Using the usual procedures, *~%° we can derive the

cross sections for two-photon absorption [ to
which only the first component of Eq. (6) contribu-
tes], for two-photon emission!? (to which only the
second component contributes), and for Raman or
Rayleigh scattering'®* (to which both contribute co-
herently). These results are, of course, well
known. What may not be so familiar (owing to the
lack of theoretical development prior to the laser
as a device for studying resonant multiphoton pro-
cesses) is the set of coupled integral equations
and, more important, how its noniterative (non-

" perturbative) solution would affect the cross sec- -

tions for the above processes. We note that the
familiar concepts of absorption or emission of a
definite number of photons [being equal to the or-
der of the iteration (perturbation)], the indepen-
dence of the absorption and emission processes,
and the relationship of the number of photons, K,
absorbed or emitted to the parity of the atomic
eigenstates, K,> [, all emerge from the perturbative
solution. We note that Eq. (1a) is integral with
respect to w’ as well as to »’; thus, the simplicity
of the above conceptual framework disappears
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when we contemplate the noniterative solution of
the equation.

C. Truncation of the infinite-order set

It is clear that the iterative solution just out-
lined will not be valid when one or more poles
occur in the radial Green’s functions.®!® These
poles occur as w sweeps through the excitation
spectrum of the atom and are defined by zero and
the set of negative integers of the I function (see
the Appendix) I'(l+ 1 -v) forv=1, 2, 3, ...,
where v is an effective principal quantum number
related to the energy by v=iZ/(2w)* 2 (Z =1 for
hydrogen). Now the tuning to a particular inter-
mediate resonance state restricts the number of
Green’s functions which can have poles at the

-

same frequency w, to a very small number: one
for a 1s -#np resonance, two for a'1s - ns+nd res-
onance, two for a 1s —#np +nf resonance, three for
a 1s -ns+nd+ng resonance, and so on. Provided
I /10 is reasonably small, the products of nonsin-
gular Green’s functions and powers ofI/1,0f higher
order than the power multiplying the amplitude,
namely (/I,)%o"1/2 can be dropped.

Let us develop a solution in the vicinity of the
first resonance of the p series® for the two-photon
ionization of H(1s), that is, in the vicinity of v=2,
I[=1. In this case it is clear that the large terms .
in Eq. (1a) are those corresponding to I’=0 and
I’=2 in the summation on the right-hand side of
Eq. (1a). Defining xo(r,w)=9, (#)6(w - w, )
+x$9(r, ), we derive the reduced set for the
coupled s, p, and d states,

XS r, w)= f_:dw’f: dr'r’?g,r, 7 ;006w (' + w )] +8[w —(w’ = 0 ) U, M, (", @"), (Ta)
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+ fwdw'fv dr'v'?g, (r, v ;wHb[w —(w’+ wp)]+ 8w —(w’ — w,)]}
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It is clear that the first term on the right-hand
side of Eq. (7b) is of order (I/I,)!/?, while the
second term is at least of order (I/I,)°*/2. The
term on the right-hand side of Egs. (7a) or (7c) is
at least of order I/1,. The rule K,> 1’ can be used
to obtain the lowest order of (I/1,)9/2 in a product
of the form U,,.x,.,, where U,,;, always contributes
(I/1)*'2, Thus, far away from a pole of g,, We can
immediately recover the correct nonresonance re-
sult of first-order perturbation theory by keeping on-
ly terms of order (I/I,)*/2. Near thepole, we seeka
nonperturbative solution to this set (Eqs. 7).

First, however, we wish to make several points.
The first term on the right-hand side of Eq. (7b),
of order (I/1,)/2, is the source of the coupling to
the radiation field. Without it all solutions vanish
except X7, w)=9, (r)5(w - w,;). Second, the re-
duced set is based on the elimination of any re-
sponse state x,(», w) not coupled by the dipole in-
teraction to the large response state x,(r, w).

Since the source of Eq. (7b) is infinite at a pole

of g,, X,(7,w) can be finite only through the dipolar
coupling to xS (r, w) and x,(», ). Thus this set

is irreducible. Further, analysis shows that the
retention of response states for- I greater than 2
[states not coupled directly to X, 7, w)] contributes

r .
radiative corrections of lowest order (I/1,)?, while
the radiative corrections deriving from Eqgs. (7)
are of lowest order I/I,. Finally, we note that
truncation of the infinite-order set [Eq.(1a)] is

not equivalent to treatment of the atom as a finite--
level system. This point becomes obvious if

the radial Green’s functions of Egs. (7) are rep-
resented in the complete sets of atomic states
having s (for g,), p (for g,), and d (for g,) sym-
metries. Such sets, of course, have an infinite
number of discrete bound states and a continuum

of unbound states.

