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A dynamical theory is presented for the enhanced fluctuations that occur in a time-dependent Ginzburg-

Landau model system with the order parameter not conserved which is quenched from a thermodynamically

stable to an unstable state. In a certain weak-coupling, long-time, and long-distance limit, diffusion and

saturation effects can be treated separately. As a result explicit expressions are found for the probability

distribution functional, the two-point reduced distribution function, and the pair correlation function of the

fluctuations, which evolve from an arbitrary initial probability distribution functional. The behavior of the

latter two functions is also displayed graphically. A central role is played by the time-independent nonlinear

transformation of the order parameter which takes care of the saturation effects. The nature of such a
transformation is discussed in a general context. If the problem is viewed as a nonequilibrium critical

phenomenon, the theory corresponds to the Landau mean-field theory. An expansion in & = 4 —d is

suggested to improve our treatment, where d is the dimensionality of space.

I. INTRODUCTION

In recent years, the time evolution of the fluc-
tuations of a system suddenly brought (quenched)
into a thermodynamically unstable state has re-
ceived increasing attention from theoretical' and
experimental physicists. "Major efforts have been
directed towards constructing methods capable of
handling the strongly nonlinear character of the
problem. The subject is of fundamental importance
because of its relevance to the old problem of ob-
taining a correct statistical-mechanical descrip-
tion4 of metastable and unstable states. The prob-
lem is also of interest because it invoIves a second
length (the "domain" size) in addition to the corre-
lation length associated with phase transitions.

The present status of our theoretical understand-
ing is somewhat mixed. On the one hand consid-
erable success has been achieved in the develop-
,ment of approximate calculational schemes' which
adequately explain for example the fluctuation
spectrum of the spin-exchange kinetic Ising model2
as given-by computer simulation studies. On the
other hand, recent spinodal decomposition experi-
ments in fluids' ' seem to indicate inadequacies of
the existing theories. In any case the present
theory is characterized by the absence of a con-
trolled approximation scheme in which one has a
clear idea of the error involved. In this, regard
the recent work of Suzuki' on simple stochastic
models with small nonlinear couplings seems
particularly interesting. In essence he has shown
that the nonlinear terms in the stochastic equation

can be treated as a singular perturbation' in the
interesting domain of the long-time behavior of the
system. Indeed, a simple change of variables re-
duces his nonlinear stochastic equation for this

, domain into a readily solvable form.
The range of applicability of the class of models

treated by Suzuki is, however, restricted to sys-
tems such as lasers in which only a finite number
of degrees of freedom are important. One of us,
therefore, has attempted in recent works' to ex-
tend Suzuki's method to treat models with an infinite
number of degrees of freedom (field theories)
which should have a wider range of applicability.
Before describing this work we digress for a mo-
ment to present a simplified version of Suzuki's
theory in order to facilitate a better understanding
of our study of the time-dependent Ginzburg-I, an-
dau (TDGI ) model. For this purpose we consider
a simple "laser" model which is described by the
following equation for the probability distribution
function P(S, t) of a single variable S:

aP(S I) 8 s g,
Bt BS BS 6

=L———vS+ —S' P(S, t),

where I, 7, and g are positive parameters of the
model. ,This equation has the well-known equili-'

brium solution describing coexisting phases, with
peaks around the mean-field values S =+S, with S
= (6r/g)'~' If we st.art initially with a Gaussian
distribution centered around S = 0, exp(-S'j2X),
with X being the initial variance, instability leads
to a rapidly growing fluctuation. Hence, even for
small values of g, a simple perturbation solution
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, =L~s(t) — s(t)'.
dt 6

(1.2)

The asymptotic solution for the long-time behavior
is

-1/ 2

sit) s'()) ()+—s'(=t)*
67

with S'(t) —= S(0)e~", which we regard as the trans-
formation S(0)-S(t). Now, since the time develop-
ment of the probability distributiori goes backward
in time as in the Liouville equation, we obtain
P(S, t) by substituting the inverse transformation

s - e '~ "s/[1 (g/6w)s']' ' (1.4)

into the following modified initial distribution func-
tion obtained by matching:

P, (S ) = (2m X)-xi2e-s'/ax (I 5)

with X=—=''X+L/v. Thus, after including the Jacobian
of the transformation, we obtain the following re-
sult for the probability distribution function at
long times:

P (s, t) = [2~x(t)]-"'[1—(g/6~)s']-"'

xp(-s'/x(t)[1 —(g/6 )s'] },
with ~s~ &S„and

x(t) = xe'"'.

