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Finite-temperature T matrix in a real-time formalism*
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A generalized off-shell unitarity relation for the two-body scattering T matrix in a many-body medium at
finite temperature is derived, through a consistent real-time perturbation expansion by means of Feynman
diagrams. We comment on perturbation schemes at finite temperature in connection with an erroneous
formulation of the Dyson equation in a paper recently published.

I. INTRODUCTION

In a recent paper' scattering in a many-body
medium at finite temperature in equilibrium was
examined, and a generalized off- shell unitarity
relation for the T matrix was derived in a real-
time perturbative formalism. The starting point
features a Dyson equation for the real-time
Green's function at finite temperature in the con.—

text of non- time-ordered Feynman diagrams. To
our knowledge the Dyson equation, Eq. (1) of Ref.
1, cannot be found in the current literature, and it
is our belief that no suitable justification for it is
given in Ref. 1 (see Sec. IIA). It is perhaps worth-
while to mention some of the significant develop-
ments related to the subject of perturbation
schemes for real-time Green's functions at finite
temperature.

The well-known zero-temperature Feynman dia-
gram expansion relies upon the assumptions that
at both times —~ and + the system is not inter-
acting and that the states which develop from -~
forward in time and from +~ backward in time
are the same. ' For this reason it can be applied
neither to systems at finite temperatures, ' nor to
systems in nonequilibrium even when the system
is described by its ground state. ' In such cases
no time-ordered product appears when transform-
ing to the interaction representation, and Wick's
theorem does not apply.

Nevertheless, for equilibrium situations, ther-
modynamic imaginary-time Green's functions can
be defined (for finite temperature); from an order-
ing along the imaginary-time axis, a generalized
Wick's theorem follows. ' This theorem allows the-
use of a diagrammatic perturbation theory for. the
imaginary-time Green's function similar to the
zero-temperature one. In the corresponding
I.ehmann representation an analytical continua-
tion to real frequencies can be performed, and it
is then proved that the obtained weight function also

determines the retarded and advanced real-time
Green's functions. " It should be stressed that no
diagrams are available in this equilibrium form-
alism for the real-time Green's functions.

For nonequilibrium situations, the iteration of
the imaginary-time Green's function equation of
motion results in a perturbative expansion that
can be analytically continued to real time. '

It is interesting to note that these difficulties in
the applicability of Wick's theorem do not arise in
the recently derived" perturbative expansion in

Feynman diagrams of the classical thermodynamic
Green's functions.

In order to deal directly with real-. time Green's
functions in equilibrium and nonequilibrium at
both zero and finite temperatures, two related
formalisms have been developed. One of them is
essentially due to Schwinger" and it is the func-
tional counterpart of the diagrammatic perturba-
tive scheme introduced by Keldysh and Craig in-
dependently, "which has been extensively used in
the liter atur e.""This diagram technique is based
on the use of a closed contour C for time ordering
(from ~ to + ~ and then back to -~) in which the
times on both branches of C are differentiated as
a bookkeeping artifice. Contour C allows a con-
sistent application. of Wick's theorem and, there-
fore, formally the same diagrams are obtained
as at zero temperature, only now the time labels
of virtual states are integrated along C. @Then the
two branches of the contour are disentangled, one
is led to the real-time functions. It should be men-
tioned that suitable definitions of new dynamical
pictures lead to Keldysh's results, considering
time ordering from —~ to + ~ only. "

It is the purpose of this paper to derive a gen-
eralized off-shell unitarity relation for the T ma-
trix at finite temperature in the framework of
Keldysh's consistent real- time perturbation
theory, in whi. ch a Dyson equation and a self-en-
ergy can be well defined. In order to carry out
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M . ..g (x~, . . . , x ) —M(x)t~, . . . , x i ().
In particular when all the tim|.'s lie on the upper
branch, the M, .. . , equals M. Internal degrees-
of-freedom indices can also be made explicit, but
in order not to encumber the notation they will
be left implicit.

The generalized one-partj. cle Qreen's function is
defined in terms of fields in, the Heisenberg pic-
ture g„as

/

iG,~(x„x,) =- ( Tt g„(x,t„)g'„(x,t,~)]), (2.1)

where ( ~ ~ ~ ) is the expectation value Tr(p. . . )/Trp,
where p is the density matrix. 'The time-ordering
operator T~ orders times along contour C, that
ls,

Tc(A(t )B(t~)]
= 6 ql, 6,T[A, (t)B, (t')] + 6~ T[A (t)B (t')) j
+ 6, 6a,A (t)B,(t') —5,56~ (i')A, (t), (2.2)

where T and T denote the usual time and anti-
time- ordering operators.

