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Charge transfer in proton-hydrogen collisions
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A nonperturbative approach to the problem of charge transfer in proton-hydrogen collisions is developed in

which the wave function corresponding to the outgoing scattered wave in the incident channel is evaluated by
solving the Schrodinger equation it satisfies. The present formulation has the advantage of bringing into the
theory not only the effects that are due to the Coulomb distortions but also those due to the polarization of
the target atom. Our calculation of the capture cross section {1s~1s), which has been done with neglect of
the polarization effect, agrees well with experiment in the low-energy region betweem 8 and 100 keV. A new

interesting feature of our theory is that the cross section for capture shows a maximum at an energy of 9
keV. For proton energies below this value the cross section starts decreasing, finally approaching zero. For
higher energies it starts falling with increasing energy in the usual way.

I. INTRODUCTION

Theoretical study of the charge-transfer reac-
tion" in proton-hydrogen collisions has been of
great interest to yhysicists for a long time. In
spite of its long history of development, the prob-
lem is still not completely settled. In the study, of
this problem the methods that have been most used
are confined to the Born approximation, "' the
impulse approximation, and other equivalent first-
order approximations. Recently there also have
been attempts to apply higher-order approximations
to investigate this problem. .

In one of the earliest works on rearrangement
collisions. , Oppenheimer' showed that the scalar
product of the initi. al and the final wave functions
was small for fast collisions, so that they could
be considered to be approximately orthogonal.
Following Oppenheimer, Brinkman and Kramers
(BK)' calculated the capture cross section for pro-
tons passing through hydrogen by using the Born.
approximation and neglecting the proton-proton in-
teraction term. They found that the cross section
was four times the experimental result for proton
energies around 100 keV and even larger for lower
energies. The calculations by Jackson and Schiff
(JS) and also by Bates and Dalgarno(BD), ' which
included the proton-proton interaction term and
used the Born approximation, showed that their re-
sults agreed with the experimental results for pro-
ton energies above 25 keV at which e'/Rv —I, v
being the velocity of the incident proton. It was
pointed out by Wick that by an appropriate canoni-
cal transformation the proton-proton tex'm could
be removed from the total Hamiltonian in the limit
M/m-~. In view of Wick's remark it looks sur-
prising that the JS result agreed well with experi-.
ment. Also it is not easy to see why the BK re-
sult should not agree with experiment. On the other

hand, it was shown by Mapleton' that the inclusion
of the internuclear potenti. al had a very consider-
able effect, and it led to a significant reduction of
the cross sections at all energies.

To improve the understanding of this process,
many approaches have been adopted. We compare .

a few of those here in brief to create a perspective.
Using the distorted-wave method for rearrangement
collisions, ' Bassel and Gerjuoy" (BG) eliminated
the proton-proton interaction term from the pertur-
bation Hamiltonian. Their cross section for elec-
tron capture was in good agreement with experi-
ment between 35 and 100 keV. Bates," in an
earlier attempt to overcome the defects associated
with the nonorthogonality of the initial and final
wave functions in the case of charge-transfer re-
actions, had used an effective potential instead of
any post form of the interaction potential for com-
puting the cross section. The form of the effective
potential was found to be identical with the one ob-
tained later on by BG except for a multiplicative
factor. The methods of Bates and of BQ were
equivalent over a wide range of energies. Bates'
method also showed that the role of the internuclear
potential was negligible. The calculation of the
cross section for charge transfer using the effec-
tive potential of Bates was very difficult. However,
McCarroll" evaluated it numerically with the help
of a computer. In doing this he did not actually use
the formula derived from the wave-mechanical
treatment. Rather, he used an equiva'ient formula,
obtained by Bates" using the coupled-state impact-
parameter approach in the two-state approximation.
The results of Mccarroll" agreed with experiment
at very low energies only, i.e. , around 2 keV.
Later on the calculation of McElroy, "which includ-
ed captures into the excited states 2s and 2p, wa.s
found to agree reasonably well with the experi-
mental data between 25 and 50 keV. Beyond this