D. Use of the §-function form of the interaction to find

a nonperturbative solution to the reduced set

The mathematical simplicity of the §-function
form of the atomic interaction with the narrow-
bandwidth field makes it possible to find a non-
perturbative solution to Egs. (7). We note that the
source, in addition to having the poles of g,, has
6 -function singularities at w=w, + w, and w=w,
-w,. We develop a solution of the form of a
sum of products of rapidly and slowly varying
parts,



X, @)= 56[w —(w,  + W, )i (r, w)
+6[w —(w, s = w ) {7, w). (8)

It is important to note that it is the perturbative
solution, found by retaining only the source, which
is rapidly varying at w=w, ;+ w, for absorption o7
at w=w, - w, for emission. The nonperturbative
solutlons x{1 and x{**’ should be reasonably
smooth relative to the rapid variation of one of the
6 functions at either of these points. We substi-
tute Eq. (8) into the right-hand sides of Egs. (7a)
and Eq. (7¢) and perform the indicated integrations
over w’, which are made possible by the condition
that the integrands consist of a slowly varying
part times the 6 functions in Eq. (8). We note that
a product of two & functions occur in each inte-
grand, but that one will vary rapidly while the
other varies slowly at the point w=w,+ w, or
w=w, - w, of Eq. (8).

Thus, the validity of this evaluation depends on
J
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the smoothness of the unknown functions, x{* and
xi" 1 at these points. This is an important result
because it enables us to solve the integral equa-~
tions with respect to the variable, w. From the
result of this substitution, it is clear that x(S) and
X, can also be cast in a form analogous to Eq. (8),

XS, w) = 6w = (wys +2w,) X872 (7, w)
+0(w = w, Jx (7, w)

+6[ W - (w1s"’ 2%)]X§82)(7’, (.0) ’ (9)
for j=0 or 2, and x{9=x,. We can derive an aux-
iliary set of coupled equations by equating the co-
efficients of the & functions 5[w —(w, +nw,)], on
both sides of Egs. (7), where n is 0, 1, or 2. We
finally arrive at a pair of coupled equations for
the absorption and emission response functions
X and x{" of Eq. (8):

XV (7, W+ )= f ar'v'2g (v , 7w, g+ WU o W, ()
f ar'v'g, (r 7w, o+ W UGEL (r XV (!, w, o+ w,)
J= 0:2 "-Opz .

b 2 ©) (e1) (50t )
+ dr"r' o (1, 7w g+ WU ()Xo, Wy =0y, (10a)

=0s2 V0

(el)(,r w, —w,,) f ar'r?g, (v , 73w, s = 0 U, (v’ )ll)ls(w)

+ f ar'r?g,(r,r"sw, o= WU AR (r W O, 0, = w,)
§=0,2 n= 0,2 0
f ar'r’g (r , 7w, o - WU S KV (7, 0, o+ w,) , _ " (10b)
U{;‘lE,,I,"(r):U”(r)f ar' v, (v, v "), s+ nw U 5, (") ) (10c)
USERR )= U, 0) [t (75, = )U, (), , (100)

UiS)r)= Uu(r)f ar'v?g,r,r"w, U, 0r").

We note that the response states x{**(r, ) and

X (7, w) are defined at the pointsw=w, + w, and
w=w,;— W,, respectively, where their & function
coefficients of Eq. (8) peak. This is the form of
solution expected for very-narrow-bandwidth ab-
sorption. In fact, the equations rigorously de-
scribe absorption of infinitely-narrow-bandwidth
radiation, based on the original assumption that
the amplitude of the field is constant over this
interval. The superscripts (AEL), (EAL), and
(C) refer, respectively, to terms corresponding
to absorption-emission loops, emission-absorption
loops, and coupling loops. The reduced Coulomb
Green’s function gﬁ”(r,'r'), is required for propa-

(10e)

r
gator lines in which the frequency w=w,,. This
occurs, in an absorption loop, by the loss of all
photons previously absorbed and, in an emission
loop, by the reabsorption of all photons previously
emitted. In Sec. IIIE we will present a diagram-
matic analysis in which the physical interpretation
of the radiative corrections of Egs. (10) becomes
clear.

