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This paper describes a new class of techniques, called time-delayed laser saturation spectroscopy, which
combine frequency- and time-domain methods of laser spectroscopy to provide a way of studying a molecular
system as it evolves from an initially prepared stationary state to a second, final state. The specific example
analyzed here is three-level free induction decay, in which the time-dependent gain of a Doppler-broadened
molecular transition is probed after the sudden termination of an intense field resonating with a coupled
transition, The theoretical calculation is based on the coupled density-matrix equations of motion in the
slowly-varying envelope approximation. The time-delayed line shapes, which may be studied in either
transmission or side fluorescence, exhibit line!width asymmetries, line-shape deformations, Ramsey-type
fringes, power broadening and dephasing, and dynamic Stark splittings and oscillatory decays. The technique
provides a unique way of distinguishing the influence of Raman-type processes from that of population
saturation and a means to separately measure the associated decay rates. The relationship of the present
work to other studies is also discussed.

I. INTRODUCTION

Developments ove-r the past decade of powerful
techniques in laser spectroscopy for measuring
atomic and molecular structure and collisional
dynamics in Doppler-broadened gases can be clas-
sified. in two major categories. Qn the one hand,
steady-state phenomena such as standing-wave
saturation' ' (Lamb dip) and laser-induced line
narrowing' ' (three-level) techniques have been
used to obtain spectroscopic information in the
frequency domain with great precision. On the
other hand, coherent transient phenomena such
as free-induction decay, ' optical nutation, ' and
photon echoes' have been used in obtaining new in-
formation about relaxation processes in the time
domain. The main point of this paper is to show
that by merging the techniques of these two cate-
gories one can combine the advantages of transient
and steady-state spectroscopy to extend the range
of available information.

To illustrate the new class of techniques, con-.
sider a conventional high-resolution spectroscopy
experiment in which a tunable monochromatic
probe is tuned through a Doppler-broadened transi-
tion saturated by an intense monochromatic field
to obtain a narrow saturation resonance (Fig. 1).
Now suppose that the intense field is suddenly
turned off, and the line shape of the narrow reso-
nance is probed a fixed interval of time later. As
the time delay is increased the change signal will
become smaller, corresponding to the decay of
the saturated molecules and their return to equili-
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FIG. 1. Simplified setup for time-delayed saturation
spectroscopy experiments. The double ar'row indi-
cates the saturating field, the wavy arrow the probe
field. The saturating field is terminated at time t =0.

brium. Thus, by studying the line shape as a
function of delay time a family of curves can be

. generated. This information can be combined to
form a. surface in a coordinate system having axes:-
change-Signal intensity (z axis), frequency detuning
(x axis), time delay ( y axis) (Fig. 2). Sections
parallel to the x axis give the change-signal line
shape at delayed times. Similarly, sections paral-
lel to the y axis give the free decay of the system
at various frequencies. Note that this surface
could have equally well been generated from the
family of curves obtained from the time decay of
the steady-state change signal, holding the probe
field fixed at various frequencies.

Studies of this type might well be termed "fre-
quency-time-domain spectroscopy" because both
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FIG. 2. Three-dimensional representation of the
time-delayed change signals.

types of information are obtained simultaneously.
As will be seen, such studies extend the possibili-
ties of laser saturation spectroscopy, which only
provides information in the frequency domain, as
well as those of ordinary coherent transient ex-
periments, which only provide time-domain in-
formation.

These time-delayed change signals have some
very interesting features. For example, their
characteristic decay times may be totally unre-
lated to the inverse steady-state linewidths. What
is more, different portions of the line shape can
decay at different rates. Consequently, the shape
of the narrow resonance can change during the de-
cay process. This behavior occurs because the
change signal is composed of contributions arising
from different physical processes (population satu-
ration, Raman-type processes, etc.), each of
which has a different steady-state linewidth and
decays at a different rate. Thus, new physical
information not available from the steady-state
line shape can be obtained by studying the free
decay of the change signal and its line shape as it
evolves in time. Qther features which can mani-
fest themselves in the time-delayed line shapes
include power broadening and dephasing, ac Stark
splittings, oscillatory decays, and narrow Ram-
sey-type resonances.

The'time-delayed saturation signals have some
features in common with conventional free-induc-
tion decay signals observed by means of heterodyne
detection using a monochromatic laser field as the
local oscillator. ' In the new technique the probe
field acts as a local oscillator to beat with the
transient signals induced when the intense field is
terminated. However, in this case the probe field
also resonantly interacts with the saturated mole-
cules, which is not the case in the heterodyne de- FIG. 3. Energy level diagrams.

(d~

(c)

tection of ordinary free-induction decay. It is this
interaction which gives rise to the observation of
narrow spectral line shapes. In contrast, the or-
dinary free-induction decay signal is the same, in-
dependent of the tuning of the heterodyne laser.
This distinction will be made more explicit in what
follows.

As is evident from the above discussion, the time
decay of the change signal is not simply the Four-
ier transform of the steady-state line shape.
Thus, the present technique is not an analog of
Fourier transform spectroscopy, "where a com-

. puter is used to transform free-induction decay
signals and thus obtain a frequency spectrum. Qne
might loosely say that in the new technique the
molecules themselves take the transform of the
free-decay signals, but it is emphasized that the
frequency-domain signals so obtained contain phy-
sical information not present in the signals of or-
dinary free-induction decay. This distinction will
be elaborated later on.

The experiment above is one example of a class
of time-delayed laser- saturation techniques.
Similar behavior will also occur when studying the
time-delayed probe line shapes after the intense
field is suddenly turned on (analog of optical nuta-
tion). " The technique is also applicable to study-
ing echoes and other coherent phenomena. Also
note that the effects can be studied both in two-
level systems and in coupled three-level systems,
either by observing-the probe transmission or by
detecting the side fluorescence from one of the
interacting levels. In all cases there are interest-
ing features which depend on whether the probe is
co-propagating or counter-propagating with re-

, spect to the intense field.
The present paper presents a theoretical analysis

of one aspect of this new class of phenomena,
three-level free-induction decay, and discusses
the new information available, as compared to
that obtainable in the usual free-decay and steady-
state three-level experiments. In this type of ex-
periment the intense field saturates one transition
and the probe field, which may be co- or counter-
propagating, acts on a, coupled transition (Fig. 3).
Both folded [Figs. 3(a) and 3(b)] and cascade [Fig.
3(c)] systems may be studied. This technique pro-
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vides a novel way of measuring relaxation pro-
cesses, and a unique means of separating the ef-
fects of population saturation from those of Raman-
type processes (see below). One application is to
describe the transient behavior of optically pumped
lasers.

A brief description of the technique and some of
the line-shape features of three-level free decay
and optical nutation were given in an earlier publica-
tion." An experiment which demonstrates the
technique in NH, will be reported elsewhere. '

In this paper, after a discussion of the equations
of motion in a three-level system (Sec. II), we
calculate the molecular response at the probe fre-
quency for arbitrary intensities of the saturating
field (Sec. III) and present a detailed study of the
velocity average. The two subsequent sections are
devoted to the discussion of the transient response
of the probe field in the limits of weak (Sec. IV)
and strong (Sec. V) saturating field intensities.

Section VI calculates the time evolution of the side
fluorescence and compares the results with those
obtained for the probe transmission.

Many different symbols will be used throughout
this article. To make it easier to read, a glossary
of the main symbols is given in Table I.

Before presenting the theoretical analysis, let
us mention some relevant previous studies: co-
herent Raman beats observed in the response of a
single electromagnetic (e.m. ) field to the sudden
Stark splitting of a degenerate transition, ' "fluo-
rescence quantum beats induced by pulse excita-
tion, "transient two-photon absorption"" and
Raman emission, "both in the case of a nonreso-
nant intermediate state, and transients in infrared-
microwave double resonance. " An experiment to
study the time-delayed Lamb dip in sodium has al-
so been performed. " The connections between
some of these works and the present technique will
be discussed in the concluding section (Sec. VII).

TABLE l. Glossary of symbols.

Equation

0 0

{v)
kg, kg

LgyL2~L12
0 0Lp. Lg~Lg~L~

Pg, 6'(

Q
S
S

0
vgqv2qvg2

«p
82p8f2gv
(I ~ P
Vis

0 0
YB~ +N~ YB~ VN

y(~)
q, r, r'

~(~)

Ag

gg(i) ~g(2)

l{~)

A

({~)

X

Q), 0~
n~'~

(x)
(eb), (28a)
(27)
(~)
(4)
(ss), {e~)
{s)
(30)
(se)
(42b)
(27) '

(28), {33),(5v)
(29), {As), (5v)
(5)
(6)
(36), (37). (5o), (5&)
(3e)

. (42d), (42a), (42e)
(A3)
(34)
(42a), (42e), (V2)
(28b)
(s5)
(23), (83)
(92), (93)
(42c)
(4ib)
(53), (55)
(2)
(A4)

Electromagnetic fields
Probe gain
Velocity distribution
Wave vectors
Resonant frequency denominators
Lorentzian resonance line shapes
Macroscopic polar ization

. 41+ s
Saturation parameter
High-frequency Stark splitting
Thermal velocity
Resonant velocities
{Complex) resonant veloc ities
Rabi frequencies
Relaxation rate of 0.