587



energy range the cross section was much higher
than that in the exp.erirnent. In the opinion of
Lovell and McElroy"" the coupling was weak above
25 keV; consequently, the two-state approximation
was inadequate, and it was necessary to include
the cross sections for capture into excited states.
The calculations of Wilets and Gallaher" using a
many- state wave-function expansion agreed well
with experiment from 2 to 15 keV, but fell below
the experimental value at 30 keV. This decrease
in the cross section for energies around 30 keV
and above did not agree with the theoretical re-
sults of McElroy. The expansion method used by
Wilets and Gallaher was a slowly convergent one.
To improve upon this Cheshire, Gallaher, . and

Taylor" calculated the charge-exchange cross sec-
tion using the close-coupling method with suitable
additions of orthogonal pseudostates. Tht„ir re-
sults agreed rea, sonably well wi. th experiments up
to 50 keV.

The impulse approxi'mation wa, s first applied by
Pradhan' to the problem of electron capture by
protons from hydrogen. He showed that the pro-
ton-proton interaction had zero matrix element for
transition from the initial to the final state, which
was in keeping with Wick s remark. This happened
because the improved initial wave function was
found to be orthogonal to the final. wave function
in the limit of an infinite&y heavy incident ion. In
this case agreement with experiment was obtained
for proton energies above 25 keV. In the matrix
element used by Pradhan for calculating the cross
section, the actual interaction potential had been
replaced by-the electron-nuclear part of the prior
interaction. This was corrected for by McDowell"
using the correct interaction potential. However,
he introduced an approximation in the momentum
distribution of the unperturbed hydrogen-atom wave
function. Later, Cheshire" evaluated the capture
cross section without imposing this approximation
to the momentum distribution. His results agreed
with the Born 1s-state calculation of JS around
95 keV, but gave results significantly higher than
the Born estimate at 30 keV. His calculations also
showed that the proton-proton' interaction term
did not make any significant contribution to the
cross section. Interestingly, as regards the be-
havior of the cross section" in this energy range
(30—1100 keV), it was found that the energy depend-
ence of the cross section was similar to that of
the Born approximation of the JS type and differed
considerably from those of Pradhan' and
M cDowell. "

A later calculation by Cheshire" ba, sed on the
continuum-distorted-wave (CDW) approximation
also showed that the cross section was independent
of the internuclear potential. His results agreed

with the JS-tyye Born calculation at 95 keV, but
were higher by a factor of 2.2 than the Born re-
suits at 30 keV. In the earlier work Cheshire"
had shown that the cross section had an asymptotic
energy dependence given by (0.2946+ 5vE'~'
x 2 ")Qsx, where E was the energy of the incident
proton in units of 100keV and Qs„was the BKcross
section. The calculation of Drisko" in the second
Born approximation showed that the capture cross
section behaved in the high energy as (0.2946
+ 5vE'~22 ")Qsx. Further estimatesby him inthe
third Born approximation showed this behavior to be
(0.319+5vE'~'2 ")Qs„. From this it followed that
the earlier calculation of Cheshire" was somewhat
comparable to the second Born approximation of
the above type. " His CDW approximation was a
calculation going beyond the usual second-order
method where the cross section had the same
asymptotic behavior as his earlier work.
McCarroll and Salin" investigated the high-energy
behavior of cross section for this reaction using a
method which was shown to be the quantal equival-
ent of the CDW approximation of Cheshire. From
this they concluded that the first-order methods
were inadequate in the high-energy limit. Later
on, Salin" explicitly showed the connection be-
tvreen the CDW approximation and the method of
McCarroll and Salin. He concluded that the CDW
approximation was not a good approximation for
energies lower than 500 keV. For energies higher
than 400 keV he computed the cross sections and
found that his results agreed with those of the im-
pulse approxima, tion. '4

Recently, the problem of electron capture by
protons has been studied by Sil, Chaudhuri, and
Ghosh" using the Fadeev approa, ch. Since in this
method they have solved an integral equation for the
three-body transition amplitude numerically, their
calculation appears to be of a higher order than the
usual second-order calculations. Here it is found
that at low and intermediate energies the experi-
mental points for the cross section lie between the
two sets of results obtained by the authors with
the proton-proton interaction and without it. There-
fore the controversy regarding the role of the
nucelus-nucleus interaction in rearrangement col-
lisions appears to remain unsettled.

