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Effect of velocity-changing collisions upon optical coherences in a three-level system
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In this work, a theory of laser nonlinear spectroscopy and its application to the study of atomic collisions is
developed. A three-level system (TLS) is considered in low-pressure gases. The effect of weak velocity-
changing collisions {vcc) upon atomic coherences is introduced into the TLS equations established by Hansch
and Toschek. It appears that a TLS is suitable for the observation of the effec't of vcc upon optical
coherences.

I. INTRODUCTION

The fruitful development of nonlinear laser spec-
troscopic techniques during the last few years has
provided new evidence for collision-induced homo-
geneous broadening, shifts, and even distortion
of spectral lines in low-pressure gases. Saturated
absorption' ' and two-photon' spectroscopy have
been used for such studies.

The use of nonlinear spectroscopy to study col-
lisional effects represents a marked improvement
over linear spectroscopy in measuring the effects
of velocity-changing collisions (vcc). In linear
spectroscopy, one starts with a thermalized sam
pie. Consequently, elastic collisions do not alter
the velocity distribution of the various level pop-
ulations of the atom, which are already in equili-
brium. Collisions will affect only the coherence
or off-diagonal density-matrix elements, leadiqg
to a disturbance of the phase of the atomic oscil-
lators. In general this phase disturbance consists.
of an inseparable combination of velocity-changing
and phase-interrupting effects, although, in cer-
tain limits (see below), one contribution can dom-
inate. In linear spectroscopy, effects of vcc are
easily lost in the large widths of spectral profiles
arising from the Doppler effect. In some cases,
the effect of vcc on atomic coherences can be de-
tected by a narrowing of the Doppler profile, but,
in general, vcc are difficult to detect in linear
spectroscopy.

Nonlinear Doppler-free spectroscopy provides
more promise for studying subtle collisional pro-
cesses. In such experiments one excites a given
velocity group of atoms. By probing the system,
one can determine the rethermalization of this
population velocity group resulting from collisions.
Moreover, there ape systems where one can at-
tempt to study the effect of velocity-changing col-
lisions on the atomic coherences.

In a three-level system, it is possible to have
a saturated absorption signal arising solely from
terms related to optical coherences and not de-
pendent on populations. By examining the effect
of collisions on these profiles, one eliminates any
problems arising from velocity-changing collisions
on populations which would tend to mask their ef-
fects on "coherences. "

There exists a large literature of calculations of
velocity-changing collision effects in both linear
and nonlinear spectroscopy. ' " To our knowledge,
no calculation exists in which the model of weak
velocity-changing collisions affecting internal co-
herences in a three-level system (TLS) has been
fully explored. In this work, such a model is
adopted and may prove relevant to explain recent
experimental results involving saturation spectro-
scopy in a three-level system. "

II. TLS UNIDIRECTIONAL SPECTROSCOPY

In a typical experiment, two cw monochromatic
collinear laser beams interact witty an atomic or
molecular gas contained in a low-pressure cell
(Fig. 1). The field E(ur, k) is resonant with and
saturates the 1-2 transition alone, selectively ex-
citing optical dipoles with an axial velocity close
to zero. The field E'(&e', k') with a frequency ~'
close to that of the 2-3 transition monitors the
changes in the velocity distribution and phase co-
herences of the system, induced by the pump field
in the presence or absence of collisions.

The parameter measured in typical experiments"
is that part of the absorption coefficient of the
probe beam containing saturation effects; the most
interesting situation occurs with unidirectional
beams and k & k'.

