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Self-energycorrections for 1s&&& levels of heavy muonic atoms are calculated to all orders in (he external

field using numerical techniques to evaluate the bound-muon propagator. The resulting values of the self-

energy are about 10/o larger than previous estimates.

I. INTRODUCTION

Progress has been made in recent years in cal-
culating radiative corrections of order n to the
binding of K-shell electrons in heavy atoms. ' '
The most difficult aspect of such calculations is
the accurate determination of the electron self-
energy (represented by the Feynman diagram of
Fig. 1) in the strong field of a nucleus of high
charge Z. In recent calculations, expansion in
powers of the external field' (which shows no signs
of convergence for a, Coulomb field with Z ~ 10) is
avoided by employing an expansion based on the
known Coulomb Qreen's function'; or alternatively,
by a direct numerical evaluation of the electron
propagator. " The results of these recent electron
self-energy calculations, combined with an eval-
uation of the vacuum polarization and the Breit
interaction, have been used as corrections to Di-
rac-Hartree-rock many-electron calculations to
bring theoretical inner-shell binding energies into
agreement with experiment to a level of +10 eV. '

Factors influencing the binding in heavy muonic
atoms are of course quite different from those
occurring in the electronic case. Because of the
relatively large muonic mass, nuclear finite size
plays the dominant role in determining muonic
energy levels. Vacuum polarization and polariza-
tion of the nucleus by the muon, together with
electronic screening, .are other factors important
in determining muonic binding energy. The major
uncertainty in theoretical calculations of muonic,
binding is the nuclear polarization correction. '
Muonic self-energy is only a sma]l correction even
for ls, /, states; however, in view of the high pre-
cision of x-ray energy measurements, it is neces-
sary to have precise values of the muonic self-en-

ergy. (See also Ref. 7.)
In Sec. II of the present paper we discuss pre-

vious work on the muonic Lamb shift, then ln

III, we discuss our present calculations, and in

Sec. IV we describe our results.
I

II. PREVIOUS MUONIC LAMB-SHIFT CALCULATIONS

Only the lowest-order terms in a field-strength
expansion ' have been retained in older calcula-
tions of the muonic Lamb shift. ' " The resulting
energy shift is given by

cY ~ w I I 3 I
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where I/' is the muonic potential energy, m is the
muonic mass, and n is the fine structure constant.
The quantity ae occurring in Eq. (1) is the log-
average excitation energy defined by the Bethe
sum. The term -5 arises from the muon vacuum

polarization, w hereas the r emaining ter ms come
from the self-energy. There are two sources of
uncertainty associated with Eq. (1):

(i) The log-average excitation energy he is not
always given with high accuracy. Barrett et al.
determine ln(m/2d, e) to about 25'%%uo Bethe and
Negele" determine bounds on Ae which reduce the
uncertainty in in(m/2 De) to about 100/o. Such bounds

FIG. 1. P'eynman diagram representing the muonic
self-ener@r. The double line indicates that the muon is
propagating in the static field of a nucleus of charge Z.
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are also utilized by Ba,rrett" in his later tabula-
tions of 4.E„s. The most recent determination of
4e is that of Klarsfeld"- who evaluates the Bethe
sum numerically. For the 1s,~, state of muonic
'"Pb Klarsfeld's value of &ELs is about 20//~ higher
than Bar rett's value.

(ii) Contributions from terms of second and
higher order in the external field have been ne-
glected in Eq. (1). As has been pointed out by
Barrett et al. ,

9 the external-field expansion is
expected to converge for high Z in muonic atoms
in contrast to the situation for the electronic Lamb
shift. The largest term of second order has been
estimated and found to contribute about 15% to the
Lamb shift in heavy muonic atoms. This value
can be taken as a generous a,llowance for all of
the neglected higher-order terms.

Considering both sources of uncertainty (i) and

(ii) leads to an estimated error of. about 20/0 in the
existing LBmb-shift calculations for heavy muonic
atoms. As we shall see in Sec. IV, the existing
calculations do, in fact, lie below those of the
present calculations by about 10/g.

III. DESCRIPTION OF THE NUMERICAL SELF-ENERGY

CALCULATION

The present calculation is a numerical evaluation
of the renormalized self-energy following the me-
thod devised by Brown, Langer, and Schaefer. "
This particular numerical procedure ha. s been ap-
plied to heavy atoms (Z =70-90) by Desiderio and
Johnson' and to superheavy atoms (Z =90-160) by
Cheng and Johnson. ' For an electron in a nuclear
Coulomb field the present method' gives self-ener-
gy values in close agreement with those determined
by Mohr, 'who bases his work on the known Cou-
lomb Green's function.