In the present paper we have made an attempt to
study the above problem using a different kind of
approximate procedure in which the exact outgoing
scattering wave function in the incident channel is
expanded in a complete orthogonal set of hydrogen-
atom wave functions with coefficients thai are func-
tions of the coordinate variable. It is seen that
these coefficients satisfy the equation of motion of
a free particle having a certain effective mass
moving relative to the hydrogen atom in the ground
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state. It is observed that the field in which this
particle moves consists of the potential energy of
the proton in the field of the undisturbed hydrogen
atom plus the term that is due to the polarization
of the atom. Both these potential-field effects
follow as natural consequences of our theory.

We have made numerical calculations of the cap-
ture cross section for energies up to 100 keV. In
doing this we have neglected the polarization part
of the potential and the part that falls off exponenti-
ally. Since the agreement between the theoretical
results and the experiment is not good at low en-
ergies, we have confined ourselves to energies up
to 100 keV. From our results we find that our
theory gives good agreement with experiment for
the energy range from 8 to 90 keV. It also in-
dicates that the proton-proton interaction plays an
important role in rearrangement collisions. For
bigger energies (i.e. , beyond 90 keV) it is expected
that our theory would give better agreement with
the experiment. An interesting and unusual feature
of our theory is that our cross section for capture
into the 1s state increases with incident proton
energies and attains a maximum value around 9
keV. When the energy of the incident proton in-
creases further, the cross section decreases. Such
behavior in the capture cross section has been ob-
served in the case of captures into excited
states. '4 "

In Sec. II we derive the requisite formulas for the
capture cross section for the following reaction:

p+H H+p.

H =Hq+ Wq,

where

H, =Ho+ U~ ~

(5a)

(5b)

We shall assume that U, and V go to zero faster
than 1/r. Treating W, as a small perturbation the
transition matrix now splits up into the sum of two
parts":

where g,"and 4'~( 'are defined by the equations

(a, —z.+f&)) x&'& =0

(a-z, —fq)e& &=o.

For reactions of the type described by Eq. (1) the
total Hamiltonian can be written in either the initial
system or the final system a.s (see Fig. 1)

where T is called the transition matrix, and Q,
-

&t&, are the eigenstates of H, . The state vector 4&

represents the stationary outgoing scattering wave
function such that

(a-z. +fq)~& &=a.

If the potential V is such that

V=U, + W,
we can write

Section III is devoted to the solution of the Schro-
dinger equation to determine the scattering wave
function corresponding to the outgoing state. In
Sec. IV we obtain the expression for the differen-
tial-scattering cross section, and using this we
wr'ite down the expre'ssion for the total cross sec-
tion. Section V deals with the discussions of the
results and the approximations involved therein,
and also gives a comparison of our results with the
results of a few theoretical calculations and those
of recent experiments.

H=H + V =Hp+ V~,

where

H~ =K+ U~3, Vf„= U~2+ U23,

&+ U23 ~ Vg Uj.2+ Uy3 ~

(8) .

E being the kinetic energy operator for the system
of three particles, the incident proton and the elec-
tron plus the proton of the hydrogen atom, and the
U's being the various interaction potentials. In the
case of rearrangement collisions for which V c V~,
one can write the transition matrix in the form"

II. FORMULATION OF THE SCATTERING AMPLITUDE

To start with we consider the scattering of a par-
ticle in a potential field V. Let the Hamiltonian of
the system be denoted by

H =HO+ V. (2)

The matrix element corresponding to the transi-
tion from the initial state Q, to the final state &t, is
now defined as

FIG. 1. (a) Before the collision; (b) after the collision.
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where

(E.—H ~zq)@."&= 0,
Hqg~=E~&t)~, H Rt, =EP, .

In the. Born approximation (the JS or, equivalently,
the BD version), one has

(12)

We now break up V and V~ as follows:

V = U +R', VB=U~+ Wg

where

(13)

I

FIG. 2. Relative coordinates used for calculation of
the transition matrix.