A theoretical description of this system was
given by Hansch and Toschek. " Using perturba-
tion theory, neglecting co1lisions, and assuming
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FIG. 1. Experimental situation and the energy-level
scheme considered in this work. The frequencies
of the fields E and E' are denoted by (d and co', and
the magnitudes of the propagation vectors by k and P'.

the Doppler limit (i.e. , Doppler width much larger
than decay rates), they obtained the term propor-
tional to E' in the absorption coefficient for the
field E' as I

n, =4wk'E' Imx„

where

—(d
rmx, =s~"'s 'u,*,g*„(av) 'exp(-

1 1 (d» 1 1-XY" y,I" 1+F' ~„ I'~I"„(1+X')(I+Y'))

1 1 —2P
23 ~ p0 2 '

¹zis the population difference between i and j
levels at equilibrium in the absence of all fields,
y,. is a level decay rate, y, , is the natural decay
rate of the i-j coherence, co,, is a resonance fre--
quency, p, , is the electric dipole moment of the
i-j transition, V is the most probable atomic
speed, and

I ~ = (I —~ss/~is)rss+ (~ss/~as)res

=r, +(~„/&, )r„,
XI's~ = I'I'ss = v' —&u» -(k' /k)(&u —&u»).

Despite the apparent complexity of the expres-
sion for ImX„ it is possible to elucidate its phy-
sical content. The first term in square brackets
is recognized as the usual saturation term result-
ing from the stepwise absorption of the fields E
and E'. The second term is related with a two-
quanta Raman-type transition connecting levels
1 and 3. The third term is another two-quanta
contribution; it is noticeable that this term exists,

ev'en when the medium is transparent to the sat-
urating field (N» =0) contrary to the other two
terms.

The third term corresponds, in atomic density-
matrix formalism, to the following perturbative
path:

(0)
E' p"' E p(~' E p" '.

23 . = 13 23
p(0)

33

This path does not depend upon saturated diagonal
matrix elements. Therefore, vcc effects on pop-
ulations play no role in this chain, making it well
suited for studying the effect of collisions on op-
tical coherences. Consequently, an experimental
situation of interest occurs when the population in-
version N», prepared by suitable pumping proce-
dure, is much smaller than N„. In this paper we
are concerned only with third term of (1).

The steady-state equations of motion giving rise
to the contribution of the third term in (I) are
given by

[rss i(&' -—k'~. )]p.".'(v) = -sP'[p.".'(v) —p.".'(v)],

b,.+ [ — '-(k-k') .]jp,".'( )= P7@'( ),

[r,. i(~'-—k'~. )]ps'P(v) =ip p,",'(v),

where the pump and probe detunings are & = ~ —~»
and b, '=~' —&u», respectively, p, ,(v) is a density-
matrix element in a radiation interaction repre-
sentation,

p„(v) = p„(v, z, t) exp]i[(k - k')z+ ((u' —&u)t]),

pss(v) = pss(v, z, t) exp[i(&u't k'z)],—

and p and p' are the Rabi frequencies of the trans-
itions and are assumed to be much smaller than

y&, in order that the perturbation calculation be
valid.

III. THE EFFECT OF ELASTIC COLLISIONS

UPON OPTICAL COHERENCES: A REASONABLE MODEL

The problem of interaction with an electromag-
netic field of atoms or molecules subjected to col-
lisions in a gas ha.s already given rise to consid-
erable theoretical studies (a comprehensive bib-
liography can be found in Ref. 9). The dynamical
as well as the internal aspects of collisions have
been extensively investigated. and tota. lly quantum-
mechanical treatments have been achieved. " How-
ever, a lack of information on the interatomic po- .

tential prevents one from determining the scat-
tering amplitudes which play a prominent rale in
all these theoretical calculations. Especially,
the angular dependence of these amplitudes seems
to be very sensitive —at least in the medium-angle
diffusion region —to the precise shape of the poten-
tial.
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R;, ~
„„=-y',.",.(v)p, ,(v) —I",.;(v}p, ,(v)

+ W, ,(v'- v)p, ~(v') d v', (3)

As a consequence, we shall choose a simple
empirical model to take into account the effect
of elastic collisions upon optical coherences (off-
diagonal density-matrix elements) .

We assume a separation of collisions into two

groups:

(i) Those which occur in a "near region, " where
the interaction potentials of the two levels involved
in the transition are very different. These colli-
sions result in a large abrupt change in phase for
the off-diagonal density-matrix elements and con-
sequently in a destroying of the coherence. In
other words, coherence cannot be drifted by such
a collision from one velocity class to another.