;&
Effective decay rates
Resonance linewidth

. Effective decay rates
Ffrequency detunings
Probe frequency detuning
Frequency detunings
Gain change
Population change
Density matrix changes
Population change line shape
(k, k )/k,

Gain-change line shape
Density matrix
{&k, k, )/k,
Molecular frequencies
Laser frequencies
Probe peak frequency
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II. EQUATIONS OF MOTION

A. Background

When an intense monochromatic field E„ fre-
quency Q„resonantly interacts with one of the
transitions, 0-2, of a Doppler-broadened mole-
cular (or atomic) gas, the level populations of the
transition are altered over a, narrow range of axial
velocities centered about velocity v, satisfying the
resonance condition (in the molecular rest frame)
Q, —k,v, = ru, (~, being the molecular center fre-
quency; k, = Q, /c). This selective saturation of the
level populations alters the spectral properties of
a second coupled transition, 0-1, molecular cen-
ter frequency ~„ formed by either of the saturated
levels and a third level (Fig. 3). In particular. , if
a weak monochromatic probe field E„ frequency
Q„propagating either parallel (+) or antiparallel
(—) to E, is tuned through the 0-1 transition, a
narrow resonant change in transmission occurs,
superimposed upon the broa, d Doppler profile,
when .0, is such that the probe field interacts with
molecules of velocity v, : Q, =~,+k,v, (k, =Q, /c).
This effect, called laser-induced line narrowing,
has been the subject of numerous theoretical4 and
experimental' investigations devoted to studying
the line shape of the change signal and using the
narrow resonances thus obtained in high-resolu-
tion spectroscopic studies. ' It is now well known
that this effect cannot be analyzed in terms of pop-
ulation-saturation considerations alone, and that
coherent processes play an important role. For
example, via double-quantum processes a mole-
cule initially in level 2 can undergo transition to
level 1 by exchanging two photons of energy SQ,
and SQ, with the applied radiation fields without
loss of phase memory.

Because of the close correspondence with the
Raman effect, transitions of this kind are some-
times called Raman-type processes. " Such pro-
cesses exhibit very different dependence on mole-
cular velocity, according to whether E, and E, are
co-propagating or counter-propagating. This dif-
ference gives rise to a, directional anisotropy in
the net response, comprised of contributions from
molecules of all velocities. Thus, the line shapes
observed in co-propagating case (forward change
signal) and counter-propagating case (backward
change signal) always differ, in some cases dra-
matically. This directional anisotropy has been
used to advantage in the recently introduced high-
resolution spectroscopic techniques using Dop-
pler-free two-photon absorption. "

The aim of this paper is to study the transient
response of the molecular 'medium as observed
on the transmission of the probe field after E, is
abruptly terminated. As will be seen, many of the

features discussed in the introduction will occur.
One particularly interesting feature lies in the
relative time evolution of population-saturation
contributions versus Raman-type processes. As
soon as E2 is terminated Raman-type pl"ocesses
cease to occur, since E, is absent and can have
no direct influence. However, the initial (steady-
state} value of P,(t), the optical polarization oscil-
lating at 0„ is influenced by the Raman-type pro-
cesses occuring during the preparative step (t & 0).
The probe change signals are completely deter-
mined by P,(t). Therefore, as P, (0) decays the
directional anisotropy and other features of the
change-signal line shapes associated with Raman-
type processes will gradually disappear. This ef-
fect is particularly striking when the pola. rization
decay rate ("T, processes" ) exceeds that of the
level populations ("T, processes"), T, «T„so
that the change signals can persist wel'I beyond the
decay of P,(0). In this case the shape of the for-
ward change signal will evolve in time, as the in-
fluence of Haman-type processes decreases, and
with increasing time delay the initially different
forwa, rd and backward change-signal line shapes
will eventually become identical. This opens the
possibility of uniquely distinguishing the influence
of Raman-type processes from that of population
saturation and to separately measure the associated
decay rates.

8. Coupled equations in the slowly varying, envelope

approximation

Consider a sample cell of gas molecules irra-
diated by two e.m. fields, E,(Q,) and E,(Q,}, pro-
pagating along the z axis, having wave vectors k,
and jk„q =+1 or —1 according to whether E,
propagates parallel or antiparallel to E,:

E, = 8,' cos(Q, t —k,z),
E, = h,' cos(Q, t —qk, z) .

The molecular energy levels of interest, levels
0, 1, and 2, form apair of Doppler-broadened
transitions with molecular center frequencies e,
and ~, sharing a common level (Fig. 3). It is as-
sumed that 0, is close to (d, and 0, to ~„so that
E& resonates with the 0-j transition (I Q,. —~~ t

&Doppler width). It is further assumed that E,
cannot resonate with the 0-1 transition, nor E,
with the 0-2 transition. This can be ensured either
by proper choice of the polarizations of the E fields
or by having the molecular center frequencies suf-
ficiently separated (I ur, —~, l &Doppler widths). To
be specific, the problem will be formulated for
the three-level configuration of Fig. 3(a), a folded
system with level 0 lying lowest. The equations
describing the other level configurations, Figs.
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p„=o„exp [i(Q,t —k, z)],
p„=o„exp [i(Q,t —&t22z) ],
p„=o;, exp(i [(Q, —Q,) t —(gk2 —l'2, )z]),

where the o, ~ are the slowly varying envelopes
(Bcr,&/st «(do, &, Bo,&/Bz «ko, &) In t.he rotating-
wave approximation the o,.j obey the following
equations of motion"":

(2)

3(b) and 3(c), are more or less the same. '~("
The system's time evolution can be conveniently

described by means of the ensemble-averaged den-
sity-matrix formalism, in which p, &(v) is the den-
sity-matrix element describing the molecules with
axial (z-axis} velocity component v. p, , is the pop-
ulation of level j, p0,.(j= 1,2} is the optical co-
herence associated with the 0-j transition (it is
proportional to the induced polarization oscillating
at Q,.}, and p» represents the macroscopic mole-
cular coherence induced between levels 1 and 2.
The following transformation allows one to go into
the rotating frame:

r;, -2(r;+rt) (6)

where ( ) denotes velocity integration over G(v).
The net field associated with the 0-1 transition is
composed of incident and reradiated components,

E (z, t) = Re ((g + 4(G ) exp [i(Q t —Q z) ]]. (7)

In the experiments of interest the sample is as-
sumed to be optically thin and short (no phase-
matching problem" ). In this case the amplitude
of the reradiated field will be small compared to
the incident field (I &8, I «$0). At the output face
of the sample cell (z = l), n, E, is then given by"

The equality in Eq. (6) holds only when phase-
changing collisions are absent, for instance in the
case of radiative decay or relaxation by inelastic
collisions.

The macroscopic polarization associated with the
0-j transition is given by

P, =Re1.(P& exp [i(Q& t —l'2,.z)]),
with

„+y,(o„—n, ) = ——,
' i(2(o„—o,*,) ——,

' i P (o„-o,*,),
yl( 11 ) ( 01 01)

-2w2Q l -4rr2Q1l
( )c ' c (8)

22 y2( 22 n2) 2 p( 02 02) )

12 L12 12 2 02 2 P 01 )

(r01+ L1o01 = 2 io'(o11 coo)+ 2 i po12 )

0'o2+ L2 02 2 P( 22 00) 2 2+ 12 )

cr = t1„$,'/n, p = t1„8,'/n'

where o=do/dt,

L1 = r()1+ 2(Q1 —(d1 —k1v) )

L, = r„+i(Q2 —(d, —Et22v),

L„=y»+ i[Q, —Q, —(d1+ (d2 —(l'2, —&k2)v],

(4)

(5)

This gives rise to a change in transmitted intensity
at the probe frequency:

f, (t}=I0+ l2Q, o l Im(o„(t)), (Sa)

with I, = c lb, I2/Srr and I 0, the incident intensity of
the probe field. The last term of this expression
is the heterodyne beat between the incident probe
field and the reradiated field. It will exhibit tran-
sient behavior when the saturating field is turned
on or off.

The gain at the probe transition can be defined
by

I,(t) = I,'+ gI 10.

pre then have
In Eqs. v(3)-(5), t10& is the dipole-moment matrix
element connecting levels 0 and j. The Rabi fre-
quencies o, and p can be taken to be real without
loss of generality. The background population
density of level j (i.e. , its population in the ab-
sence of the applied laser field) in the narrow in-
terval between v and v+dv is denoted by nj(v)dv,

v,.(v)=v,.G(v), f G(v)dv=(,
I

where n& is the total background population density
of level j and G(v) is the normalized velocity dis-
tribution. Finally, y,. and y, , are the decay rates
of the population of level i and the 0,, coherence
respectively. In general,

g(t) = (Srr/c)Q, l p, 01 I (m)o/018 , . 0 (Sb)

I~ = (0)'d Q/2)rc2) i1214(o„), (10)

where p,,4 is the 1-4 transition matrix element.

In transmission studies, and also in studies of
spontaneous emission line shapes at the 0-1 trans-
ition, g is the quantity of experimental interest.

In some experiments" it may be more convenient
to detect the net fluorescence emitted from a tran-
sition formed by level 1 and another lower-Lying
level, level 4, as E, is tuned through the 0-1 tran-
sition. In this case the net intensity emitted at the
1-4 transition, frequency ~, into solid angle dQ
is given by""
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Note that in experiments of this type one directly
monitors the time evolution of the total populati. on
of level 1, as opposed to the transmission experi-
ments, which study (a»). However, the transient
signals observed in the two cases will be similar,
since the two quantities are intimately related.