(1.6)

(1.7)

Equation (1.6) reduces to a Gaussian distribution
function in terms of the variable S given by

of (1.1) in powers of the nonlinear coupling breaks
down for times of the order of (2Lv) ' In[6m/g(X
+w ')]. This is an example of a singular perturba-
tion whose solution in this case requires retaining
all orders of g in the perturbation theory which ap-
pear in the combination

y(t) = (g/«)(x+& ')e""
(i.e., one sums the most "dangerous" diagrams).
This corresponds to taking the limits g-0, t —
such that y(t) remains finite. This is somewhat
reminiscent of the irreversible statistical-mechan-
ical theory of Van Hove and Prigogine. ' Suzuki'
has shown that in this limit it is legitimate to drop
the second derivative in (1.1) for long times such
that the probability distribution is sufficiently
broad and to match the solution of the modified
stochastic equation at the initial time. Since the
stochastic equation is first order, just like the
Liouville equation, its solution can be obtained by
first solving the characteristic equation, which in
this case is the following deterministic equation of
motion for S(t):

~ )'' =-f, ;(s)p((s)(,), ,
k k

where [S}=(s-„;0& v} with v defined below and

(1.9)

c,-[S}-=y-S- gI

x 6 q —k, — -k, Sk Sk, S-„. 1.10
k k

Our notation is the following:

Eventually, thewariance X()!) of So increases indefi-
nitely. However, S never exceeds its saturation
value (6r/g)'~'. In fact, the transformation (1.8)
squeezes the broadened Gaussian distribution of
S' at long times into the double-peak distribution
of S. In this sense (1.6) may be called the
sq ueezed-in Gaussian distribution function. It
should be noted that the time-iridependeut trans-
formation (1.8) plays the central role in this meth-
od.

The time enters only in the variance of the Gaus-
sian distribution of S'. At t- ~ (1.6) reduces to the
sum of two & functions peaked at S=+S, which is
incorrect. The distribution function which reduces
to the correct equilibrium solution in this limit can
be obtained by matching the solution of the modi-
fied stochastic equation to the solution of the full
stochastic equation near the final state. '

As noted above we have attempted elsewhere
to extend the above ideas to systems with an infi-
riite number of degrees of freedom, and in parti-
cular to TDGL stochastic models which are sud-
denly quenched from a thermodynamically stable
state to an unstable state. For such models there
exist a set of variables with long wavelengths
which are unstable in the initial regime and are
somewhat analogous to the variable S above. How-
ever, one encounters a problem in that there exist
other variables with short wavelengths which are
stable and for which the method described above is
not applicable. However, we have been able to
show' that the dynamics of these long-, and short-
wavelength fluctuations become asymptotically de-
coupled for the long-time domain (the "turbulent"
regime") and that the effect of the short-wavelength
fluctuations is only to renormalize various param-
eters in the model. This result enables us to
limit our consideration just to the dynamics of the
unstable long-wavelength fluctuations for which the
idea of Suzuki can be applied. The system can then
be described by the following model stochastic
equation for the probability distribution functional
P (fs},t) for the local order parameter [S}valid at
large times:

s'= s/[1 —(g/6~)s']"' (1.8)

which is in fact the same transformation as (1.3). dk,
k I k I &IC
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d is the spatial dimensionality, 6/6S-„ is (2v) times
the functional derivative with respect to $„-, & is
(2m) times the 5 function, and I- is the kinetic coef-
ficient. The positive quantities g and v' [with y;
= +ac' —q')] are the parameters which appear in
the Ginzburg-Landau-Wilson free energy 4,

4 t2 K2 $~2

+ ~ kx+ +ks+k4
4t ~, j2~j, j4

X$~ $ $1, $f,k~ R k3 k4

The negative sign in front of K' implies that the
system is being driven to an equilibrium ordered
state. The absence of the second functional deriv-
ative in (1.9) is justified' in the turbulent regime
provided that we match the solution of (1.9) at
short times with the solution of the original sto-
chastic model. The original model' includes the
addition of the second-derivative term