We note the presence of coupling between the re-
sponse functions for absorption and emission, xi““
and x{°") respectively. This coupling occurs
through the interference of each component of Eq.
(8) with its opposite frequency counterpart in the
5-function part of the potential in Eqgs. (7a) or (7c)
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on substituting Eq. (8) into the right-hand sides
of these equations, e.g., through the occurrence
of products of terms of the form

fwdw' 5w —(w’+ wy)8[w’ —(w, — w,)] X{V(r, w?)

(11)

and
fwdw' 8w —(w’ - w,)]6[w’ —(w, ¢+ w )X, w).
| (12)

Through these terms ng”(af, w) is the only compo-
nent of Eq. (9) which is coupled to both x{*¥(r, )
and x{*’’(r, w), and on substituting Eq. (9) into the
right-hand side of Eq. (7b) and equating the coef-
ficients of the & functions, 8[w —(w, +w,)] and
6w —(w, - w,)], respectively, the pair of coupled
equations (10a) and (10b) results. We note, also,
that this back substitution [Eq. (9) into Eq. (7b)]
implies the existence of the response functions
X% and !¢’ corresponding to the absorption and
emission, respectively, of three virtual photons;
however, equations for these functions do not
appear based on the original ansatz that response
functions whose Green’s functions [gl(r,af’;wls
+3w,) and g,(r,7 "3 w, ;- 3w,), respectively, for the
above responses] are nonsingular for the w, of
interest are dropped as producing radiative cor-
rections whose lowest order is (I/I,)? ‘

The form of the solution given by Eq. (8) makes
it possible to derive the usual formula for the
cross section for the process.® The differential
cross section for two-photon ionization is

2 -
T LA 1)
where « is the fine-structure constant, a,the Bohr
radius, & the momentum of the ejected electron
(in atomic units), zpf‘" the wave function for ionized
hydrogen, p the unit vector of polarization of the
light, and the other quantities have been defined
previously. We note that this cross section will
show a complicated dependence of /I, through the
dependence of x{** on I/I,; this complicated de-
pendence (see Fig. 5) occurs in the vicinity of the
resonance'?(®; otherwise the cross section will be
proportional to I/, [ or generally to (I/I,)¥0"],

E. Diagrammatic representation and physical interpretation
of the terms of Egs. (10)

To aid in the physical interpretation of Egs. (10),
we make use of diagrammatic analysis. These
equations can be represented as in Fig. 1. The

e NTTTTX IONIZATION
v CONTINUUM

FIG. 1. Diagrams representing the coupled set, Egs.
(10). Definitions are given in the text.

dashed lines connected to the crosses represent
interactions with the radiation field. The arrows
stand for g; (for =0, 1, or 2) or for X or X,
consistent with parity conservation at the interac-
tion lines. Since the arrows stand either for g;, in
which case they are conventional propagator lines,
or for one of the response functions, the number of
interaction lines does not give the order of the
term, as in diagrammatic perturbation theory, ex-
cept in the first diagram in each row which repre-
sents the source. Otherwise, the number of inter-
action lines, which is the same as the number of
real or virtual photons K, gives the minimum or-
der (I/I,)%0o/2 for the process. That is, if the
equations were iterated once, then the number of
interaction lines would be the same as the order
for the process.

Upward and downward arrows stand for absorbed
and emitted photons, respectively. In row 1 the
first diagram represents the source for absorption
[first term in Eq. (10a)], the second and third dia-
grams represent radiative corrections to the inter-
mediate 2p state, consisting of virtual ionization
and recombination [second diagram, corresponding
to the n=2 component in the second term of Eq.
(10a)] and virtual emission and reabsorption [third
diagram, corresponding to the =0 component in
the second term of Eq. (10a)]. The fourth diagram
represents radiative corrections to the initial 1s
state [the coupling térm in Eq. (10a)]. It is the
latter correction which is omitted in the analysis
of Gontier and Trahin.?®) This diagram is calcu-
lated knowing ¥V, given by row 2. In this row,
the first diagram represents the source for emis-
sion [first term in Eq. (10b)], the second and third
diagrams represent radiative corrections to a vir-
tual level lying below the initial level, consisting
of virtual emission and reabsorption [second dia-
gram, corresponding to the n=2 component in the
second term of Eq. (10b)] and virtual absorption
and reemission [third diagram, corresponding to
the n=0 component of the second term of Eq.
(10b)]. Finally, the fourth diagram represents



radiative corrections to the initial state [the cou-
pling term in Eq. (10b)] and is calculated knowing
XV of row 1.