(ii) Those which occur in a "far region, " where
the interaction potentials of the two levels are so
close that the phase-interrupting effect is negligible
These collisions result only in a change in the vel-
ocity associated with the atomic dipole. This
change is necessarily small due to the size of the
impact parameter but may still be detectable by
laser- spectroscopy techniques. A consequence of
these assumptions is a statistical independence of
coherence-destroying and velocity- changing col-
lisions. The small change in the velocity of the
atom, enables us to use the so-called weak-colli-
sion approximation.

The model is expressed mathematically by the
addition of a term R,, ~ » to the right-hand side of

(2):

Including the collision terms in equation set (2)
and summing it over v„neglecting the velocity
dependence of I'"' and y'", one gets

[I„—i(b. ' —k'v, ))p,',"(v,)

= -iP'N„(v, ) + W„(v,', v,)p,",'(v,') dv,',

$I'„+i[a —a ' —(k —k')v, ]fp(2 )(v,)
(4)

[r„ i(~ k v, )]p& )(v,}

where

ph VCI",, =y, , +y, ,+ I',-,-,

W, ,(v,', v, ) =J dv, dv,'W„(v')W, ,(v'- v);

and

N2, (v,) =N2, Wu(v, ).

For weak collisions and low pressures, the col-
lision kernels in (4) can be chosen to depend solely
on the difference ~v, —v,'~. While kernels of this
nature do not satisfy detailed balancing and cannot
give rise to collisional narrowing of spectral pro-
files, they may be used without significant error
provided that the effective collisional mean free
path is large compared with the appropriate wave-
length in the problem. Specifically, one requires"

where y', ,". is the rate of phase-interrupting colli-
sions, W, ,(v'-v) is the collision kernel for vcc,
and

(",.&(v) =f dv' W,.&(v -v')

is the rate of vcc. The collision kernel is as-
sumed to be important in the region where ~v' —v

~

is much smaller than the mean atomic velocity.

kV» I'»u22, /V',

ik-k iV»I' -'/

pvc
i j W, ,(v„v', ) dv, = W,.& (v,', v, ) dv,'.

where u,.~
is the width of the kernel W, ,(v, —v,')

and I', ,u',.&/v~ is the effective" collision rate. In
the frame of this approximation, the following
equality holds:

IV. SOLUTION OF THE EQUATIONS OF MOTION

First, we can reduce the velocity dependence
of the problem to one dimension by noticing that
the orthogonal velocity distribution of the active
atoms is hardly perturbed by the saturating beam
(propagating along v,). Therefore one can factor-
ize density-matrix elements:

p„.(v) = p;,.(v,)W„(vj),

where W„(v,} is the equilibrium velocity distribu-
tion for the transverse velocity components.

In what follows, we write

Wq)(~ vd —vd, ~)
= W;~ (v) .

The equations of motion are most easily solved
by a Fourier-transform method. ' The Fourier
transform F(r) of an arbitrary function f(v, ) is
defined as

exp(ik'v, r)f (v, ) dv, .

Equation set (4) may be transformed into
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d(P(" r[r„m,,(T) i~ ]~,',"(T)+

=zp Jf„(~),
k k d(P&" T)

[r„~;,(r)+i (~- ~ )](P,&,"(~)

where X», (P„., and ~ are the Fourier transforms

~,,(r) = (2~/k )"'~,, (r)

This system is solved as follows:

=ip(p,',"(7), (6) (p,',"(~)= ip- Z„(T')

= ip(p,',"(T) .

x exp [—ie'e ('„—W,', (v")] dv') dv'
T

00

a",*,'(v)=r, d dv"rp,",'(v')exp — dv", [v(e —e')+r;, -w,', (v")]),
T T .

T er I

re,',"( )= a a',",'( ') d "[-'r'+r„-W,', ( ")])d '.
~ «)0 T

(g)

Each of the exponential factors acts as a propagator containing collision and natural damping. Each one
drives R density-matrix element from its creation at time v' due to a field interaction, up to time ~.