&2P ((S), t)
6$„-6$ -„

to the right-hand. side of (1.9). It is worth noting
here that the approximation scheme that led to (1.9)
involved dropping those terms in the final solution
for which the coupling constant is not multiplied by
the large factor exp(2La2t). Hence, as far as the
description of phase transitions is concerned, our
approximation does not go beyond the Landau
mean-field theory.
. The present work is devoted to the study of the

behavior of the model defined by (1.9) and (1.10) in
the weak-coupling long-time long-distance limit
(see the end of Sec. III). It does not treat, how-
ever, the final limiting behavior in which the final
equilibrium state is reached. In this case a cor-
rect description necessitates including the term

()'P ((S), t)
as„-~$ „-

to (1 .9).
Our model shares the perennial difficulty common

to all the nontrivial nonlinear field theories, name-
ly the coexistence of the nonlinearity [the last term
of (1.10) and (1.11)] and the gradient term [the
wave-number-dependent parts of the first terms of
(1.10) or (1.11)], which produce the saturation ef-
fects and diffusion of local fluctuations, - respec-
tively.

As will be discussed in Sec. II, the surprising
fact is that in our case the effects of these types
of terms can be separated in the long-time do-
main, at least in the leading order of our approxi-
mation. In fact the nonlinearity of the problem can

II. TIME EVOLUTION
OF THE PROBABILITY DISTRIBUTION FUNCTIONAL

Since our model stochastic equation (1.9) is first
order in the functional derivative, the time evolu-
tion of P((S), t) is known if we know the solution of
the following deterministic equation of motion
which corresponds to (1.2)'.

ds;(t) (S( ))dt
(2.1)

subject to the initial condition S;(t =0) =S;. If the
solution with the initial value (S) is denoted simply
by S(t), the formal solution of (1.9) with P((S], t =0)
=Po(S) is then obtained as

({ j,p) Sc( expe c=c;(sji.(Sj-6

where

=Po(S(-t)jJ((S),t), (2.2)

Z((Sj, c)=ex( (J spS c;{Sj)(- (2.3)

is the Jacobian in the function space associated
with the transformation (S)-(S(-t)).

We now turn to the problem of solving (2.1) and
introduce the new variables

S (t) -=e'VS;, (2.4)

8;(t) = e-"-'S,-(t). (2.5)

Using first (2.4) and then (2.5), (2.1) can be trans-
formed into the following integral forms:

be taken care of by a simple local time-independent
transformation of the variable as given in (2.26).
Thus, the explicit form of the probability distribu-
tion functional in the turbulent regime can be
written. In Sec. III, we derive expressions for the n-
point probability distribution and correlation func-
tions. In Sec. IV, we display the behavior of two-'

point distribution and correlation functions as
functions of the time and the distance between the
two points. In Sec. V we present a further discus-
sion of the time-independent transformation of the
variable in a more general context including the
case of TDGL model with conserved order param-
eter. In Sec. VI, we discuss the theory from the
view point of nonequilibrium cr itical phenomena
and suggest a possible improvement of the approxi-
mation. We also briefly discuss the limitation of
the theory with- regard to metastable states.
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t
S (t)-, S,=(t) ' f f f S(» —k —k —k) dt ""-,S,-(t)S. -„(t)S (t)

0

and

s-(t) =s- ——gJ-
q' q 6

s(s k, tt, k,)f dt, exp[(y; +y&+y; -y.;)t,)s; (t,)s; (t, )s; (t). ,
k3 0

(2.6)

The first few terms of the iterative solution of (2.6) take the form

s (t) s, -d'=-j j s(s k, )» k,)
k1 k2 k3

t
dt~ exp[(y-„+y&+y-„—y;)t,]s-„s+SI

6 q —k, —k2 —k3 —k4 —k,
1 5

fkdt,
0

t1
dt, exp[(y, „-; +y„- +y; y;)t,]

x exp[(yk yyi +yk3 —y» k» i,)t2]sk Si S[(3sk»sks+ (2.7)

The structure. of the iterative solution is shown by diagrams in Fig. 1. A typical higher-order term may
be represented by a diagram shown in Fig. 2. The contribution from such an nth-order term in (2.7) has
the following general structure:

~ ~ ~

~ ~

1 2n+1

t1
dt '''