It is easy to see that if w, is near to a pole of
g,r,7';w,s+w,), as in the present application,

" then the dominant term in row 2 is the fourth dia-
gram, containing the coupling of the emission re-"
sponse function x(fl) to the vesonant absorption
response function x(l‘”). Substitution of x(l“), de-
fined by keeping only this dominant term, into the
fourth term of row 1 then gives an uncoupled
equation for x*", where the decoupling has been
accomplished by this distorted-wave Born approx-
imation (DWBA) procedure. However, we now note
that the second and third diagrams in row 1, are
at least of order /I, while the fourth diagram,
after the decoupling, is at least of order (I/1,)?
relative to the source. Thus the fourth diagram
would contribute radiative corrections of order
(I/1,)? and can be dropped.

Note that if the source for emission (row 2) had
not been neglected relative to the fourth diagram
(row 2), then the substitution of x** into the term
(fourth diagram of row 1) coupling it to X(f”) would
have generated a second source term, of order
(I/1,)'/2 relative to the original source. Since
these terms originate from the radiative correc-
tions to the initial state, we observe that Gontier
and Trahin were correct, in the above sense, when
they dropped the radiative corrections to the initial
state as “unessential.”

One must be careful, however, because under
certain conditions the coupling terms in rows 1 and
2 can play an important role. This would occur in
the two-photon ionization from an excited state of
an atom such that a real state could exist below the
initial level and the emission arrows of row two
could reach this state. This would correspond to
a region of w, in which g,(r,7’ ; w; = w,) (w;, energy
of the initial ‘excited state), not g,(r,7’; w; +w,), is
near a pole (resonant emission). Now this channel
is closed, assuming there are no states deeper in
the atom which could be reached by two-photon
emission, so that conservation of energy would
require the reabsorption of this photon, giving
rise to a resonant emission loop (fourth diagram,
row 1), followed by arrows leading to the outside
by additional absorptions, resulting in the produc-
tion of electrons. Thus, in the absence of other
competing processes there should be an amplification
in the number of electrons, produced as a result of the
resonant emission, followed by reabsorption, of
a photon temporarily trapped in the interior of the
atom. Thus, it may be possible to observe a res-
onance-type peak in a region of w, which is other-
wise nonresonant, i.e., in which the laser is no¢
tuned to an intermediate level above the initial lev-
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el. This process has its analog in the resonance
scattering of electrons'® in which the incident elec-
tron can be temporarily captured by the target
leading to the rapid rise of the scattering cross
section to its maximum value over the narrow
range of energy in which the capture can occur
(resonance peaks super-imposed on a smooth back-~
ground).

We note that only diagram 2 of row 1 has an im-
aginary component owing to the outgoing-scattering
boundary conditions appropriate for the Green’s
function whose energy lies above the ionization
threshold of the atom w,s+ 2w, in this case (see the
Appendix for further discussion). Thus the entire
contribution to the width, of order I/I, relative to
the source, arises from this term. The existence
of a width must depend on the decay of the atom by
electron emission; this electron is then recaptured
to conserve energy. The other virtual processes
involving deexcitation followed by excitation or vice
versa contribute only to the shift.

F. Nonperturbative solution to the uncoupled integral equation
for the absorption response function xl(“l )(r,wl s T, )

Based on the above analysis we want to solve Eq.
(10a) without the coupling term (fourth diagram,
row 1) in the vicinity of the 1s ~2p resonance.
This is an uncoupled integral equation for x*V. As
pointed out by Chang and Poe,'” in the case of the
perturbative solution for complex atoms where the
potential terms, other than the source, arise from
the interaction of the electron absorbing the photon
with the atomic field, a stable numerical solution
is hard to obtain near a pole of the Green’s func-
tion. This was also found to be the case by the
present author.® In addition the noniterative meth-
od-of solution presented in Ref. 6 fails in the pres-
ent application owing to the infinite range of the
radiative interactions.