The relevance of the generalized Qreen's func-
tion (2.1) is expressed by the following relations:

iG„(x„x,) =(T[g (a)xP„(x,)])—= iG(x„x,),
iG, (x„x,) = —(Pta(x, )g„(x,)) =iG (x„x,),
iG, (x„x,) = ( t/ „(x,)g„(x,)) = i G' (x„x,),
iG (x„x,) =(T[g„(x,)/~a(x, )])=—iG(x„x,) .

(2.3a)

(2.3b)

(2.3c)

(2.3d)

The study of G
&

will thus lead us directly to the
knowledge of the four finite temperature real-time
Qreen's functions.

It is easily verified that G z is T, ordered when
expressed in the interaction picture. The change

our derivation we find it necessary to r'eview the
formalism, giving the rules for practical calcula-
tions since they do not appear to be sufficiently ex-
plicit in the literature. At the end, we comment on
an S-matrix approach to scattering in a many-
body medium at fin. ite temperature. .

1

II. REAL-TIME FORMAt. ISM T MATRU(

A. Real-time formalism at finite temperature

In Keldysh's formalism each physical magnitude
M=M(x„.. . ,x„),where x, =(x„i,), is generalized
to a corresponding M(x, t, , . . . , x„t„~)where the
subindex n(. . . P) is equal to + or —depending on
whether i, (. . . i) lies on the upper (from ~ to
+ ~) or lower (back from. + ~ to -~) bra, nch of
circuit C. Each specification of the set (n, . . . , P]
defines a different functional dependence on the
variables (x„.. . , x„),that is, it defines one of
the 2" functions

C C

x E„,(x„x,)G,~(x„x,) . (2.4)

It can be proved that disconnected diagrams do not
appear in any order in this perturbation expan-
sion. "'" Note that Eq. (2.4) for G z represents,
in fact, four equations, one for each specification
of (~, P].

An essential feature of this finite temperature
real-time Dyson equation is the fact of the four
functions G, G, G, and G being mixed up in the
self-energy term. Hence it should be stressed
that the euqation for G ~ is closed, but that each
of the four equations to which it gives rise for its
four components is not closed.

Before proceeding further we give the explicit
ruled used in this formalism:

d'xM ( ~ ~ x ~ ~ )

+OO

dt M. .., ...(. ~ x ~ ~ )
~00

ens : (x "))... „

sgn n d'x M. ..,...( ~ ~ ~ x ~ ~ ) . (2.5)

We write sgn o. (= n) instead of a for a clearer
under stan. ding.

(ii) In the same way as in the usual zero-temper-
ature formalism the static instantaneous inter-
particle potentia, l V(~x, —x,

~
) is rewritten as

U(x„x,) = V(~ x, —x, )6(t, —t,) in order to express
the Dyson equation in a covariant way (see Ref. 2,
p. 85), it is here necessary to consider the follow-
ing generalized interparticle potential:

U.,(x„x,) -=V(ix, x, i)6.,(t„t,),
where

6 ~(t„t2)= sgnn6 86(t, —i,)

(2.6)

(2.7)

of image of the fields is performed through an
operator defined along the contour C. An adiabatic
hypothesis is made at the physical time t = -~
only, so that a possible degeneracy of finite tc.
pyrature states is irrelevant. (Nevertheless it
can be proved" that for systems in equilibrium
this procedure leads to the correct expectation
values in terms of the true canonical distribution
p. ) A generalized Wick's theorem applies, so
that G ~ can be expanded in a perturbation series
which can be written as a Dyson equation in terms
of the proper self-energy Z„(seeFig. 1),

G, (x„x,) —G, , (x„x,)
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FIG. 1. Dyson's equation in Keldysh*s formalism.
Subindic es are double valued. The sense of the Green's
functions' arrows refer to the relative order of subin-
dices and space-time coordinates.

verifies

dt, 5,8(t„t, )M. .q
(. . .t, . ~ . )

= V(jx, x, ~)M. ......( f, ). (2.9)

(iii) The same formal rules apply for construct-
ing Feynman diagrams for G ~ as in the usual
formalism for zero-temperature Green's function
(see Ref. 2, p. 97); the essential difference lies
in the fact that the time variables are defined along
C, or in other words, that all magnitudes carry
subindices.