2

t
dt„exp(I', t, + I', t, + + r„t„)S;S+ S&n+1

(2.6)

where I",. takes the form

~; =- yK. +yK. + &K.- —yK.i i f
(2.9)

in which K'„K,", and K'," are the wave vectors as-
sociated with the three lines emerging to the right
of thenth vertex and K, is the wave vector of the
line emerging to the left. Now, for long times the
n-fold time integral of the exponential function in
(2.8) can be well approximated with error of the
relative order of (2Lt)~g2~e~"o' by

where in the denominator the yK's have been re-
placed by y, since the K's are of the order of
(2Lt) ' '. It is then clear from (2.9) that the yx's
associated with an internal line cancel in the sum
Z,. I', and {2.10) reduces to

1 n

)„exp(tP y,), (2.IO)

-0

q-k-k4
q

FIG. 1., Diagrams of the zeroth-, first-, and second-
order iterative solutions of (2.6). FIG. 2. Typical higher-order diagram.
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1 2n+1

[ (2 )„exp
~ PP g=1

(2.11)

That is, all the terms of the nth order contribute
an equa, l amount (2.11) to (2.7). On the other hand,

there are (2n —1)!!terms like (2.8) in the nth or-
der. In other words, there are (2n —1)!!diagrams
like the one shown in Fig. 2 in which the times are
ordered and all the lines are considered to be dis-
tinct. Hence, if we use (2.4) and (2.5), (2.7) re-
duces to

s-(t) =s-'(t)+ ( " ''
~

2 "n &

n= k1 2 n+1

5(q —k, —k, — —k,„„)s~(t) S'-„' 'S)s (t), (2.12)

where

o'. =gL/6y, . (2.18)

S(r, t) = S„-(t)e"', (2.14)

S'(r, t)=J S;'(l)e'"'.
k

Thus, we obtain

(2.15)

The result (2.12) takes a simpler form if the vari-
ables are expressed in coordinate space as

d Sin[1 —aS(P)']IP ((Sj, t) = const exp— 3
280

f -tL(lr +V )S( )
'~( [1 —(ys(r)']"-' (2.22)

The factor v, is the cell volume arising from the
division of the system into small cells before tak-
ing the continuum limit. Combining (2.2), (2.20),
and (2.21) yields the following expression for the
probability distribution functional for long times
t » I/2y, :

S(r, t) =S'(F, t)

&2n —1&I 1

+ 8 a

Use of the formula

x " „(2n —1)!!(1,)„,-x+ Q (—1)" „, x'""

finally reduces (2.16) to

S (r, t) = So(r, t)/[1+ (xs'(r, t)']'~2

(2.17)

(2.18)

This functional evolves from an arbitrary "initial"
probability distribution functional Po which is
matched to the probability distribution functional
of the original stochastic model in the initial re-
gime ts I/2y, .

Next, note that if the nonlinear coupling term
were absent in the stochastic model (c(= 0) the
probability distribution functional would evolve in
time according. to

Po((sj) =P,(exp [-tL ([1'+V2)]s(r)] . (2.23)

Hence (2.22) can be rewritten
This together with

S'(r, t) = exp[tL(((."+V')]S(r),

which follows from (2.4) and (2.15), provide the
transformation (Sj -(S(t)j. In order to obtain the
needed transformation (Sj-(S(-t)}we simply have
to replace S(r, t) by S(r) and S(r) by S(r, -t) in
(2.18) and (2.19) to get"

(2.19)

e-tL()(2+ v2) S(r)
(- ]" (2 .20)

Z({S],t)=constexp(- fdrln[1 —aS(r') )).
(2.21)

The Jacobian of the transformation follows directly
from (2.20) by noting that the exponential operator
merely contributes a constant factor, namely,

I

p({S],tl =constexp — d rln[1 -aS(r) ])200

s )
' [1 —aS( )']"*)' (2.24)

S(r) —exp[-tL (z + V )]S(r) . (2.25)

The effects of the nonlinear term are taken into
account through the time-independent local non-
linear transformation of the variables

S(r) -S(r)/[1 —o.s(r)']' '. (2.26)