Bringing (7) into (8), and (8) into (9), one obtains

kt T T

(p,',"(~) = ip'p'-, «' «" «"' x„(~'")
k -k'

I
&& exp -i~'+ 1„7'—7 —VP'„s' +'%„7 —,j b, —6' + I', v'" -v'

with

I,+,[W„(v ")-W„(v')]+( —v'e'+ V;,)(v"'-v ") w„(v "')+W„(v ")),
k —k'

sin(k'v, 7 )
k ()„(.) f d"w;("=)',

0

where we have used the fact that W, ,(v,) is an even
function.

We are interested in the integral of p(3)(v,) over
velocity, since

E'E'Imx = p, »Im dv, p~3' v, .
w OO

The. transformation back to velocity space is
performed using

Additional approximations provide a more tractable
expression. First, as has been done in arriving
at (1), we may assume that the Doppler limit is
fulfilled. Consequently, we approximate l(a'»(v, )
by N»(h/k) leading to a value

m„(7) = (2v/k')'~ 'X„(~/k) &(7.)

and the result

k' & ~&, " . , k
p,",)(v,)dv, =iP'P', &,, k k, «exp (iQ'-1„) „,7+ „,4»(~)+4„(r)

OO

where

I = (1 —&a) g&() )I + (&() /&() )I

0 = (d —(d2& —(k /k)((d —&a)&2) .

To go further, one needs an explicit form for the
collision kernel. Keeping in mind that we have
assumed that only distant collisions contribute to
the velocity-changing collision kernel, we may
conclude that the semiclassical approximation con-
ditions. are fulfilled in that region. Then, a Gaus-
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sian kernel can be obtained as has been shown by
Kolchenko et al.'~

Taking

W,~(v,) = (I" ~/v m u, j) exp(v', /u', J), ,

using (10), and doing a little algebra, one finally
gets

PVC

u'u„' 2

where E,{x) stands for the error function,

2
E,(~)= e ' dt.

7f o

The resulting contribution to the imaginary part
of X3 is now in a form wel 1 suited for a computer
calculation:

ImX3=—1 — — 5 p, » p, »N»

xReif dvexp (iA' —I'„)v+ "Mir, " 8,( "-) +(1 — ")Mir, *' E(",) (15)

This is the final expression that we obtain in this
paper, taking into account the effect of vcc. When
I'»- I';;=0, one can easily identify (15) with the
third term in (1).

V. DISCUSSION

In this section, we emphasize that the effect of

vcc depends strongly upon the size of the width of
the collision kernel relative to the atomic decay
rates. In a characteristic situation, the shape of
the signal profile may be noticeably distorted due
to the effect of vcc.

In order to isolate the effect of vcc in a single
term in Eq. (14), we make use of (5) and obtain
an alternative form for (14):

~ ~

~' 2m
- ", ,„k k

(16)

F(v'.) =-: dU, ' —v') W (v )
sin(k 'v, r )

v
(17)

from that obtained assuming either no collisions
or only phase-interrupting collisions. The co-
herence time I', is the solution of the cubic equa-
tion

and

W, (v,) = (k'/k)W„(v, )+ [{k-k')/k]W„(v, ) .
The entire effect of vcc is contained in V(7).

To analyze (16) and (17), a parameter of physical
interest is the coherence time I",', the time at
which the real part of the exponential-argument
in (16) is unity. Depending on the relative size of
kff and 1"„ two extreme situations occur [u' is
a mean-square change of velocity during a colli-
sion associated with the kernel W„(v,)].

(i) I",» ku . In this limit, the sine function in

(17) can be expanded in a power series, and the
first nonvanishing contribution leads to an expo-
nential in (16) of the form"

pVC
exp[i(Q' —I'»- r'„"), 7 — " ~(k'fly)'] .

k —k' k —k' 6

The presence of a cubic term in v' indicates that
vcc can give rise to line shape different in form

(I o + I yh)/I + z I' ' (k'u) /I' = 1.
The relative values of ku, I'„+I'~", I""„'determine
the specific effect of the vcc.