C. General way of solving the equations

When the condition cy «y, j is fulfilled, the probe
field is weak enough so that Eqs. (3) can be solved
by using a perturbation expansion of o, , in 0.:

a,',"+r,a,',"= —,
' ia(o,",' a,',"*). (16)

As ca.n be seen from Eq. (16), in the steady sta-te

regime fluorescence techniques and transmission
measurements give equivalent information, since
y, o,',"= -Q. Imo,',". This is a direct consequence of
the energy conservation condition at the 0-1 tran-
sition.

Note that Eqs. (11)—(16) are valid regardless of
the form of the time variations of P. In the follow-
ing we shall deal with the free-decay case (constant
pop for t&0, p =0 for t~ 0).

0(n)ij ~ ij
n

where o',.j' is proportional to z". This expansion
of a... when inserted in Eqs. (3), leads to a set of
equations which can be solved for arbitrary inten-
sities of the saturating field, i.e. , for arbitrary
values of P.

The zeroth-order set of equations corresponds
to the case in which the probe field is absent
(a(=0). In this case the molecular system becomes
equivalent to a two-level system:

a (0) )(0) — i 2op (17a)

2
(0) 0 ~ yP2 20 (17b)

where

III. CALCULATION OF THE PROBE FIELD GAIN

A. Response of a molecular velocity group

In the steady-state regime (t & 0, a = 0), the solu-
tion of the zeroth-order Eqs. (11) is given by

oo + Loao2 o 2P(a!o aoo ) '

(1la)

(lib)

(11c)

(18)L,(p) =r»(1+s)' '+i(Q, —a&, —ek, v),

the saturation parameter s is proportional to the
intensity of the &, field,

There is no coherence between level 1 and levels
0-2,

s = p'(r, + r, )(2r,r, r.,) ', (19)

and njQ is the 0-j background inversion density,
a(0)(t) —a(0)(t) —0 (12)

Pl JQ
fl J PlQ ~ (20)

a(,')(t) = n, . (13)

and the population of level 1 i.s given by its back-
ground value,

For t& 0 (p=p) the decay of the population and of
the 0-2 macroscopic polarization are straightfor-
wardly given by

In the first order in n the E, field does not change
the level populations, nor the 0-2 optical polariza-
tion,

a(o) +(t) a(0)!)(0)e-&g(

a(;&(t) = n, + [a,",&(0) —n, ]e-&.

(21a)

(2 lb)

a(1)(t) a(1)(t) —p

but it induces an optical polarization ai the 0-1
transition, as well as a coherence between levels
1 and 2. These two quantities satisfy the coupled
equations

( ().)+ L a()) i~(n a(o))+ i pa(1)w
01 1 01 2 1 00 2 12

a ) gy L a(1 4 i+a(o)w+ pa(1)
12 12 12 2 02 2 01 ~

(15a)

(15b)

The 1-2 coherence results from Raman-type pro-
cesses in which for example, the molecules under-
go transitions from levels 2 to 1 by emitting a
photon at Q, and absorbing a photon at Q, ."

In the case of fluorescence measurements one
needs to solve the equations up to the second or-
der in n. The E,-induced population change of
level 1 is given by

The polarization at the probe frequency is ob-
tained by solving Eqs. (15a) and (15b). The origin
of the distinct contributions arising from popula-
tion- saturation effects and. Raman-type processes
can be readily seen in the steady-state form of Eq.
(15a),

I. a") =-,'i().(n, -a(o&)+-,'ipa('&* (22)
/

The two terms on the right-hand side act as source
terms to drive v». The coupling between 001 and
the level populations is evident in the first term,

)

which gives rise to the population-saturation con-
tributions ("stepwise" transitions). The coupling
of 0'12 to the probe polarization appear s in the
second term, and is responsible for the occurrence
of Raman-type contributioris.

The expression for the polarization at the probe
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frequency follows from Eqs. (15a) and (15b). It
may be writt-en in the form

The first term on the right-hand side describes the
linear response of the probe field. It is indepen-
dent of P and so does not exhibit transient behavior.
After velocity integration it gives rise to the con-
stant Doppler-broadened background gain.

The second term of Eq. (23) describes the in-
fluence of the saturating field on the probe polari-
zation. Its value in the steady state may be ob-
tained from the. simultaneous solution of Eqs.
(15a) and (15b) for o;~=0,

L,L,2+op' ~ L& IL2(p)l'

the molecular velocity distribution. In the follow-
ing, a Gaussian distribution,

G(v) =(1/u~)e " '" (27)

will be used, with u the thermal velocity. Using
Eqs. (9b) an'd (23), one finds that the gain at the
probe transition is given by

g=g, + (Bwk, t p»/k'n)im(hvo~, '~(v, t)), (28a)

g, =4' goo, N, o/, tj,

with

N„= nn„G( v,), v, = (g, —oo,)/k, .

The probe field change signal may then be defined
as

with gp the linear background gain. In the Doppler-
broadened limit (y„« k,u)

y L +2 Ln . 24
7 Q

ng(t) =(2k,go/nN, o)im(bo'ot, '~(v, t)) . (28b)

The transient evolution of 40p] is determined by

Eq. (15a) with P set equal to zero. This leads to

~~oi +Li~~oi =o' n("o-coo ).'(i) (z) & - (o)

The solution is obtained with the help of Eqs. (.17)
and (21),

~0&»(t) —go(&~(0)e-z, ~

aP' yp2 ~p e-' ' —e- &o'

y. IL.(p)l'

(26)

where no'ot,'~(0) is given by Eq. (24). The first
term in Eq. (26) represents the decay of the polar-
ization created before t =0. The second term
comes from the coupling between population and
polarization, which still exists after t =0. Since
the reradiated field is proportional to ho'o|(t)e'"1'
[see Eqs. (7), (8)] the decay of hv„' (e "term)
gives rise to emission of radiation at the Doppler-
shifted natural frequency, co, +&,v, while the
change in the population of level 0 (e ~o term)
modifies the stimulated emission at the probe fre-
quency, 0,. Also note that since E, is absent after

0 0
py is not coupled to &„', and so transient

Haman processes do not show up (as they would in
optical nutation). However, Raman-type processes
do manifest themselves in the steady-state polari-
zation, ho~~,' (0), and so their influence decays with
the characteristic decay time of the 0-1. polariza-
tion.

B. Velocity integrated gain

To obtain the expression for the probe gain [Eq.
(9b)], one must average the 0-1 polarization over

1. k)-ek2&~0

As an example of the velocity integration, we
shall discuss this fir'st case in some detail. The
pole of lL,(P)l

' lying in the upper half of the com-
plex plane is given by

k, v, = e(n, —(o,) + iy„Q, (29)

In the fully Doppler-broadened limit, where the
natural widths, y;;, and the power-broadened 0-2
transition linewidth, y»(1++)' ', are much small-
er than the Doppler widths k,u and k,u, G(v) is
slowly varying compared to 6o(v, t) [Eq. (26)] and
can be taken as constant in the velocity integration.
This integration can then be performed using con-
tour integration, by considering 6& as an analytic
function of the complex variable v. The path of in-
tegration is the real axis of the complex plane,
and the contour can be closed at +~ and -~ in the
upper half of the complex plane in order that the
exponential term e' &"' (coming from e ~') van-
ishes for infinite values of the imaginary part of
v, at t& 0. The integration then consists of eval-
uating ti&(v, t) at the poles lying in the upper half
of the complex plane. "

In b&otp(v, t) the poles corresponding to L, =0 and

Ly zp = 0 lie in the lower half of the complex plane
and do not contribute. Of the two poles coming
from jL,(P)l' =0, only one brings a nonvanishing
contribution. The denominator (L,L„+-,'P') ' is
much more complicated: its two poles are an-
alyzed in Appendix A. When 4'] &k2) 0, there is
no contribution. This condition corresponds to
either e = -1 (counter-propagatingwaves), or e =+1
and k, )k, . In the remaining case(e = 1;k, ) k,) one of
the poles lies in the upper half of the complex plane
and br ings an additional contribution to ( ho). '4f '~
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where

Q (1 +e)i/2

Using the residue theorem, tl&is pole leads to the following expression for the probe field change
signal:

k, p' N„ I e &o'-e "&)" ' ' y„+2y()(l+eQ)+i&(e) i&(+i(;«&&i

2k, y', Q N, o
o( ys —y, +i&(e) [ye+i'(e)][y„+is(e)]+-,'P'~

~

(30)

(31)

N» —
wK, oG( v,),

v, = e(t~, —(o,)k, ',
(32)

(33)

and I)(e) is the detuning of the probe frequency
from the line center of the steady-state saturation
resonance, 0,',

where N, p is proportional to the 0-2 inversion den-
sity for the resonant molecular velocity &„

to the transient population of level 0. Since this
term describes the change in stimulated emission
resulting from population decay, it contains a con-
tribution (e 4 ) exhibiting neither Doppler dephas-
ing (hence no dephasing due to power broadening),
nor beat frequency.

When there are no dephasing collisions [y;z = o(yi
+y)], Eq. (31) may be simplified to yield

(34)

(35)

Finally, two effective decay rates have been intro-
duced,

ag(8„(, e) =-),",( 2

&3 N2o yp

y() Q Nio y&) y() + i&{a)

Q
e-i&e+i()(e» t

2 y(e) +i&(e)

yo =y, +(k,/k, )yo, Q,

y~ =y,, +[(k, —ek, )/k, ]yo2Q.