U23 P UP U] 3 (14) where

With the help of (6) we can write"

z, = (y, j
jr

j
y& &) = (@,j U„j g& &) + (y &; &

j U„j g& &)

'

(15)

Mm, M(M+m)
"=~+m ' " =

2M+~ '

a=M/(M+m), r'=ar —r, . (20)

where

(E +&&) H U ) jg,'&)=0. (16)

The Schrodinger equation satisfied by X", is given
by

g2 @2 e2 ~2——- V'-, V', ——— - -, j
y&'&) =E

j
X&'&) .2+ z 2p I r & (ar —ri( a a a

If U» has a weak effect, the g,"will differ little
from 4,".One can also obtain an alternative ex-
pression for T, ~using the stationary solutions of
the Hamiltonian (H~+ U~). In the present case we

shall, however, restrict ourselves to the. matrix
element given by (15) which we shall denote by

A,", . To simplify our calculation, we approximate
4,& ' by (t)~ in the first step. This is being done in

the spirit of the impulse approximation, where one
neglects the two-step ca.pture processes. " Now the
matrix element R,", approximately becomes

I~& &=-(&(, j(~,.+ U„) jX&"). (17)

III. EVALUATION OF THE SCATTERING

WAVE FUNCTION X+ .

To determine X,
"we have to solve the Schro-

dinger equation satisfied by p,"corresponding to
the Hamiltonian

y!'(r, r') = g &(&„(r)f„' (F) (22)
V

where v includes the. sum over the discrete states
and integration over the continuum variables. Sub-
stituting (22) into (21) and then multiplying both
sides by p„,(r), one gets after integration over r

2

, &7'„,f„", (r.')+ g (y„(r) jH'j y, , (r))f~('&(r')

where

= (E, e„)f„",(r') =—E„f„",(r') (23)

H ' = -e'/
I ar —r '

I . (24)

(21)

We are interested in the scattering solution of (21).
We now expand g", in terms of the hydrogen atomic
wave functions &(&„(r) with coefficients which are
functions of r'. That is,"

HX=H + U =K+ Ui3+ U23 (18) In arriving at (23) we have used the relation

before the collision. The situations before and
after the collision are schematically shown in Fig.
1. We choose the coordinate system to describe
the geometry of the relative coordinates as shown
in Fig. 2. The Hamiltonian Hx which corresponds
to the situation before the collision assumes the
following form in the center-of-mass system of the
three particles:

e
H = — V'„—,V„,———,, (19)

[-(@'/2(«)&'„- e'/& ] j V.(r)& = &. j «'.(r)&.

Here g,"is the eigenfunction of the Hamiltonian
(19) which has the following asymptotic behavior:

(25)

e ckpr'
=. q, (r)(e+'~'+h, .(Q)

+ P y, (r)h„,(Q), , (26)
v00

where kp is the wave vector associated with the
particle having an effective mass p, '. Here the sub-
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script a implies the incident channel and the sub-
script 0 means the initial state. From (26) it
follows that f„' satisifies the boundary conditions:

f,' (r')„, = e"o'.'+h, .(Q)e"0"'/r',

f„' „~(r') „, „= k„.(Q) e "~"'/~'. ( 7)

Since during the process of capture the target atom
is assumed to remain in the ground state, one has
the additional boundary condition"

One can rewrite (23) in the form

(V'„, +k'„)f„", (r, ') = g V„„,(r')f„;',' (r')

where

k„=2v, 'E„/fE

(30)

r'f(„(r')„, =„0 for v10. (28) (r') =(2 p'/k')(~. ( )rIH'l ~, (r)&

E„=R k„/2i(, =5 k()/2p, +ea —t„, v4 0,
E„=k'00/2i(, '= k'k20/2p', v =0 . (29)

A similar condition also applies to the continuum
part of the. atomic wave functions. Equation (23)
together with the boundary conditions given in (27)
determines f„' . The momentum k„appearing in
(26) is such that

= (2 p, '/k')H„'„, (r') . (31)

From (30) it appears that the function f'„, describes
the motion of a particle of mass p,

' moving relative
to the hydrogen atom in the state v.