For example, if I"„'(k'u)'«(I'o~ I"'„")', the vcc
will not significantly alter the phase of the off-
diagona, l density matrix elements during the co-'

herence time I',' = (I'0+ I"„")'. On the other hand,
if I'"„'(k'u)'» (I'0~ I'„")', it is the vcc which ef-
fectively determine coherence time I','
= [I"„'(k'g7)'] '~'. In this case, the vcc lead to a
change in the functional form of the line shape re-
sulting from pha, se excursions caused by a number
of weak vcc with ku&I', .
(ii) I', «k u. The sine function in (17) is rapidly

varying for all r of interest and may be neglected
leading to an exponential in (16) of the form

exp[i (O'- I'„—I'„"—I'"') r k/(k —k')] .

The net effect of the vcc in this ca.se is to add an
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additional-rate I'"„' to the destruction of atomic co-
herence. The inverse coherence time is now

go~ mph pvc

Therefore, this situation occurs when k'u»r'„
+ I'„"+I"~ so that each collision is strong enough
to cause a total phase destruction of the coher-
ence s.

When none of the above limits are realized, (15)
and (17) should be used. To have an insight into the
physical meaning of thyrse results it is useful to
remember the case of level populations (i.e. , di-
agonal matrix elements) on which the effects of vcc
is simply understood as a redistribution of the
atoms over the velocity space, approaching ther-
mal equilibrium. The vcc act in a pure-classical
kinetic way and do not affect the total population
of a level (integrated over velocity).

Qn the contrary, a change of velocity induces
a change in the translation or Doppler phase of
the off-diagonal density matrix element, which

results in an additional decay term of this matrix
element. " Consequently, the vcc affect the total
atomic coherence between two levels (i.e. , the co-
herence integrated over the velocity) and, at the

same time, the signal profile.

%e have illustrated these results of Figs. 2 and
3, where I'" and N„are fixed to zero, and the
following parameters are used:

Dashed lines represent the absorption coefficient
e, in the absence of collisions, and solid lines
represent it in the presence of vcc.

Figure 2 shows the evolution of the profile with
increasing kernel width, from 0'u « I'„ to 0'u- I~. In Fig. 3, this width is constant and two cjif-
ferent vcc rates are used. In the absence of vcc
the ratio n, ,„/n, „is a constant. In the pres-:
ence of vcc, in addition to a broadening of the
curve, the most interesting feature is a change in
the value of o., ~„/o., „, providing a unique sig-
nature for the presence of vcc on optical coher-
ences.

These results could be considered as comple-
mentary to those of Barantsov et al."who have
already pointed out the interest of observing the
effect of the vcc upon the interference terms in a
three-level system; they focused their calcula-
tions upon the study of the Dicke effect associa-
ted with a microwave transition between two levels
connected to a third one by an optical transition and
used a strong collision model.

Laser spectroscopy of molecular two- level sys-
tems (saturated absorption" and photon echo")

Ji

0|',3

=0.1 =0.5

=0.5 =0.5

(u (u»

.5

FIG. 2. Saturated absorption profiles for two values
of the vcc kernel width. The dashed line represents o.3
in the absence of collisions, and the solid line repre-
sents it in the presence of vcc. The parameter n de-
notes the ratio of the kernel widths of I N/O'. In this
figure one assumes that there is no effect of phase-in-
terrupting collisions.

FIG. 3. Saturated absorption profiles for two values
of the vcc rate. The parameter p denotes the ratio of
the vcc rate to the decay rate I'z. The dashed and solid
lines have the same meaning as in Fig. 2.
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has already proved an efficient tool for observing
the effect of vcc on optical coherences. On the
other hand, observations of collision effects in a
three-level system' ' have been consistent with
an effect of vcc on level populations only; these
studies have dealt mainly with the usual saturated
contribution resulting from the stepwise absorption
of the saturating and probe beams. In this paper,
we have shown that TLS experiments, such as
that referred to in Ref. 11, can also be used to

search for the effect of vcc on optical coherences.
Note added in proof A. n article" containing a.

similar calculational method for studying the ef-
fects of vcc on coherences using saturated ab-
sorption in a two-level system has recently
appeared.
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