The advantage of the present techniques in the
muonic case is that we are not restricted to a Cou-
lomb field but may consider other. potentials as
well; thus, the Coulomb singularity in the self-en-
ergy, ' w hich occurs at Z = 137 is avoided by includ-
ing nuclea, r finite size in the electron potential en-
ergy. ' In the muonic calculation, where nuclear
radii and muonic radii are comparabl, it is nec-
essary to allow for nuclear finite size in the inter-
action potential; the Brown-Langer-Schaefer me-
thod provides the appropriate tool.

A detailed description of the method together
with a discussion of the numerical problems en-
countered in its application is given in Ref. 14.
We just mention here that after renormalization
the Feynman diagram of Fig. 1 reduces to three
terms; AFsF = 6L ' +SF ' +i@HO. The "main
term„" &F ', involves a sum over photon partial
waves l and an integration over photon frequency

Since both the infinite l sum and the infinite
~ integration are slowly convergent, care must be
taken to estimate remainders after truncation ac-
curately. The term 4&~', which arises after re-
normalization, and the residue i@A„which occurs
because the ~ integration is rotated to the imagin-
ary axis, are both simple quadratures which are
calculated with high accuracy. As in the electronic
case, there is a cancellation between the three
terms; in the present case this amounts to a re-
duction in size of the sum to about 10/0 of the in-
dividual terms. This ca,ncellation becomes so
severe for light muonic atoms that the present
numerical procedure is impractical. Similar nu-
merical cancellations prevent us from giving ac-
curate values for the Lamb shift of states with
higher prinicpal quantum numbers.

The primary source of numerical error is our
estimate of remainders after truncation of AF~' .
With the present techniques these estimates lead
to an error of about 5% in the determination of

BsE for 1s
y /2 state s of muoni c atom s.

IV. RESULTS AND MSCUSSION

As pointed out in Sec. III the Brown-Langer-
Schaefer method works with sufficient accuracy
only for the 1+y/2 state in very heavy muonic
atoms (Z ~ 70). We therefore chose five nuclei
equally spaced in Z from Z =74 to Z =92, namely
""W '"Pt ' 'Pb "'Rn and "'U In order to see
a possible isotope effect on the self-energy level
shift, we have calculated the level shift for ' Pb
also. From an experimental point of view, the
muon binding energies of these two Pb isotopes are
also the best known ones in the Z region consi-
dered. The nuclear charge distribution employed
is always that of a. Fermi distribution

P(r) =P,ll+exP[(41ns) (~ —c)/tIJ '

with nuclear radius & and skin thickness t. The
values of c and t were taken from Table III of the
compilation of Engfer et al." This choice was
motivated by the consideration that the muon
bound-state wave functions and propagators should
be reproduced best by nuclear charge distributions
obtained from experimental muonic transition en-
ergies. Since all nuclei considered by us except
the Pb isotopes are deformed, we have had to
construct the corresponding spherical'charge dis-
tributions. This was done by fitting the radii of
aj.l measured spherical isotopes from Z =79 to
Z =83 by

and then extrapolating this function to the deformed
nuclei. In Table I we list the nuclear parameters
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TABLE I. Values of the nuclear parameters (fm) and the corresponding uncorrected Dirac
1sf /2 binding energies (keV) .

Nucleus g |1g( i'2)

182~
184~

i 94pt

'"pb
'"Ib
222R

238U

238U

. ~Reference 11.
Reference 15.

6.4038
6.3947

2 ~ 197
2.3

6.5085 2.3

6.6302
6 ~ 6477
6.8076

2 ' 3
2.3
2.3

6.9674

7.0028 2.637

9 186.239
9 168.838

9 857.212

10 538.801
10 526.017
11173.278

12 197.340

12 064.217

Barrett s par" meters
Extrapolation of Engfer "s

pRrRmeters
Extrapolation of Eng fer's
pRrRmeter s

Engfer's parameters"
Engfer's parameters ~

Extrapolation of Engfer's
parameters '

Extrapolation of Engfer's
parameters

Barrett's parameters

used together with the corresponding binding ener-
gies of the muon in the 1s, y, state; we also give
the nuclear parameters used in Barrett's calcula-
tion of the self-energy level shift" for later com-
parisons. The results of our calculations on the
ls, g, self-energy level shifts for heavy muonic
atoms are presented in Table II. For ease of
comparison with Ref. 1 we list values of the con-
tributing terms, AE~', 6 I-' ', and izA„ in muonic
Rydbergs (1Ry„=-m /m, Ry =2.818 keV). The
terms i', and b, E ' are reduced to about half of
their values in the electronic case, wherea. s ~&~'
is more than twice as large as in the electronic
case. Since all three terms nearly cancel, the
total shift is about 10/~ of the contributing terms
and much smaller than the corresponding electron-
ic values. Of course, this reduction was expected
because of the finite field strength argument of
Ref. 9.