The matrix element H,'„, (r ') before the collision
is evaluated using the wave functions of the hydro-
gen atom. In atomic units, one obtains

I

-2x' 1 1 1H', (r') =exp —+——— v=ls v'=1svv'

1 -3y' 8 4y''
= ~ exp —

27
—9, , v=ls, v'=2s,

2g 27a 9a2

Yy r' exp, '+, + „- „, v= 1s, v'=2P (32)

where j', is the well-known spherical harmonics.
For v=0, Eq. (30) can be written as

(& ~ +k, )f,' (r') = V„(r ')f,' (r ') +g V0~ (r') f„';,'(r ')
v'A

(33)

where V0, (r') is obtained from (31) and (32) in
atomic units as

I

term" of importance on the right-hand side of each
of the equations (30) is that connecting the channel
v with the open channel 0. Hence,

(V'„, +k'„)f„' (r') = V„a(r')f,' (r') for large r'. (36)

From this we have

(V'„, +k0)f0", (r') = V00(r')f,", (r') for large r', (37)

which is the same as

'(("~f0 (r') =-k20f,' (r')+O(1/r') . (38)

Here the subscript 0 stands for the 1s state. In
general, it is extremely difficult to evaluate the
second term on the right-hand side of (33). How-
ever, one can evaluate it in the limit of large x'
because in this limit f„';,'(r') can be written down
explicitly in terms off,", (r'). From (32) one finds
that as x'- ~

V,„,-I/~' for v'=ls,
-(I/y')". for v'c1s, lc0,

C
I

-0 (exponentially) for v'W ls, l =0. (35)

From the above it is thus seen that for all atomic
states v and v' including the continuum states (ex-
cept for v= v'=1s) V, (r') decreases at least as
fast as I/r ~ for x'- ~. In view of the above bound-
ary conditions for large x' and vc0, the only

If we write V~(r ') ~ (I/r')~ where p ~ 2, we have30

'(('„.[V..(r ')f! (r')J = [& '„ V (r ')]f.". (r ')

+ V..(r')[&'„.f,' (r')]

+2%, V„,(r') V„,f(:&(r') . (39)

Using (38), we get from this

V, [V (r')f,:(r')]

=-k', ,[V~(r')f,' (r')+O(1/r'~") for large v'.
(40)

On adding the factor k'„V„(r')fa", (r') to both the
sides of (40), we obtain

(V' +k'„)[V (r')f,' (r')] —= (k'„k', )[V„,(r')f,", (r')]-
for large r'. (41)
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U~(r')=,", for large 2'.I Vp„(r ') I'

p ~ v 0
(43)

Since the dominant (P wave) terms in V,„,(r') vary
as 1/r" for large r', the potential U~(r') varies as
1/r" as y'- ~. This is the exact long-range po-
tential up to terms of O(1/2 "). Using (29) the ex-
pression for U~(r') can be rewritten as

where

1 g IVpv (r')I'
2i(,

' e0 v'
(44)

v,. (2')=2u, ' dip,'(r)(, , )p..(r).

Since the denominator in (44) is always negative,
the polarization potential U~(r') is attractive. We
have seen that for v' if we use the states 2s, 3s,
etc. , the matrix element t/', „, is found to be expon-
entially decaying. For large 2", ~Vp„, (r') ~2 goes to
zero much faster than 1/2. ", where the 1/2 "be-
havior is due to the p states. So we see that. the p
states are the only dominant contributors. The
contributions from the d states and the other higher
l states go as 1/r'2(" for large 2", and hence, they
are much smaller than the p-state contributions.
Accounting for all the p-state contributions and
putting a =M/(M+m) -1 (which is true in the limit
M -~), dipole contributions to the potential U~(r ')

are written as

Comparing this relation with (36) we see that the
functions f„",(r') have the form

f(+)( &) ($2 $2)-1V ( I)f(+ )(~a)

for large )" (42)

which is valid for v c 0 only. Substituting this ex-
pression for f,", (r') into the second term of the
right-hand side of (33), we find that this term is
given by

U,(r ')f()". (r ')

where

This polarization potential is of importance in the
limit of very low energies. With the inclusion of
this, it is almost impossible to obtain an analytic
solution for Eq. (40). Since the expression for
V»(r') contains a factor which falls off exponenti-
ally with r' (goes to zero very rapidly with increas-
ing r'), this can be assumed to be of relatively less
importance than the factor 1/r'. Also, on dropping
this term we are able to obtain an exact analytical
solution for f,' (r') from the Schrodinger equation:

N(k, ) = exp()T p. '/2kp)I'(1 —i p, '/kp) . (49)

To write (48) the normalization is assumed to be
done inside a cubical box of unit volume. In this
equation I stands for the confluent hypergeometric
functions, the arguments of which are properly
chosen so as to correspond to the outgoing waves.