(36)

(3'I )

where y(~) is'the width of the Lorentzian line shape
observed in the steady-state regime (t =0),

The physical interpretation of Eq. (31) is as
follows: (i) The last term in brackets describes
the decay of the initial pola'rization induced by the
saturating field E, before t =0. Since this polari-
zation is due to molecules in the velocity band cen-
tered at &„ the decay occurs at the Doppler-
shifted frequency ~, +kg~2 Qy „The correspond-
ing emitted field interferes with the probe field to
give a beat at frequency t)(e). The decay of this
beat consists of two contributions: the ypy term,
which is due to the decay of the 0-1 polarization,
and a "Doppler dephasing" contribution, yo, Qk, /k„.
which is due to the velocity spread of the excited
molecules [Im&, in Eq. (29)] and gives rise to a
corresponding spread in the emitted frequencies,
leading to destructive interference in a time of the
order of k,(k,y»Q) '. Notice that the latter contri-
bution contains the influence of power broadening
in the preparative step. Finally, as expected, for
t=0, the last term of Eq. (31) gives rise to the
well-known line shape of the saturation resonance
in a three-level system. '

(ii) The first term in brackets is a pure transient
contribution (it cancels for both t =0 and t» y '),
coming from the coupling of the 0-1 polarization

y(e) =2y, +(k,/k, )y»Q —&(yo/2)Q. (39)

Equation (39) straightforwardly shows the well-
known result that the change-signal linewidth is
narrower for forward scattering (a=+1) than for
backward scattering (e=-1). Since the net areas
under the gain curves are equal, " it follows that
the peak amplitude of the forward signal is larger
than that of the ba, ckward signal. This point and
others will be discussed in more detail in the fol-
lowing section.

2, e =+1;k2)k

t 8(t, +) =t g(v„~~t, +)+t))g(f&io, t, +),
where 4g(v„ t, +) is given by Eq. (31), and

&-(r'+ i a') c/K

g( ... t, +) =--'goS'R
(~„,.~)A

with

(41a)

[Ref. 24a] there is an additional contribution to
the change-signal gain, coming from the new res-
onant velocity v,, =x (p)/k„where x (p) is de-
fined in Eq. (A8). We then have

1 k, N„[I"-Kyo, +i(6'- «b)]+(i(yo2/yo)[(k, /k, )yo+y- I"+i(6 —6)]
I"+it&, ' k, N, «y»Q'-(k, /k, )'[I"-Kyo, +i(t),'- K&)]'

I

(41b)
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In this equation the following notation is used:

I +is =[(y +i6)'+S2]'t2, (

S = P [(k,/k2) g]'t',
42a)

42.b)

(42c)

(42d)

(42e)

A' =(k, —k, )/k, ,

y = (k, /k, )y„+A"y„,

I =-,'(r+y), ~ =-,'(t+6).
with & the probe frequency detuning [Eq. (34) with
e =+1]. The sign of the complex square root in
Eq. (42a) is determined by continuity from y+t6
at p=0. The physical interpretation of Eq. (41)
is not as simple as that of Eq. (31), and will be
elaborated on in the following sections. As shown
below, the contribution from the &» group arises
from Raman-type processes. {For small P, v» is
determined by the resonance condition 1.» =0.)
This is the reason why this contribution does not
vanish even if the 0-2 transition is transparent
to the saturating field (N» = 0, N» & 0). For high
intensities we shall see that this contribution ex-
hibits dynamic Stark splitting ["Autler-Townes
effect'"']. Finally, note that 8 g(v», t, +) simpli-
fies considerably when there are no phase-changing
collisions [y;, =-,'(y; +y)] and

k2 =2k, , y =y, .
The quantity A, Eq. (4lb), then reduces to

1 1 N /N„
r'+ z~' —,'~, + i~ (43)

and

t~l'(U2~ t~ &) d6(&) =-8'0
02k, y, N„

(44)

bg{v», t, +) d6 =0 .

We thus obtain the statement of the equal-area
property,

C. General features of the probe field gain

l. Equal-area property

A very interesting feature of the gain curves is
that the area under the forward change signal is
equal to that under the backward change signal at
any time during the decay. Thus, it can be readily
shown by contour integration of Eqs. (31) and (|41)
that

decay of the change signals follows from a gen-
eral result presented in Ref. 26. According to this
result, the time behavior of the frequency-inte-
grated gain should follow the decay of (o'0, (t)), the
velocity-integrated population of level 0. It is
easily seen from Eqs. (17b) and (21b) that

2

{OM(t)) =n0+ „N„e "o' .
2y0

Thus, using Eq. (44) we can write Eq. (45) in the
form

(46)

in agreement with the general result. " It also
follows from this result that the net area under
the hg(8», t, c) change signal is always zero. Thus,
this quantity is either identically zero, as in the
& = —1 case, or it exhibits sign changes as the de-
tuning is varied, as in the & =+1 case.

Finally, it should be mentioned that these re-
sults hold for any particular velocity group, as
can be seen from the frequency integration os Eqs.
(24) and (26), which leads to a relation similar to
Eq. (46). Thus, Eq. (46) is not restricted to the
fully Doppler-broadened limit. It holds for a
velocity distribution of arbitrary width, including
the case of complete homogeneous broadening

[ G(v) sharp].
The equal-area property will be made use of

below in analyzing the frequency behavior of the
change-signal curves.

2. Independent-field approximation (IFA)

The independent-field approximation (sometimes
referred to as the rate-equation approximation) as-
sumes that E, and E, interact independently with
their respective transitions. The effects of Raman-
type processes are neglected, and so coupling only
occurs through saturation of the level populations.
This limit can be obtained easily from Eqs. (31)
and (41) by taking the limit y»-~. As can be seen
from Eqs. (3), this has the effect of completely
destroying the influence of Baman-type processes,
In the limit hg(v», t, +) vanishes and one obtains

ki P' N20~~PA('*')= g' 2k 'qN2 ~0%' XO

2

&Re 0
ys- y, + i6(e)

6gt, + d5+ = b,gt, —d6- (45)
t e got e f/~ + 'f6(6 ) ]0

- y0 ys+t&(~)
(47)

The equal area property of the steady-state change
signals (i.e. , at t =0) has been discussed before 22

The fact that the areas remain equal during the

Therefore, in the IFA there is no directional
anisotropy and forward and backward change sig-

,nals are the same. For weak saturation the, change
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signals in the IFA limit are identical to that of the
e = —1 case [see Eq. (53), below] . However, for
P»y the saturation behavior of the IFA result dif-
fers from that of the c = -1 case. This is readily
apparent in the case where there are no dephasing
collisions, Eq. (38), since the factor (ys+i6) ' ap-
pears in the second term in square brackets in
Eq. (47} instead of —,'(I+ Q)/ [y(-)+ i5(-}]. Thus,
for t «y~ ' the IFA predicts Lorentzian forward
and backward change signals of width y~ rather

than y(e). However, for y, ' & t ~ye ', when the
initial polarization has decayed away, both for-
ward and backward change signals evolve towards
the IFA value (see discussion in Sec. V A).

IV. FEATURES OF THE WEAK FIELD RESPONSE

When the saturating field is not intense (P«y, &),
the results can be simplified by expanding Eqs. (31)
and (41) in orders of P/y. At the second order we
have

P' N„exp(-y, t) —exp( —[y os+ R(&)]t]

and

exp f —[yo~+ i5(&)] t)
y'„+ —,

'
y, (1+e) + i5(e)

[yoe + i& e [y'„+i& e

k, P', 1 N,,/N„exp[- (y+ i&)t/~]
y y+z y„—Ky„+z y+z

(48)

(49)

In these equations y~ and y'„are the values taken
by ys and y„ for P=0,

ys =y„+ (k, /k, )y„,
yo =y,~+ [ (k, —ek2)/k, ]y„.

In obtaining Eq. (49), note that for P/y«1,
r+g =r +z~ =y+z~ .

(50)

(51)

(52)

A. Counter-propagating waves

When the saturating and probe fields are propa-
gating antiparallel to each other (e =-1), 4g has a
simple form. The term in brackets in Eq. (48),
which determines the line shape of the change sig-
nal, is equal to

$(-) = exp(- y, t) —exp( —[yos+ i5(-)] t}
y; y. + f5(--)

III B 1, this term is induced by the decaying popu-
lation of level 0. Its linewidth is narrower than
that of the steady-state contribution because this
term arises from a contribution to ho,',", driven
by a decaying population transient [ cf. Eq. (25)],
thus causing narrowing. The narrowing of the
g(-) line shape in the time decay of 'the e = —1
change signal can be seen in Fig. 4(a}.

If y, ~y~ the decaying change signal evolves in an
entirely different way. 'The e ~0' contribution de-
cays rapidly, leaving the e ~3' contributions„which
oscillate at frequency &(-). These terms are. as-
sociated with free decay of the initial polarization.
As explained earlier, the emitted radiation, which
decays at the natural frequency of the prepared
velocity group, (d, + k,v„beats with the probe field

The time-varying gain is proportional to the real
part of f(-). A first remarkable result is that this
expression is independent of y». This is related
to the fact that for i =-1 the coupling of 0'y2 with

oo, cancels after velocity integration. When the
two waves have opposite propagation directions,
the Haman-type processes, responsible for the
creation of the a» coherence, have a strong vel-
ocity dependence. When integrated over velocity
their net effect vanishes.