Chang and Poe'” have outlined a procedure which
we propose as a method capable of handling the
present equation. They use the well-known approx-
imation' method of representing the Green’s func-
tion very near a pole (vanishing energy denomin-
ator) by a single eigenfunction of the target (or by
several eigenfunctions if there are several closely
spaced poles). In the limit of coming very close
to the pole this approximation becomes very ac-
curate. They then suggest finding the exact solu-
tion to the integral equation (in their discussion,
differential equation) sufficiently far enough on the
wings of the resonance that numerical difficulties
do not arise. The eigenfunction contribution is
then subtracted from this solution, and the sum of
the two components, the remainder, and the eigen-
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function contribution is then continued as close as
is numerically feasible for the integral equation,
hopefully close enough so that the single eigenfunc-
tion representation gives the entire contribution.
The contribution close to the pole in the present
problem is

ey ) L dr' vy, 00 gl V)
we= (wls—wz,,)+cgp A, - iT , (14a)

X1

Ld

A+=Re(i2 i

i=0,2 n=0,2

j f drdr' v ", (r)U,,(v)
0 o
ng ('}’,’V'; Wist nwﬁ)

er“(r')sz,(r')), (14b)

r=Im Z ffdrdr 727 %5, (V)U ()

j=0,2
Xgiry ' wy + 2w,,{)U”(r’)zp2,,(r’)) .

(14c)

At this level of approximation this solution is
exact. That is, if g,(r,7’; w;s+ w,) of Eq. (10a)
(with the coupling term omitted) can be repre-
sented by a single eigenfunction, then the exact
noniterative solution given by Eqs. (14) results.
In fact, if g, were to be represented by N such
eigenfunctions (as in the case of N closely spaced
poles), then the exact noniterative solution could
still be constructed, requiring the inversion of
an N-dimensional matrix. Thus, it is only in the
one-eigenstate approximation that the solution is
simple enough to be available in the analytic form
given by Egs. (14).

We observe that Egs. (14) give a result implied
by the renormalized Green’s function method of
Gontier and Trahin.>® This can be seen by in-
spection of Eq. (3) of Ref. 1, where the method
is applied to the four-photon ionization of Cs, and
the single 6F eigenfunction is used to represent
the singular Green’s function in the vicinity of the
6S— 6 F resonance. However, Morellec, Normand,
and Petite! did not note that the quantities which
they call the “shifts” will be complex, with real
and imaginary parts corresponding to the shift
and width, respectively, [as in Eqs. (14)] when
the summations over the sets of intermediate
bound and continuum states of the target are
carried out explicitly, after first imposing the
following boundary conditions: (i) outgoing-
scattering boundary conditions if the number of
photons absorbed causes the virtual energy to lie
in the ionization continuum [as a virtual energy

of w,,+2w, does in our case or as wgs+4w, does
in the first term of Eq. (4c) in Ref. 1]; these
boundary conditions produce the complex correc-
tion [see Eq. (A1) of the Appendix]; (ii) exponen-
tially decaying boundary conditions if the virtual
energy is less than the ionization threshold either
by absorption of too few or by emission of one or
more photons.

This last result can be obtained from the result
of (11) above by analytic continuation below the
energy axis accoring to k=i Z/v, where 3 k%= is
the energy of the virtually ionized electron and
v is the effective principal quantum number defined
previously (see the Appendix for greater detail).
Analytic continuation of the scattering Green’s
function with incorrect boundary conditions will
lead to a result below the axis having irregular
(exponentially growing) behavior. This point can
be easily understood if the energy denominators
of the “shifts” of Ref. 1 are replaced by the ap-
propriate resolvent operators and these repre-
sented according to the above prescriptions for
the boundary conditions. The inspection of Egs.
(14c) and (A1) shows that I" is proportional to the
one-photon integral cross section for the ioniza-
tion of the 2p state, which is just the width ex-
pected from elementary considerations. Finally,
it is interesting that the renormalized Green’s-
function method of Ref. 2(a) and the single-eigen-
function approximation version of the present
theory give the same result. This identification
disappears when y (a1) j5 obtained from the numer-
ical solution of the integral equation, constructed
accoring to the method of Chang and Poe."

III. NUMERICAL APPLICATION OF EQS. (14)

We present numerical results for the single-
eigenfunction approximation to y {**) in Figs. 2-5.
The calculations of Fig. 2 give the error to be
expected from this approximation to g,(r,»’; w,,
+w,). This is seen to be extremely Small in the
range of wavelengths from 1210 to 1218 A but
is about 27% at 1240 A. These calculations
were made in the perturbative limit (setting
the shift and width equal to zero). The exact
calculations of the present study ‘were per-
formed using the numerical representation of
g, described in the Appendix of Ref. 6 (also see
Refs. 4 and 5 for exact calculations for multi-
photon processes using the Coulomb Green’s
functions). Also shown at 1200 and 1240 A are the
exact results of Chan and Tang,® using a different
technique. The two calculations agree to within
19%; this is within the error tolerance of the sin-
gle-eigenfunction approximation at about 1 A away.
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FIG. 2. Cross sections for the two-photon ionization of H(ls) from Eqgs. (14). —, I—lO1 Wem” , I
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of H(ls) using perturbation theory (all radiative cor- .
rections set equal to zero). X : exact results of Chan
and Tang, Ref. 9; ®: exact results of the present work;
O : single-eigenfunction approximation of the present
work.