Since here we shall be calculating the cross
section for capture into the ground state of the hy-
drogen atom, following (22) we have

)i,"(r,r ') =f,", (r ')(()„(r)

which, with the help of (48), is written as

)f,"(r,r') =N(kp) exP(ikp r')

xF(ip'/k„l, ikpr' ikp . r'-)(()„(r) .

(50)

To determine the wave function (t) p one has to
solve the Schrodinger equation (11), where Hp is
given by (9). This being the unperturbed Hamilton-
ian which corresponds to the situations after the
collision, the Schrodinger equation satisfied by
(f), in the center-of-mass frame of the three-par-
ticle system is written as

which is valid for all values of x'. This being the
case of an attractive Coulomb potential, the scat-
tering solutions of (47) can be written as"

fp (r') =N(k, ) exp(ikp r')E(ip. '/k„ l, ikp' —ikp 2")

(48)

where

U,(r') = ()). '/2" 4)c-(, as 2"-~,
where

(46)

0

)

(51)

1(R1,12 I R,&) I

is the dipole polarizability of the hydrogen atom.
R„and R~ are the radial parts of the wave func-
tions of the hydrogen atom.

For -the time being, we shall be interested in the
solution of (33) without the second term on the
right-hand side whose value for large x' is given
by the polarization potential U (r') given in (46).

where r"= r —aro. If k is the wave vector associ-
ated with the particle of an effective mass p.

' after
scattering, the solution of (51) is given as

(t),(r„r")=exp(ik, r")y„(rp) (52)

such that E,=k /22'. '+ep for capture into the ground
state. Since scattering connects the states char-
acterized by E,=E„where ,E= k2p2/i1+c„we have
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IV. COMPUTATION OF THE CROSS SECTION

FOR CAPTURE

With the help of the transition matrix, the dif-
ferential-scattering cross section for capture is
now given by

do' p ( ) 2 (53)

where v, and v, are the relative velocities before
and after the collision, and this ratio is 1 in the pres-
ent case. Hereafter we shall drop the superscript
(+) from R„' and subscript a from f,", . Following
(18) and using the expressions for X,

"and P» as
given in (50) and (52), respectively, the transition
matrix element is written in the atomic units aq

t

(54)

where

P=ak-k, , q=k —ak, .

Using the results of (60), (61), and (58), we
have

R», ==2 exp 1 (1 —i p jko)(~) 4 1TP,

0

x 1' dr'dkexp(ik, r') exp(-ik r')

xF(ip, '/k, , l, ikoy' —iko r')

x{1+p') '(1+q') '. (62)

To perform the integrations involved in (62) analy-
tically is extremely difficult. To reduce the dif-
ficulty of dealing with multidimensional integrals,
we shall make an approximation by putting

I j I

Since a=M/(M+1), and M»1, such an ap-
proximation seems to be a reasonably good one.
This is further justified by the fact that this does
not disturb the BK result' which is obtained in the
limit

and

dr dr, exp(-ik, r) exp(iak, r, )

p,*,(ro) (-1/x) p„(r)fo'(r '),
/r =Br —ro ~

dr dr, exp(-ik, r) exp(iak, r, )

(55)

N(ko)F(i p, '/ko, l, ikon' —iko r')- 1,

that is, in the Born approximation. With the above
substitution the k integration in (62) can be done
analytically without any difficulty. One then gets

R,".'=-exp —r(1 —i p, '/k, )a '
0

I

x dr'exp i k, r'-
a

x —+1 exp

Now we shall introduce the Fourier transform of

f,"(r') as

dk exp(ik r')g(k), (57)

where g(k) is given by the inverse Fourier trans-
form:

x F(i p, '/ko, 1,iky' iko ' r -') . (63)

R„",'=—
4 dt f ' dkg(k)(1+Pa) '(1+q~) ', (64)

where

Proceeding in the manner similar to that which we
have used in evaluating R,",', we find that the ex-
pression for R,",' can be written as

g(k) = dr'exp(-ik r')f,"(r') .