At t =0, Re((-) is a Lorentzian of width yoe. If
y~&y, then the e "a' terms will decay away in a
time -1/yos leaving only the e "o' contribution, a
Lorentzian of width y~-y, . As explained in Sec.

FIG. 4. Backward (a) and forward (b) change signals
for weak saturation and no phase-changing collisions.
The parameters are k&=k» N&p=Ngp pg&=p and p
=O.ly. Time delays: t&

——0, t2 ——0.5/j', ts=l/y, and
t4= 2/V.
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B. Co-propagating waves

FIQ. 5. Backward change signal for weak saturation
and yo & y . The parameters are k

&
= ~k» go= y,0 1

y &-—y&
——

&& y (no phase-changing collisions), P= 0.001 y.
Time delays: t~=0, t2=&/p, t3 2/'3/ and ~4 4/p.

I

For co-propagating fields the effect of Haman-
type processes becomes important The term in
brackets in Eq. (48) is equal to

)
exp( —y, t)
y~ —yp+ i6

yo(y01 y» y» y0) xp[-(r& + 6)f] . (55)
(W', —W. + I~)(W', + f6)(~'„+I&)

The transient evolution of the gain line shape for
k, ~ k, is proportional to Re/(+). As can be seen,
Eq. (55) is a sensitive function of the presence of
phase- changing collisions (see discussion below).
When they are absent, y„+'y» =y»+yo [cf.discus-
sion following Eq. (6)] and $(+) reduces to

e-"o'/(yos-y, +i6) . (56)

to produce a gain component at'6(-). This type of
beatnote is a characteristic feature of free-induc-
tion decay. Its counterpart in the frequency do-
main (at a fixed delay time) is a narrowing of the
change-signal line shape accompanied by inter-
ference fringes. For example, the second term
of Eq. (53) gives a line-shape contribution of the
form

yso cos5t —6 sin6t
( 0)2 2 exp(-'Ys t (54)

This expression behaves like a Lorentzian for
f« I/ys, but for longer time delays it narrows
and develops fringes of width 6 = w/t. This nar-
rowing occurs because, by observing change sig-
nals at delay times a(@os) ' one is selecting
molecules whose lifetimes are longer than the
average, and whose linewidths are corresponding-
ly narrower. Therefore, this method cap be used
to produce change signals much. narrower than the
natural widths, although in practice extreme line
narrowing is limited by the intensity reduction
occurring because of the decaying exponential
factor e ~a'. Line shapes having similar physical
origins have been exploited by. Ramsey" in mag-
netic resonance experiments. Recently there have
been several observations of this effect in the opti-
cal region. " The same type of line shape has been
observed in time-delayed level crossing experi-
ments. "

The actual line shape of Eq. (53) is composed of
two such contributions, each of which exhibits
fringes. It is plotted in Fig. 5 for y~ =0.825yo,
which corresponds to the case k, = —,'k, and y, =y,
= —'y, [cf. Eq. (50)]. The observation of narrow
resonances of this type opens. interesting possibili-
ties.

Thus, the contribution arising from the decay of
the initial polarization completely cancels and the
gain line shape decays as a simple exponential.
The change signal remains Lorentzian throughout
the decay, and Ramsey-type fringes are absent
[Fig. 4(b)]. Note that in Eq. (56) the decay rate is
completely governed by population relaxation and
is independent of Doppler dephasing, in contrast
to ordinary two-level free-induction decay. ' By
comparing Figs. 4(a) and 4(b) it can be seen that
the areas of forward and backward change signals
are equal at any given value of t, as expected.

For k, &k, there is an additional contribution to
the change signal [cf. Eqs. (40) and (49)], entirely
due to Raman-type processes. Indeed, when k,

ky the Raman- type processes are velocity depen-
dent and can only occur for molecules in the vga

velocity group, defined by the Raman resonance
condition L»(v) =0

v~» =(0, —0, —v, + ~, +iy~, )/(k, —k, ) . (57)

(y~ f5)-2e- (y+ &6)t / K (58)

The unusual time dependence of this expression
can be understood by noting that the initial polar-

The real part of Eq. (57) is the statement of energy
conservation for the Raman-type process in which
a molecule undergoes a transition between levels 2
and 1 by emitting a photon 0, and absorbing a pho-

'ton 0, . The imaginary part of e» gives the width
of the resonant velocity group. The decay of the
vo» velocity group after f =0 leads to the bg(n,'„f,+)
contribution. Since this contribution is associated
with Raman-type processes, it can occur even if
the molecular medium is transparent to the satu-
rating field (N2o =0). In this case the contribution
given by Eq. (55) vanishes and the net change sig-
nal is proportional to the real part of
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FIG. 6. Forward change signal. , N&p contribution, for
weak saturation. The parameters are k f 2 k2 pgj
and P/y=0. 1. Time delays: t&

——0, t2 ——0.5/y, and t3
= I/y

ization undergoes free deca.y according to exp[i(&u,
+ k,e,', )t ] exp(- y»t). The resulting reradiated field
then beats with E, to produce the time behavior of

Eq. (58).
The time evolution of this change signal is

plotted in Fig. 6. As can be seen, the change-
signal area remains zero throughout the decay.
Also note the development of Ramsey-type fringes
as the decay progresses. The peculiar shape of
this change signal has bien experimentally veri-
fied by Hansch et al."in the steady-state regime.

0 y

(b)

FIG. 7. Backward (a) and forward (b) change signals
for strong phase-changing collisions and weak satura-
tion. The parameters are k t =k 2 &p = &2 = &t2 = & &p
= 'j/p2= 5)/, and P/y= 0 1. Time delays: t& = 0, t2= 0.5/gpss&

1/yog t4 2/yo$ ~ and t5= 4/ypg

C. Influence of phase-changing collisions

Phase-changing collisions strongly affect both
the line shape and time evolution of the change
signals. In the presence of phase-changing colli-
sions the forward change signal is no longer given
by the simple expression (56) and Doppler de-
phasing effects appear [see Eq. (55)]. In contrast,
strong phase-interrupting collisions (yoa»y, )
actually simplify the backward change signal, since
Eq. (53) then reduces to e 'o'(y +ioa6) '. Thus, in
this limit the evolution of the change signal is com-
pletely determined by population decay processes.
The contribution arising from the decaying polar-
ization is negligible and Ramsey-type fringes are
absent.

A case of special interest occurs when the tran-
sition frequencies are close (&u, = &u, ) and the decay
of the optical polarization is rapid compared to the
other decay rates (fast T, processes):

r...y., »y. , y,.
In many atomic and molecular transitions these
conditions can be achieved by using a linearly
polarized saturating field and a probe field having
a different polarization. In this case levels 1 and
2 are two magnetic sublevels of the same energy
level and y» represents the relaxation rate of the
coherence between them ("Zeeman coherence"),

which is typically of the same order of magnitude
as y„ the population decay ra,te, but much smaller
than the decay rate of the induced optical polariza-
tion. When condition (59) is fulfilled $(c) can be
approximated by [cf. Eqs. (53) and (55)]

g(q
exp(-y, t) I+a y, exp(-yet)
ys+i5(e) 2 ya[y„+i&(e)]

' (60)

The first term of Eq. (60) describes a broad reso-
nance, width y„+r», induced by the population
saturation of level 0, which decays at character-
istic rate y, . This is the only contribution to the
backward decay [Fig. 7(a)] . However, in the for-
ward direction there is an additional contribution
[second term of Eq. (60)] in the form of a narrow
resonance of width y,„induced by Haman-type
processes [Fig. 7(b)] . This narrow contribution
decays at a much faster rate, y»+y», determined
by the optical-polarization decay rate.

Steady-state (i.e., t =0) forward change signals
exhibiting both broad and narrow features have
been observed recently. " This type of line shape
is very similar to the Zeeman-tuned saturation
resonances observed in the intensity of the fluores-
cence emitted from a transition with degenerate
magnetic sublevels resonating with a single-mode
laser. " Such resonances, observed as a function
of Zeeman tuning, consist of a narrow component,
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associated with Zeeman coherence ("Hanle effect"),
superimposed on a broader "population effect"
resonance. These features are the counterparts of
the Raman-. type and population-saturation features,
respectively, of Eq. (60), c =+1."

The study of the transient behavior of the change
signals in such a system provides a unique way of
distinguishing population saturation and Raman-type
processes, owing to their very different decay con-
stants. A remarkable consequence of Eq. (60) is
that after a time —(y»+y02) ' the narrow contribu-
tion decays away, and the forward change signal is
reduced to a broad resonance identical to the back-
ward signal. This type of behavior, in which a
broad resonance decays slowly and a narrow
resonance rapidly, is different from the usual
frequency-time domain behavior of linear
systems. It is a good example of the fact that
in three-level free-decay frequency and time
behavior are not connected in a simple way.

The results of recent experiments in which such
behavior is observed in NH, w'ill be reported else-
where. "

I

V. SATURATION EFFECTS

%hen the intensity of the saturating field is large
enough [saturation parameter s «1, Eq. (19)], new
features appear including power broadening of the
resonances, power dephasing of the decay rates
and, in some cases, a new type of oscillatory be-
havior in the decaying change signals.