from the static position of the resonance 1214.7 A,

Figure 3 shows the behavior of the resonance
peaks as a function of intensity from 102 to 10 %
Wem™, No attempt was made to locate the pre-
cise dynamic position of the resonance, since this
would require a large number of points, each one
of which is rather expensive in machine time owing

"to the need to calculate A, and T" at each w,. Note
the shift of the peak to smaller wavelengths as a
function of increasing intensity.

Figure 4 gives a comparison of resonance peaks
at 10® Wem™ for diagrams 2 and 3 of row 1 of
Fig. 1 (virtual ionization followed by recombina-
tion a/nd virtual emission followed by reabsorp-
tion, respectively), and for diagram 2 alone. We
observe that the largest contribution to the shift
comes from diagram 3, specifically from the
j=2 term of Eq. (14b) for »=0. Hence, the quan-
titative description of the resonance peak would
be incorrect if only one of the two diagrams were
calculated.

Figure 5 shows the order of nonlinearity at

=7.5%102 Wem™2; — +—, I=10!3 Wem™ 2,
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10°
1211 1213 1215 1217 1219
xR

FIG. 4. Cross sections at /=10 Wem™2 for the two-
photon ionization of H(ls). — as in Fig. 3; — — result
with terms of diagram 3, row 1 of Fig. 1 omitted.
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ORDER OF NONLINEARITY

L i | l | | |
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FIG. 5. Order of nonlinearity, i.e., derivative of the
logarithm of the number of ions produced with respect
to the logarithm of the intensity vs the static detuning at
I=5%10'2 Wem™?, where the static position is taken at
1215 A.

5x102 Wem™ [see Eq. (1) of Ref. 1, where it is
called Kexpt, the experimental order of nonlinear-
ity]. This curve is simply our estimate of the
derivative of the logarithm of the counting rate

for the number of ions produced (N; of Ref. 1)
with respect to the logarithm of the intensity ver-
sus the static detuning A,. We note that it slowly
approaches K, =2 for large positive and negative
A,, where K, is the number of photons absorbed.
Also, the shape closely resembles that of the
measured order of nonlinearity for the four-photon
ionization of Cs (Fig. 7 of Ref. 1). Since this
quantity is a sensitive function of the dynamic
detuning and radiation-induced linewidth, it should
form the basis for detailed comparisons of
theoretical and experimental results over a wide
range of intensities.
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APPENDIX: COULOMB’S GREEN’S FUNCTIONS

The Coulomb Green’s functions required for
this problem have been extensively studied. They
are as follows:

(i) Green’s function for scattering boundary
conditions,

1
&ilr 7' k%) = s [ Gy krs ) Fy ()

+iF (kr)F,(kr")], (A1)

for energy 3k%(a.u.). G, and F, are the irregular
and regular Coulomb functions deséribed, for
example, in Mott and Massey.'®

(ii) Green’s functions for exponentially decaying
boundary conditions. These functions can be
obtained from those of Eq. (A1) by analytic con-
tinuation below the energy axis, according to
k={Z/v, where v is an effective principal quan-
tum number. These functions have been studied
extensively in Ref. 10. Also see the Appendix of
Ref. 6 for a description of their numerical evalua-
tion. They are

s @) = v T(E+l-v) . <2Z’}"<>
S W) T T 1+2) v\,
2Zr
XWU:I+1/2< V>>, (AZ)

where M., ,,/, and W, ;. », are the Whittaker func-
tions and v =i Z(20w) Y2, where w is the energy on
the negative axis in atomic units.

(iii) Reduced Green’s functions. These are re-
quiredtodescribe propagator lines inwhichall pho-
tons withenergy w,have been lost; thus, they are
appropriate for calculating the static Stark shifts.
These are described in Ref. 15. They can be '
obtained from the Green’s functions of (ii) above
by the limiting procedure described in Ref. 15;

g(tt)(y) ’V'):llm <3w (w—w,v)g,(r, 7' (4)> . (A3)
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