With the help of (57), R,",' becomes

(58)
P'=ak —k, —t, |1'=k —ak, —t .

dkg(k)G, (5)G.(4),

where

G, (p) = dr " exp(ip r) =y„r) .: 4m' ~'

X/2

&,(j)= dr, p„(r,) exp(-ij r, ) =
1 +-g

having

(59)

(60)

(61)

As before, we replace
I
j'I —= Ij5' I. With this ap-

proximation R",,' becomes

R ' ' —=— — dr 'f"(r')4 dt
ba && t2 - 0

x dk exp(-ik r')(1+p~) ~.

(65)

After doing the k integration first and then the t
integration, R~",) becomes
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R"'—= a ' dr'f,"(7')exp
-ik, r~

ba a

x —,+ —+ exp (66)

where 0 is the angle of scattering, i.e. , the angle
between k, and k, . Evaluation of the integral on the
right-hand side of (71) was done numerically using
a computer for various incident proton energies
between 1 and 100 keg.

Using the results of (63) and (66), the total matrix
element R„is given by

R„=exp(-,'mn)I" (1 —in)&'

1 2y''A,
x dr'expIi(k, r'- Ak, r')

A.y'

where

x exp(-&r')E(in, l, ill' —ik, r'),

X=1/a, n = p'/k, .
To do the r' integration in (67), we consider the

integral which is represented by

I = dr exp(iq r) Iex'p(-Ax)/r ]

&&E(in, l, ip~ —ip r") . (68a)

I= w4(X'+ q)' '(X' —2ikp+q' —2p q) ". (68b)

With the help of (68) R„is written from (67) as

, 1 2A. d'I
R = exp(-'vn) I'(I —in)&' I -——= .—ba X 3 dX

(69)
I

Following (69), we find

~R„~' = 16m'X'(mn/sinhmn)e' (A'+82) 2

x exp[2ntan '(8/A)j(X'+q') 'G(k„k,),

These are the integrals which one comes across
in the study of the atomic collision theory. Such
integrals are evaluated by contour integration using
the technique adopted by Nordsieck. " The value of
this integral is given as

V. MSCUSSION OF RESULTS

Though by now there are a large number of ex-
periments available which measure the cross sec-
tion for the capture of electrons by protons passing
through hydrogen, we shall compare our result
(quoted in Table I) with the experimental data ob-
tained by McClure" in a recent experiment. In
Fig. 3 we have plotted the results of our calcula-
tions along with those of the Born approximation, 4

the impulse approximation, " the distorted-wave
approximation, " the close-coupling method, "and
the experimental data of McClure, "for protons
with energies less than 100 keV. From among all
the available theoretical calculations, we have
chosen these as representative results from well-
known methods for our range of energies.

Our numerical results quoted in Table I and plot-
ted in Fig. 3 have been obtained ignoring the polar-
ization part of the potential and the part that falls
off exponentially with distance. The resultant ap-
proximation is somewhat equivalent to the distort-
ed-wave approximation. ' However, this is not the
same approximation as that of BQ." This can be
very easily shown by comparing the transition mat-
rix elements in both cases. Here it should be men-
tioned that the present approximation obviously
goes beyond the first Born approximation as we
have replaced the initial (or, equivalently, the

TABLE I. Capture cross sections from present theory
for different incident proton energies.

da'
0 = 2m — sin8dg,

dQ
(Vl)

(70)

where G(k„k,) is a very complicated function of k,
and k„which we have deliberately avoided expand-
ing here. In the above equation

q =k —Xk

A = X'(I+ k', ) —k', ,

B =-2~ko.