A. Power broadening and power dephasing

When k, «ek, (either counter-propagating waves
or co-propagating waves with k, &k,), the signal
is given by b,g(v„t, &), Eq. (31). As the intensity
of the saturating field increases two features are
noteworthy: (i) The change signals become power
broadened and their amplitudes saturate; (ii) of
the two decay rates, the one associated with popu-
lation relaxation (y, ) remains. unchanged, while
the one associated with polarization decay (ys) in-
creases. This increase is due to power broadening
of the velocity group excited during the preparative
stage. The growing range of interacting molecular
velocities increases the velocity (",Doppler" ) de-
phasing contribution to the relaxation rate. For
large saturating intensities y~ can exceed y, by an
order of magnitude, and the decaying change signal
evolves in two distinct stages. For the sake of
simplicity let us consider the case in which phase-
changing collisions are absent, Eq (38).

(i) For t«1/ys the change signal is a Lorentzian
of width y(e) [Eq. (39)]. This signal exhibits the
well-known directional anisotropy between forward
(& =+1) and backward (& = —1) scattering [Figs.

with

pr-„/x„, )g,
1+(y, /y, )[1—&(k, /k, )]

y(e)+ i5(e) ' (6la)

y(&) = [ (k, /k, )yo, —&(yo/2)] Q . (61b)

Thus, the change-signal amplitude saturates and
its linewidth increases linearly with 8, .

(ii) In a time of order of ys' the e &4+ ""con-
tribution vanishes, and both forward and backward
signals are reduced to the same I.orentzian line
shape,

with

1+ (y, /y, ) y, —y. + i6(e)

(62a.)

y, -y, =(u, /u, )y„q. (62b)

(This result is valid even if phase-changing colli-
sions occur. ) As can be seen by comparing Eqs.
(61) and (62), as the backward signal decays from
t =0 its amplitude increases and its linewidth nar-
rows, while the forward signal decreases and
broadens! This behavior is clearly seen in Figs.
8(a), 8(b), and 9, where the time decay of forward

(b)

FIG. 8. Backward (a) and forward (b) change signals
for strong saturation. The parameters are k f k2,
Ngp=N2p p' = p and p/')/= 10. Time delays: tg = 0, 't2

=0.2/q, t3=0.5/y, and t4=1/q.

8(a) and 8(b)]. However, the areas of forward and
backward change signals are equal. For high in-tensitiess

(s» 1) Q =(s)' ~' = P/(y, y, )' ~', and we have
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0 I/y

(a)

1/y

FIG. 9. Time decay of forward (a) and backward (b)
change signals at line center (6= 0). The parameters
are the same as in Fig. 8.

and backward change signals is plotted at line
center.

This behavior occurs because in the steady-
state the contribution from Raman-type processes
broadens the backward change. signal and narrows
the forward one, as compared to the population
saturation value. When the initial polarization
(which contains the Raman contribution) has de-
cayed away, in a time of order y~, this influence
is removed and the linewidths change. Furthermore,
it follows from the equal- area property that rapid
line narrowing automatically implies an increase
in amplitude, and. vice versa. Any process de-
stroying the phase of the'induced polarization—
such as phase-changing collisions, Doppler de-
phasing or power dephasing —increases y~ and
thus accelerates the decay of the initial polariza-
tion. The remaining signal, due to population
saturation, then decays away slowly with a time
constant y, '.

Narrowing of this type has been reported by
Shahin and Hansch" in a time-delayed Lamb-dip
experiment using a short-pulse dye laser. It
should be noted that pulsed lasers are not ideal
for such studies. The present method has the
advantage that the system can be prepared in a
well-defined steady state, and the weak cw field
can precisely probe its decay.

Another interesting type of behavior can occur
in the backward change signal when the initial sat-
uration is large but k, «Q, (reduced Doppler de-
phasing), so that ya = y„+ (k, /Q, )y»Q is of the same
order a,s y, . However, the initial linewidth y(-)
= 2y, Q is still power broadened [Eq. (39)]. In this
case the decay rates of the initial polarization and
the population are comparable, . givirig rise to nar-
rowing at line center and Ramsey-type fringes at
the wings. An example is given in Fig. 10. As
can be seen, the central. portion of the line nar-

I

0 5y
(b)

FIG. 10. Backward change signal for strong saturation
and k& «k2. The parameters are k&

——O.lk» y;;=y, and
p/y=10. Time delays: t&-—0, t2 ——0.5/y, t3=1/y, and
t4= 2/y.

rows from y(-) to ys, with a, corresponding in-
crease in amplitude, in a time of order y~', and
narrow fringes appear at the wings of the reson-
ance, in a,ccord with Eq. (36).

, B. Dynamical Stark splitting and oscillatory decay

When the two e.m. fields are co-propagating and

02 is larger than k„a new steady-state feature
appears at high saturating intensities: the reson-
ance splits symmetrically into two distinct peaks. "
As will be, seen in the following, the decay of this
signal exhibits a novel type of oscillatory behavior;
The steady-state splitting has been observed re-
cently by Toschek and co-workers. " Its line-
shape features have been analyzed by Skribano-
witz et a/. ,

"particularly in the case of transitions
with level degeneracy.

This type of behavior comes from the &g(v»,
t, +) contribution, Eq. (41), which increases as
P'~' at high intensities and thus predominates over
the &g(v„ t, +) contribution, whose amplitude sa.t-
urates. In the vicinity of the peaks A, Eq. (41b),
is a slowly varying function proportional to iS, and
so for P~ y;;,

(63)

I si (&n't v/)+ 4 cos(&'t/v)
p2 Q2

(64)

'The resonant behavior of the signal occurs through
the denomina. tor of Eq. (64). Using Eq. (42a, ) one
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0 tOy

t= 0
Qf-Qi

I

0 10y

n ~1=O.OS/y

t = O.t/y

t =0.05/y
FIG. 11. Forward change

signals for strong satura-
tion, exhibiting dynamic
Stark splitting. (a) N2p
contribution; (b) @flap con-
tribution. The para-
meters are A ~

=
~ k» y;;

=y, and p= 104'. The
time delays are as shown.

t = 0.2/y

n

t = 0.2/y

(o) (b)

can show that"

1 1 1 1
I'+ ~' (46S)"' y'+ (6 S)' y'+ (6+S)'

(66)

For S» Z this quantity undergoes a resonant en-
hancement around 6=+S (and a symmetrical one
'around 6 = -S):

(I'2+ g2) 1 (2S) 1[y2+ (6 S)2] 1/2 (66)

Also note that in this vicinity I' and 4, Eq. (42a),
can be approximated by

Sl/2{[(6 S)2+ y2]1/2 (6 S))1/2 (67)

and

Sl/2{[(6 S)2 y 2]1/2 + (6 S))1/2

S' ' [(6-S)'+y']' '+(6 —S)
$»(t )-

2
-.

(6 S),

(69)

This line shape is asymmetrical, the signal de-
creasing as

~

6 —S
~

'/' for S&S —6» y and as
~6 —S

~

'/' for 6 —S» y. The peak occurs at 6

=S+y/~. Its amplitude is proportional to S'/'

As seen in Eq. (64) the steady-state (t= 0) signal,
proportional to 4(I"+ &') ', exhibits two resonant
peaks separated by =2S. The line shape of the
5 =+S peak is given by

L,L12+ ,'P' = -(0, —V.-)(O, —V ), (70)

with v, the velocity-dependent center frequencies
of the two Stark peaks. For P» y, &,

v, (v) = &u, + /2, v+ —2'[&2 + (&'2+ P')'/'], (71)

with &2(v), the detuning of, the saturating field from

and its linewidth [full width at half maximum
(F13i/HM) J is approximately 7y "This.behavior is
illustrated in the t=0 plots of Fig. 11.

'The origin of this splitting lies in the high-fre-
quency Stark effect" or "dynamical Stark split-
ting, "which is caused by the mixing of the two
wave functions of the energy levels of a transition
saturated by a resonant e.m. field. In the optical
region this frequency splitting is velocity depen-
dent and is usually washed out by the Doppler ef-
fect. Thus, when averaged over a wide velocity
distribution the splitting is transformed into a
power broadening, which contributes to the line-
width of the resonance. " However, in the parti-
cular case considered here the velocity dependence
can be substantially reduced over a wide velocity
range, leading to the line shape splittings of Fig.
11.

'The frequency features of the Stark- splitting for
a particular velocity group are determined by the
resonant denominator L,L» 'P+' appearing in the
initial polarization &o,',"(0), Eq. (24). It can be writ-
ten in the form
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resonance,

+& —Q2 —(d2 —Ck2v . (72)

This resonant behavior is due to the coupling
between op] and a„, as can be seen by determining
their eigenfrequencies from Eq. (3) in the limit
n -0. A solution of the form o ~ e'~' gives

As can be seen in Eq. (64), when the saturating
laser is terminated the resonance undergoes os-
cillations at frequency &'/z as it decays with time
constant I"'/K. In the vicinity of the resonance
[Eqs. (42e)]

(v8)

(~-ff,„)(X f.f,-,)= ,'P'-,

which has roots (for P» y, &)

(73}

(74)

where I' is given by Eq. (67), and

Ql~ ~$

'The number of oscillations is of the order of

(79)

k,v, = Q,"—co, + (O' -S')'~' (v5)

(The considerations are similar for k, 42&,.) For
6~ = Q, —Q,"

~

»S, v, varies linearly with Q„but
as ~6 approaches S the dependence is much weak-
er. In fact, near ~6~ =S the velocity groups v,
= v are essentially independent of Q, over an in-
terval &v=S/k, . The washout effect is thus di-
minished, since all of the velocity groups in this
interval can cont'ribute to the high-frequency Stark
resonance occurring at the corresponding value
of Q, . This value is determined by the condition
that the quantity O' —S' in Eq. (75) be close to zero,

(76)

which gives the center frequencies of the Stark-
split components [cf. Eq. (69)]. Note that because
of the velocity dependence the Stark components
are split by 2S rather than by 2P, as they would
be in the homogeneously broadened case."'" Also
note from (75) that the resonance condition cannot
be satisfied for any velocity group when Q, is in
the range

(77)

This lack of resonant molecules explains why in
this range of probe frequencies the molecular me-
dium is nearly transparent to the probe. Outside
this range there are always velocities satisfying
Q(v) = Q„and the interaction of the probe with the
molecular medium is nonvanishing. "

The corresponding normal modes of the optical
polarization I', oscillate at eigenfrequencies Q, (v)
=X,+Q, [see Eq. (2), p» equation]. Resonant en-
hancement occurs when Q(e) is Doppler shifted into
resonance with the probe frequency. Setting Q(v)
= Q„ i.e. , A. =O, Eq. (73) then reduces to (70)."