The values of & ESE in keV ar e given in column
6 of Table II. In column 7 we give the small con-
tribution of vacuum polarization by muonic pairs
deduced from Eq. (1). Finally, in column 8 of

Table II we list the resulting value of the muonic
Lamb-shift in keg.

For comparison we include values calculated
using the same nuclear para, meters as used in
Barrett's Table 1 (Ref. 11) for two nuclei "'W"
and "'U". For both nuclei we find an increase in
the level shift of about 10% as compared with
Barrett'8 first-order calculation. Adding in Bar-
rett's estimated second-order shift reduces the
discrepancy further. Comparing our results for
two nuclei ('"Pb, "Pb) with different charge dis-
tributions but the same total charge Z, we find a
comp). etely negligible isotope correction to the
Lamb shift. The insensitivity of 6 Eqs to nuclear
parameters is further illustrated by comparing
the first and second rows of. Table II in which '"'%
computed using Barrett's parameters is compared
with W computed using Engfer s parameters, or
by comparing the last two rows of Table II in
which col responding values are. given for U.

Qn the ba, sis of the close agreement between our
present values and Barrett's values of 6&Ls(1)
+ AL Lg(2) we see that the finite-field-strength ar-

AF. g E
(keV)Nucleus

/

TABLE II. Self-energy level shifts for 1s&g2 states in heavy

AE AF. i T(R
() AZs E

(1) (2) &~vs
(Ry, ) (Ry, ) (Hy„) (ay, ) (kev)

Q1.uonlc atoms.

Ref. 11

$82~
i 84~
194yt
206Pb

'"Vb
Rn

238U

238U

-14.59
—14.56
-14.84
-15.10
—15.07
—15.25
-15,61
—15.39

-10.89
-10.89
-11.05
-11.19
—11.19
-11.30
-11.43

11.43

26.60
26.56
27.08
27.55
27.51
27.86
28.45
28.19

1.12
1.11
1.19
1.26
1.25
1.31
1.41
1 ~ 87

3 ~ 15'
3.12
3.35
3.54
3.52
3.69
3.97
3 85

—0.219
-0.218
-0.233
-0.247
-0.246
-0.256
—0.275
—0.264

2.93'
2.90
3.12
3.29
3.27
3.43
3.70
3.59 3.17+ 0.52

Calculated vrith Barrett's nuclear parameters, Ref. 11.
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ized moments of the nuclear-charge distribution
(e.g. , the Barrett moment (x e ""))are deduced
from the measured muonic x-ray transition ener-
gies. In the standard compilation of Engfer etal. , '"
only the first-order Lamb-shift corrections of

,Barrett" are taken into account. Since the higher-
CP

P.O—

UJ

Cl

f.0

Ol I I I

20 40

guments of Ref. 9 are adequate for muons in 1s,g,
states; moreover, we see that in the range con-
sidered here &E~s(2) accounts very well for the
higher-order o. Z corrections to Eq. (1). We ex-
pect Ba,rrett's values of b, E„,(1) +DES(2) to be in-
creasingly accurate for lower values of Z, so that
the present calculations for Z& '74 supplemented
by Barrett's values for lower Z provide 6 RLs for
1s, ~, states throughout the entire range of atoms
accurate to about 5/~. Results of our calculation
are al so shown in Fig. 2 where the s elf- energy
shifts in keV are plotted against nuclear charge Z.

Experiments on muonic atoms are commonly
analyzed in a model-independent manner. " In
these analyses, some model-inaependent general-

1 I I I

60 80 IOO

z
FIG. 2. The muonic Lamb shift plotted against nuclear

charge for ls&g& states. The symbol II designates re-
suIts of the present calculation, designates Barrett' s
first-order calculation 6 E& s(1), 0 designates Barrett' s
second-order calculation 4E„S(1)+ 6FLs(2).

order corrections to the self-energy level shift
are somewhat larger than present day experimen-
tal' errors in the muonic x-ray transition energies,
these higher-order corrections should be properly
taken into account. Using Eq. (17) of Ref. 15, we
find a decrease of the Barrett moment (r'e "")for
the ls, y, state in very heavy muonic atoms of the
order of 0.0005 fm due to the higher-order correc-
tions of the self-energy level shift.

As mentioned in the introduction, the main source
of uncertainties in the analysis of measured muonic
x-ray transition energies is the theoretical uncer-
tainty of the nuclear-polarization correction. In a
recent paper, Enteneuer et al.' have tried to deter-
mine experimentally the nuclear-polarization cor-
rection by a consistency analysis of measured mu-
onic transition energies and high-energy eleetron-
scattering cross sections. Since all other correc-
tions to the muonic transition energies except the
nuclear-polarization corrections have to be taken
into. account as given by theory, the higher-order
corrections to the muonic self-energy level shift
would increase the measured nuclear-polarization
correction by the same amount.
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