It, may be noticed that our expression for ~R„~'
looks very similar to that in Ref. 6. Using this expres-
sion for ~R„~', the differential scattering cross
section for the capture can be written down following
Eq. (63). Integrating over all the angles, we obtain
the total scattering cross section. as

Energy (keV)

1.00
2.00
3.00
4.00
5.00
6.00
7:00
8.00
9.00

10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

v (10 ~7 cm2)

0.608
13.664
34.565
63.882
69.297
79.342
84.883
88.704
89.990
87.611
52.574
26.844
13.815
7.658
4.798
3.481
2.974 '

2.684
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FIG. 3. Plot of the capture cross sections against the
incident proton. energies. Theoretical results are shown

by I, Born (Ref. 4); II, impulse (Ref. 19); III, dis-
torted wave (Ref. 10); IV, close coupling (Ref. 17); V,
present work. Experimental results from the work of
McClure (Ref. 33) are indicated by dots.

final) free wave function with a wave function which
is closer to the exact solution. To be more
specific, we have taken into account the distortion
of the outgoing scattered wave by the scattering
field in the simplest sense.

To point out the relationship of our present work
with the impulse approximation, '"" it may be
mentioned here that the outgoing scattering wave
function of our theory should be considered to be
philosophically similar to the one derived in the
impulse approximation. , That is because, in the
impulse approximation, the outgoing scattering
wave function is the one that is evaluated in an ap-
proximate way by taking into account t;he scatter-
ing of the incident proton by the wave packet of the
electron of the target hydrogen atom having a
momentum distribution the same as that of the hy-
drogen atom in the ground state. In our theory we
determine the outgoing scattering wave function by
considering the motion of the incident proton mov-
ing in a potential field generated due to its motion
relative to the hydrogen atom in the 1s state. How-

ever, our approximation seems to be a better one
than the impulse approximation because we have

been able to determine the outgoing scattering wave
function analytically. With the inclusion of the ex-
ponentially decaying potential term plus the polari-
zation part, our solution should be considered to be
much closer to the exa,ct solution. This is brought
out by our calculated results at low energies
whereas the impulse approximation results are
rea, sonable only above 25 keV.

It is found that the results from our theory fit
well with the experimental results for the entire
energy range starting from 8 keV. A new inter-
esting feature of our results is that our calculations
show a maximum in the value of the total cross
section at an incident proton energy of 9 keV. Be-
low this energy the cross section starts gradually
decreasing with decreasing incident proton energy
and finally goes to zero for very low energy. Be-
yond 9 keV it again starts to fall with increasing
incident proton energies. This type of behavior of
the cross section versus energy has not been ob-
served in any of the theoretical calculations on
electron capture by protons into the 1s state for the
reaction given in Eq. (1). One, of course, encount-
ers such behavior in the case of other kinds of
reactions' and for capture into the excited states
of the target atom. ' " Physically this is to be ex-
pected.

At higher energies our theory is expected to give
better agreement with experiment. However, it
is rather seen that at an energy of 100 keV or
above there is a slight departure of our calculated
cross section from the experimental value. We
observe an increase of up to 30% in the value of our
cross section over the experimental result. We
do not consider this to be a flaw in our theory.
Rather we feel that this happens due to the fact that
we have dropped the factor exp(-2r'/a) && (1/x'+1/a)
in V«(r') compared to 1/r' while solving for f,' (r')
This factor, which is exponentially decaying, has
to be taken into account for large energies. Once
we include this term it is not possible to get an an-
alytic solution for f,", (r'). The other possibility
may be our use of the approximation ~q(

-=jp[
while doing the f integration in (62); although we
have seen that such an approximation does not dis-
turb the Born results. We are taking these facts
into consideration in our ensuing work on this prob-
lem.

We conclude here by saying that according to our
observation the internuclear Coulomb interaction
plays a significant role in charge-transfer colli-
sions. As a matter of fact, the controversy re-
garding its role in the rearrangement collisions
still remains unsettled. Anyway, ours being a non-
perturbative approach, we feel that this would help
to clarify many controversies existing regarding
charge-transfer reactions. Since in our theory it
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is possible to take into account the pol3rizability
of the target atom, this would be very useful to
explain the experimental data at low energies sat-isfactorilyy.
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