For k,'&ok, the velocity dependence of the term
in bra, ckets in Eq. (71) adds to the Doppler shift
k,v. However, for E =+1 and k, &k, the velocity de-
pendence of these two terms are opposite, leading
to a partial. cancellation of the velocity dependence
of v, . 'The resonant velocity groups contributing
to the Stark splitting may be obtained from the con-
dition Q, = v, (v). For the case k, = 2k, we have

~'/r™(S/7)"' (80)

is frequency dependent. This dependence is due to
the fact, explained earlier, that the range of in-
teracting velocities, and hence the Doppler-de-
phasing contribution to the decay, varies with Qy.
It can be seen in Eq. (81) that the decay is faster
on the inner sides of the resonance than on the
outer sides. Thus, the asymmetry of the peaks
is enhanced during the decay.

Figures ll(a) and 11(b) show the N» and N«
contributions, respectively. Notice that while
the N„curve is initially transparent in the region
between the Stark peaks (i.e. , ~6~ «S), the N„
curve exhibits small gain over a broad region.
The sign of this gain is opposite to that of the Stark
peaks, as it must be to maintain zero area. After
a short time delay (f -S ') the situation is reversed,
the N» curve exhibiting a broad central gain region
and the Ã» curve becoming transparent there.
Also note that the area of the N, p curve remains
zero throughout the decay, as it must.

The change-signal expression in this region
can be obtained by considering Eqs. (31) and (41)
in the limit

~
6

~

«S. For example, in the case
of no phase-changing collisions, k, =, 2k' and yp

Notice that this behavior is different from the well-
known Rabi oscillations observed in optical nuta-
tion transients, since a.fter t = 0 the saturating .fieM
is absent. 'The appearance of this new frequency
is due to the dynamic Stark effect, which causes
the resonant intera, ction between the molecules
and the probe field to Qe shifted from Qy to a new
value. When the saturating field is switched off,
the. v velocity group, prepared before t= 0, radi-
ates at its natural frequency ur, +k,v ." The re-
emitted field then beats with the probe field to give
a beat at Q, —&u, —k,u = &'/~. "

Some typical delayed line shapes are plotted in
Fig. 11. A noteworthy feature is the distortion
of the envelope of the decay curve, which enhances
the outer shoulders of the resonance as the delay
time increases. This effect occurs because the,
decay rate,

I"/K =.(~/2/c)([(6 —S)'+y']' ' (6 —S ))'~', (81)
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=y, [Eqs. (38) and (43)j one finds

(t ) e st gO 20 (e sk e&)'()t)N
2 N~o

(82)

dent population change induced by the probe field.
The second term, which describes the modification
of the 0-1 transition rate induced by the satura-
ting field, satisfies

which exhibits the features discussed above.
Finally, notice that whereas all contributions

associated with the decay of initial polarization
exhibit power dephasing for P» y&&, the contribu-
tions associated with population decay do not.
Therefore, for very long delays (t-y, ') the line-
splitting disappears. The r emaining broad A'„
cpntribution decays as e "0' (population effect) and
evolves similarly to the backward resonance (Sec.
V A).

VI. TIME-DELAYED-FLUORESCENCE CHANGE SIGNALS

'Three-level free-decay resonances can also be
observed by monitoring the side fluorescence orig-
inating from level 1 as the probe field is tuned
through the 0-1 transition. As explained in Sec.
IIB, the fluorescence intensity Iz is directly pro-
portional to (o»), the velocity-integrated popula-
tion of level 1 [Eq. (10)]. Thus, this type of ex-
periment directly measures the time evolution of
the level population changes induced by the probe
field. For a weak probe these occur in second
order in a. We will now calculate (o",, ') for a
saturating field of arbitrary P

A. Calculation of &ay]

In the second order in e, 0» is determined by
Eq. (16). The solution can be written in the form

o,",'(t) = .~'(y„-/y-, )(n„/
~
I,

~

') +o &', ) (t), (83)

where the first term describes the time-indepen-
I

(o„(t))= n, —&n, + &n, (t, (t), (85)

with &n, the broad Gaussian background population
change induced by the probe field for P= 0,

&n, = a'N„/2k, y, ,

and &n, (t, e) =(&o,(2, ') the population change signal.
One way of obtaining &n, would be to solve Eq.

(84) and then integrate the resulting expression
over the velocity distribution. A simpler approach
is to integrate Eq. (84) over velocity, thus obtain-
ing an expression relating &n1 to ~g:

&n, + y, &n, = -y, &n, &g(t, e)/g, , (86a)

where Eq. (28b) has been used. This equation has
the solution

&n, (t, e) = — ' &g (0, c)e "~'
go

t
e eee(t', e)e " "", )e.e)(()6e)

0

'Thus the expression for the population change sig-
nal follows directly from that of the gain change
signal, without the necessity of doing additional
velocity integrals. As could be expected, the tran-
sient signal exhibits a new time constant y, ' related
to the relaxation of the population of level 1.

(84)

where &o,",)(t) is given by Eq. (26). The resulting
expression for (o»(t)), complete up to order a',
can then be written in the form

In this case Eq. (31) is used in (86b) to obtain

2&2 yo N|o ' '- IaL~+-.~ yi Ia-y|
er jt eLBt erzt erot

LB —yo LB —y, yo —y,
(87)

In Eq. (87) the complex Lorentzian denominators
LB and L„have been introduced to simplify the
form of the expression,

(88)I,,=y, +t6(e), I,„=y„+f6(e)
with ys a,nd y„given by Eqs. (36) and (37), respec-
tively.

2- k& -ek2 (0

In this case Eq. (41), used in (86b), leads to

&n, (t, +) = &n, (v„ t, +) + &n, (v„, t, +),

with

-(~'++')t/~ -rzt-
An, (v„, t, (.) = ', t),n~p2 R -y, e —e

' '
e

(I' (-jn.)A (I" —Ky + jA')/g y
(90)
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B. %leak field response

1. k) &ek2

The response for P«Z,
&

is obtained by setting
P = 0 and Q = 1 in Eq. (87), and replacing Ls and L„
by their unsaturated values,

La = ye+ i5(e), L'„= r'N+i6(&), (91)

with yos and y'„defined as in Eqs. (50) and (51).
For counter-propagating waves, &n, is indepen-

dent of L'„, indicating the cancellation of Raman-

type processes. For E = —1 the term in brackets
in Eq. (87) becomes

p

1 ~-rIt ~ ryt ~-. Lgt
&( )= o

——+ o
y,

0
1 + ryt + Lpt ~ r~t + 'rpt

o
——

o
— — — (92)

yy yp yy

In the co-propagating ease, &n, is given by Eq.
(87) with e =+1. This expression dramatically
simplifies when phase-changing collisions are
absent, in analogy with the &g(t, +) change signal
[see Eq. (55)]. We then have

The notation used in Eq. (90) is the same as in
Eqs. (41) and (42).

As can be seen in Eqs. (87) and (89), the steady-
state line-shape behavior of &n, (t, a) is identical
to that of &g (t, e). [This follows from Eq. (86a)
with &n, = 0. See also the discussion following Eq.
(16).] However, the time-delayed line shapes are
not the same. In the following, the &F7, (t, e) change
signals are analyzed in the limits of weak and
strong saturation of E,.

2. kl (ek'

For co-propagating waves there is an additional
contribution to &n, for k, &k„which may be ob-
tained from Eq. (90) using Eq. (52). Just as in the
&g change signal, this term arises from Raman-
type transitions, which can 1.ead to a population
buildup in level. 1. Thus, it can occur even when
there is complete transparency at the saturating
field (N»-—0). In this case the 4n, change signal
is proportional to the real part of

-(r+$5)t/~
(r+i ~)(y — ~y, +i&) y+i6 (96)

to the narrow resonance of &g change signal, which
decays rapidly at the rate y~, the narrow contribu-
tion of &n, decays at the much slower rate y, . 'This

, difference occurs because the narrow contribution
to the &n,

'

change signal is caused by the buildup
of population in level 1 due to the completion of
2-1 and 0-1 Raman-type transitions. " Although
the information about these processes is contained
in both the initial polarization. [o,',"(0)]and popula-
tion [o",,'(0)], the latter contribution is dominant
when the polarization relaxation rate is rapid.
Thus, the narrow &n, component decays at the
population decay rate. This implies that the back-
ward-forward asymmetry cannot be eliminated dur-
ing the decay of the fluorescence change signal,
in contrast to the behavior of the probe-field de-
cay signal. . Also note that the fluorescence change
signal is not a simple exponential, and depends
on the population relaxation rates of both levels
0 and 1-.