Using Eq. (2.5), the Dyson equation (2.4) can
be expressed in terms of physical time integra-
tion ( f„).Et is then straightforward to transform
it to the Fourier-space representation, and, if a
uniform system is assumed, an algebraic equation
is obtained:

G, (P) =G...(P)+ G, ,(p)E(p)G,, (P)

—G...(P)E'(P)G. (P)

-G. - (P)E'(P)G.g(p)+ G. -(P)E(p)G-I (P),
(2.10)

where p = (p, p, ) and hp(h p, ) is the momentum
(energy). For Z, z a shorthand notation has been
used (Z, Z, Z, K), in equivalence to the one for
G z in Eq. (2.3). The (n=+, P=+j component of .

Eq. (2.10) is the Fourier-transformed equation for
the real-time Green's funct'ion 6, and it features
a different and much more complicated self-energy

=M... ...( ~ ~ t, ~ ~ ), (2.8)

and where 5 ~ and 5(t, —f,) are the usual Kronecker
and Dirac deltas, respectively. From (2.5) to
(2.7) it follows that

term than Eq. (1) of Ref. 1, where a closed Dyson
equation for G is written down in terms of Z. It
should also be noted that such an equation does not
follow from the usual equilibrium imaginary-time
formalism: a Dyson equation exists for the
imaginary-time Green's function defined at a de-
numerable set of points on the imaginary fre-
quency axis; and only after the relevant diagrams
(i.e. , in this paper, the ladder ones) have been
calculated for these particular frequencies can the
result be analytically cont'inued to the whole com-
plex-frequency plane and, in particular, to real
frequencies. The weight function thus obtained
for real frequencies determines also the Fourier-
transformed real-time Green s functions", this
is the important result of the imaginary-time
formalism. The imaginary-time Green's function
analytically continued to real frequencies is not
the same as the real-time Green's function (i.e. ,
compare Eqs. (31.35), (31.22), and (31.24) of
Ref. 2).

On the other hand, in the nonequilibrium imagin-
ary-time formalism developed by Kadanoff and

Baym, ' the imagip. ary-time Dyson equation is
analytically continued to real times. So a Dyson
equation does exist but it turns out to be the same
form as Eq. (2.10)." And it should be noted that
their formalism is especially well suited for mak-
ing contact with the theory of equilibrium imagin-
ary- time Green's functions because it reduces to
it in the absence of external fields. 4

B. T-matrix unitarity relatio'ns

Our aim is to derive a real-time theory for two-
body scattering in a many-body medium at finite
temperature, in particular for the T matrix
or generalized scattering amplitude. In the self-
consistent ladder approximation all the diagrams in

Fig. 2 are summed up; as explicitly seen below,
this considers both particle-particle qnd hole-
hole intermediate scattering states while the
particle-hole ones are automatically excluded.

When the rules of Sec. IIA are applied to these
ladder diagrams, and after a somewhat lengthy
but straightforward algebra, one arrives at the
following compact expression:

dq
(2 ), G, (q)

x [F (P 0 P q) —F (P, q;0 P)j

(2.11)

where the effective two-particle interaction I' is
defined by the equation (see Figs. 3 and 4)
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r„,~(p„p~,p„p4)

=&.,sgn~V(II. -13I)+—g sgn&
2 4 V(lkl)G. .(P. -k)G., (p, +k)r„„(p,—k, p, +k;p„p,) (2.12a)

i d'k

=6 ~sgnotV(l&i-&. l)+ —gsgn~ ",V(lkl)G. s(p. —k)G.s(p+k)r -(p. P. 'p. kp-. +k) (212b)

From the equations for the four components of I z~ (denoted as 1; I', 1 and 1 in an equivalent nota-
tion to that of G z and Z ~) that follow from Eq. (2.12), and using the fact that under a. frequency convolu-
tion integration GG- G~G is equal to G G4 —GG, it can be seen that 1 —r4 (r4 —1) and I ~ —I'(I' —r')
satisfy the same equation. For this reason it is useful to define the retarded and advanced amplitudes,

and r +.

r'(p„p,;p„p,) = r(p„p,;p„p,) r'(p„p, ;p„p,) = r' I,
r"(p„p,;p„p,) = r'(p„p,;p„p,) r(p„p,;p„p,) = I I ',

which verify the following equations:

(P])p 39 P3 7 P, 4)

(2.13a)

(2.13b)

R
= V($, —p, l)+ —,V(lk l)[G(P, —k)G(P, +k) —G'(P, —k) G'(P, +k)]I'"(P, —k, P, +k;P„P,) (2.14a)

4 8
= V(lp, —p, l)+ —

2 4 V(l kl)[G(p, —k)G(p, +k) —G~ (p, —k)G~(p + k)] I"(p„p,; p, —k, p, + k), (2.14b)

in an obvious shorthand notation. From Eqs. (2, 12) and (2.14) we get

der'(P. p. 'p. P.) =—„„).v(lkl)(G'(p —k)G'(p. +k)I "(P —k p. +k'P. P )