L~ =LN+y, (98)

and so the quantity in brackets in Eq. (87) reduces
to

g(+) 0 11 y er, t y &-rp

y. -y, (94)

As in the Ag(t, +) change signal, the influence of
Doppler dephasing is absent, but the decay of the
&r7, (t, +) change signal is governed by y„as well
as by y, . For the special case y, =y, the quantity
in parentheses in Eq. (94) reduces to (1+y,t)e "&'.

Next, consider the case of strong phase-chang-
ing collisions and close transition frequencies
(&u, = &o,), treated for &g in Sec. 1V C. In this limit,

y +-r&t y +rpt 1+Z y +r&t
&g(&)= '- 'o + — 'o o

(yo &,)I s 2
(95)

Just as in the hg change signals, Eq. (60), the first
term of Eq. (95) describes a broad population-sat-
uration resonance of width y~=y„+y„, while the
second term is a narrow resonance, width y»,
induced by Raman-type processes. But in contrast

As 'compared to the corresponding &g change sig-
nal, Eq. (58), Eq. (96) contains an additional term
associated with the o,",'(0) contribution, which de-
cays at a rate y, . Thus, although the two change
signals are identical at E=O, the fringes occurring
in the time-delayed &g change signals are less
pronounced in the corresponding ~n, signals.

C. . Saturation effects

At high saturation intensities the decay rate of
the initial polarization is very large due to power
dephasing. Thus, all of the terms in Eqs. (87) and

(90) associated with the initial polarization are di-
minished since, as compared to the corresponding
&g expressions, each term has an extra factor in
the denominator proportional to the polarization
decay rate. " Accordingly, for P» Z,&

the time
evolution of the &n, change signals is completely
determined by the terms decaying at the popula-
tion relaxation rates. Equations (87) and (90) thus
reduce to
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e-r1t e-ta t
+

B 4 ~1

e,(e„, t, ) = -'4e,S' Re((& .-e)A)e
" '.

r+~~ A
(98)

VII. CONCLUSION

This paper has presented a theoretical analysis
of the change signals induced by the free-induction
decay of a Doppler-broadened molecular transi-
tion, observed as a weak probe field is tuned
through a coupled transition. The evolving line
shapes can be studied either by monitoring the
gain at the coupled transition or by studying the
side fluorescence. As has been shown, the time-
delayed change signals manifest a rich range of
features including forward-backward line-shape
asymmetries, Doppler-dephasing effects, Ramsey-
type fringes, power broadening and dephasing, and
dynamical Stark splittings exhibiting oscillatory
decay. It was also shown that the time-delayed
line shapes provide a unique way of distinguishing
population saturation effects from Haman-type pro-
cesses, owing to their different decay times.

The experimental observation of time-delayed
change signals of the type discussed here requires
that the saturating field be terminated in a time
7 which is small compared to the characteristic
decay times of the optical polarization,

y «y-~ P"~ (sg)

(conditions for validity of the sudden approxima-
tion). Otherwise, the initially prepared polariza-
tion cannot freely decay, and instead will tend to
follow the time behavior of the saturating field.
If, however, «y,.', the change-signal contribution
associated with the saturated level populations
mill still decay at its characteristic rate.

'The disappearance of the contribution associated
with the initial polarization is responsible for the
following differences in the behavior of the &@1

change signal, as compared to that of the ~g .change
signal dis'cussed in Sec. V: (i) There are no rapid-
ly decaying terms. (ii) The forward-backward
asymmetry does not decrease as the &n, change
signals decay. (iii) In the &n, (a», t, +) change sig-
nal, which gives rise to the dynamical Stark split-
ting, the Stark peaks decay slowly. The line-
shape deformation and oscillatory behavior char-
acteristic of the &g(v», t, +) change signal are ab-
sent.

J&, f
&u, u. (loo)

in this limit, certain simplif ications occur. For ex-
ample, the velocity spread of the molecules can be
ignored in the single-quantum resonant denominators
(&, and I.,), since ( k,.v(~ (&, ( for all velocities. Fur-
thermore, for a given value of P the transitionproba-
bilities for both single- and double-quantum pro-
cesses are reduced. However, the double-quantum
transitions (i.e., Raman-type processes involving
the exchange of tzvo quanta with the radiation
fields" ) predominate, so the buildup of population
in the intermediate state is small. Thus, unlike
the ease of a resonant intermediate state, there is
no interfereence between single- and double-quan-
tum events, and the form of the change signals is
simplified. " However, when the intermediate
state is nonresonant an additional condition must be
satisfied in order for the sudden approximation-to
hold,

(lol)

Otherwise, the induced polarization will tend to
respond adiabatically to the saturating field. In
practice, Eqs. (100) and (101) are difficult to ful-
fill simultaneously, since they require w «(ku)
Homever, the regime in which

~
o, j-'«y «y-, &

is readily acheivable. In this case the contribution
to the change signal coming from the initially pre-
pared polarization will adiabatically follow the
saturating field, ' and so will vanish when E,- 0,
but the population contribution persists and wiLL

decay at its characteristic rate.
Several recent publications haVe investigated the

transient behavior of cascade and folded three-
level systems when tQe two-quantum (or Raman)
transition is resonant or near-resonant and condi-
tion (102) is satisfied. Theoretical studies"~9
have. shomn that in this limit the equations of motion
simplify and reduce to those of an effective two-
level system, so that the time evolution can be de-
scribed by a vector model in which a tmo-photon
Bloch vector precesses about an effective field.
Experiments"~'" have verified the different

In the present study the applied fields have been
assumed to fall within the Doppler profiles of their
respective transitions:

/~, /&u, u,

with 6& = 0& —w& the detuning of E& from the 0-j
molecular center frequency. Thus, the Baman-
type processes occur in the presence of a resonant
intermediate state. However, the two-photon
(Raman) condition can be satisfied even if the in-
termediate state is nonresonant, i.e., for .
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time behavior expected from the double-quantum
(Raman) and single-quantum ("stepwise") pro-
cesses. Their different frequency behavior has
also been studied experimentally. "

In summary, when the intermediate state is
nonresonant and the adiabatic approximation holds
the theoretical description simplifies, resulting
in relatively simple line shapes. Double-quantum
transitions predominate over stepwise processes
and all information about the relaxation of the
initially prepared polarization is lost. There is no
interplay between population-saturation effects and
Haman-type processes. Thus, the backward
change signal is negligible compared to the for-
ward signal. " Qn the other hand, when the inter-
mediate state is resonant the line shapes, which
are more complicated, give rise to a richer range
of effects, including detailed information about the
polarization decay and other relaxation processes.

The fundamental premise of this paper, the time-
delayed probing of a resonance line shape, is a
basic one in quantum mechanics. The idea of pre-
paring a system in a given initial state and then
probing it at a later time goes directly to the pro-
cess of quantum measurement. Thus, time-de-
layed laser saturation spectroscopy can provide a
direct analysis of the dynamics of atomic and
molecular systems —scattering and diffusion me-
chanisms, thermalization in the gaseous phase by
velocity-changing collisions and radiative trans-
fer, laser interactions, and M-changing collisions
in degenerate systems"'" can all be studied. The
extension to four-level systems, where pump and

probe transitions have no common level, should
lead to similar information about inelastic colli-

sions�.
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APPENDIX ' POLES OF (L ~
L ) 2

+ g P )

(x —S,+ iy„)(xx+ &„—iy|2)+ —,'8' = 0,
where

(A2)

5,.= 0]—co],

y = (Ek2 —k, )/k, ,

The solution of Eq. (A2) is straightforward,

(A3)

(A4)

(A5)

1

(g)
~ s ).2 i + ~12

—2 p2 1/2-
5, + "-i yol+ -"- —— . (A6)

X X X

The sign of the complex square root is determined
by the condition

x, (S 0)=-&, ir„-, x 0-0) =(-s„+i~„)/x, (Av)

as required by Eq. (A2). Thus, for S-0 the quan-
tity in curly brackets must approach

(~, + s„/x) -i(w„+w„/x)
The sign of Im(x) gives the position of the cor-

responding pole in the complex k,v plane. Im[x, (0)]
is always negative, whereas the sign of Im[x (0)]
is the same as that of y. Since x(j3) is determined
by continuity from x(0), Im(x), a continuous func-
tion of P, can change sign only if it vanishes for a
given value of S. It is easily shown that Eq. (A2)
cannot have a real solution, since ypy and y» are
always positive. Thus Im[x, (P)] is always negative
and Im[x (9)] has the sign of X.

As explained in Sec. III 8 of the text, only the
poles of x lying in the upper half of the co~plex
plane can contribute in the velocity integrations.
Thus, the x, pole never contributes, and the x
pole can.contribute only for X&0(e =+ I,k, &k,) 24'"

Using the definitions of 6, y and v introduced in the
text, this pole can then be written in the form

1 k'~

2 2

(Al)

where I, and I.» are given by Eqs. (4). Equation
(Al) can be written in the form

This appendix analyzes the solutions of the equa-
tion +i[(y+l)))'+8']"'I; (A8)
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