+ [G(P, —k)G(P, +k) G'(P, k)—G'(P, +k—)]r'(P, k, P.+k;P„—p.) l

d4k

, , v(lkl)(G'(P, -k)G'(P. +k)r "(p„p„p.k, p.+»—
(2. 15a)

and iterating this equation we obtain

+ [G(P, —k) G(P44 k) G~ (P, k)G~ (P4+ k)]r (P„P,; P, —k, P4+ k)],

(2.15b)

(P] 1 P2 t P31P4) ), r'(P„P,;P, k, P, +k)G'(P, k)G'(P, +k)r "(P, k, P, +k;P„P,)

dk I'"(P —k, P +k;P, P )G (P —L)G~(P +k)I' (P„p;P—k, P +k).

(2.16a)

(2.16b)

As it can easily be proved from the previous equa-
tions, the following relations hold:

(G'(P))*=G'(P), (G(p))*=G(p), (2.17)

I '(p„p,;p„p,) = (r'(p„p„p„p,))*

= r"(p„p,;p. , p.), (2.18a)

r' (p„p,;p„p,) = r' (p„p,; p„p,) . (2.18b) Flo. 2. Ladder diagrams in Keldysh's formalism.
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FIG. 3. Self-consistent ladder approximation to the
proper self-energy in Keldysh's formalism.

Then, from (2.16) and (2.18) we obtain a general-
ized off- shell unitarity relation for the real-time
scattering. amplitude at finite temperature:

r"(p„p.;p„p,) r""(p„p,;p„p,)

i d'k

( )~
1 (p„p,;p, —k p +k)

x [G'(p, k)G'(p, +k) G'(P, k)G'(P, + k)]

(p —k, p +k'p, p ). (2.19)

Equations (2.16) and (2.19) are a generalization
of the ordinary scattering theory optica, l theorem.
A first-order approximation to these self-con-
sistent expressions is the replacement of the true
Green's functions G& by the free ones G&. Equa-
tion (2.19) in this case reduces to

[~"(P„P.;P., P.) —1'"(P„P.;P., P.)]
x {1 exp[Ph(P„+P„)]] '

i d'k
(2,)2

1' (pi p2 pi kpa+k)&;, -a"-u,.a
x I""(P, k, P, + k;P„P,)

&«[pro+ p20 k(~p, -a+ ep, +a-— (2.20)

where the fact that I', I'" in the integrand do not
d'epend upon k, has been used, and

n~
-={1+exp[P(e,' —p)]] '

e,' -=k'p~/2m .

(2.21a)

(2.21b)

These relations generalize the on-shell optical
theorems which have been proved in the imaginary-
time formalisms. " The point of our discussion is
that a correct optical theorem for the physical T
matrix has been- obtained through a consistent real-
time perturbation scheme at finite temperature.

FIG. 4. Self-consistent T-matrix equation in
Keldysh's formalism gadder approximation).

It should be stressed that as our starting equations
are formally similar but different in nature to
those in Ref. 1, essentially due to the matricial
form' of these equations in Keldysh's formalism,
our final results differ.

In the nonequilibriurn situations of kinetic theory,
a Markovian approximation is usually made which
allows the development of a T-matrix theory along
the same lines as in this paper. If in addition the
approximation" of vanishing off-diagonal parts (in
the matrix notation") is taken at the beginning of
the calculations, a simplified nonequilibrium T-
matrix theory follows. These results agree ex-
actly with Hall' s,"who uses Keldysh's formalism
in these approximations, arid who extends pre-
vious results of %yld and Fried to inhomogeneous
systems. Alternatively, ' if we consider the appro-
ximation of vanishing off-diagonal parts in this
paper [e.g. , in Eq. (2.12)], we obtain closer re-
sults to those in Ref. 1; even so, the crucial dif-
ference of the G,G, term under the integral signs
being replaced by G,G', —G,'G, persists in this ap-

proximationn.

Finally we would like to remark on the high
desirability of an S-matrix complete description
of two-body scattering processes in a many-body
medium. The above defih. ed T matrix I' would
then be the ladder approximation to the complete
T matrix, that is, the approximation in which the
kernel of the Bethe-Saltpeter equatioh is substituted
by the potential. Also, the interpretation of scat-
tering wave functions would then become clear.
This program has already been carried out at zero
temperature in connection with scattering pro-
cesses in atomic physics. " Vfe are working at
present on the nontrivial extension to finite tem-
peratures in a real-time formalism, and hope to
report our results elsewhere.
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