This result clearly demonstrates the disentangling
of the gradient and nonlinear coupling terms in the
stochastic equation (1.9). Namely, the gradient
term affects the time evolution of the probability
distribution functional in the absence of nonlinear-
ity through the time-dependent linear transforma-
tion of variables '
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The two transformations (2.25) and (2.26) are very
suggestive as to what we generally expect for the
behavior of the probability distribution functional
(2.24). First, the transformation (2.25) tends to
broaden the probability distributions of the vari-
ables that are unstable in the absence of nonlinear-
ity (i.e. , S„- with k& tc) T.he transformation (2.26)
then squeezes in the distribution whenever the
width of the distribution of the local variable S(r)
in the absence of nonlinearity exceeds its satura-
tion value S„—= 1/c(' '. Herice, as the time ap-
proaches infinity, the probability distribution func-
tional peaks at the saturation value

~
S(r)

~

= S„.
It should be noted that because of (2.18) the val-
ues S(r) can take are limited to be within the finite
interval (-S,S ). P((s},t) must be set equal to
zero if ~s(r)

~

at any r exceeds S„.
What is happening here can be summarized in

physical terms as follows. First, the fluctuations
everywhere start to grow rapidly and at the same
time these fluctuations diffuse over the distance
(2Lt)'t', within which fluctuations will be strongly
correlated. As the value of ~s(r)

~

at any point ap-
proaches S, saturation sets in. Thus, in the
language of magnetism, after a while the system
will be divided into a number of magnetic domains
of the average size (2Lt)'~' with the saturatio'n
magnetization S or -S .

In order to actually visualize the picture de-
scribed here in the following we shall restrict our
discussion to the case with the initial probability
distribution functional P (S}of the original sto-
chastic model having the following Gaussian form:

with

xk(t)=e I x~. (2.32)

III. REDUCED DISTRIBUTION
AND CORRELATION FUNCTIONS

Since the complete probability distribution func-
tional P((s},t) contains too detailed information for
us to visualize, it is useful to introduce the n-point
distribution function p„(/S}„;(r}„;f) which is the
joint probability distribution of the local order pa-
ra.meter at (fr}„,where $S}„—= S„S2,. . . , S„and

p„((s}„;P}„;t)=]'][(I-s(;)'] "'

(3.2)

where p„((s}„,Pr}„;t) is the n-point distribution
function for the linear case (n=0) and is defined

by (3.1) with P((S'},t) replaced by P', {S'}.
We also introduce th0 n-point correlation func-

tion C„(fr}„,f) through

& gS};(r}„;f) =- dfS'}'I' 5[S(r,.) S'(r, )]
1=1

x P (/s'}, t) . (3.1)

By virtue of (2.24), (3.1) takes the following useful
form:

P '"' (S) = const exp (-— (~~S-„j'/t. )) .
2

The choice

X = (k2+ K2) ~

(2.27)

(2.28)

C, ((r)„,t) —= J d(S) 11S(r )Pl(S), t)
j=l

(3.3)

P (S)=constexp(- f (~S;~'/X ))—,

where

X„-=X-„+L/y)-, .

(2.29)

(2.30)

corresponds to an iriitial disordered state with the
inverse correlation range of fluctuations Kp since
in this case the quartic term in (1.11) has a minor
effect and can be dropped in the spirit of our ap-
proximation scheme as described in the introduc-
tion. Then the "initial" probability distr ibution
functional of (1.9) which is to be matched to (2.27)
is given by

S'„((t)„,(P)., t)= exp(-i+ (,.S(r,)-
j"-1

0

exp -i &8„-

(3.5)

Use of (3.2) then yields the following more useful
expression for C„:

tn

c„((s}„;Pr}„;t) =
J ds,.

(
',)„,

For the Gaussian initial distribution (2.31), an
explicit form of p„can be easily found with the help
of the characteristic function defiried by

By (2.23) we have

P, (S)= const exp( ——5 (St('iX; (t)), (2.31)

where (g}„=$„$„.. . , $„,$;=L&,$& exp(-—ik'r&),
and ( )', is an average over Posfs}, (2.31). The
change of integration variable S-„-S-„—i$-„X„-(t) im-
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mediately yields
t

1

E'((1)„(r)„.t) =„,exp(- — X;(t)(;2;) .

The n-point distribution function is then

'.HS)., 7)., t}

1 00

(2m)" d(„exp(t Q (,S,)
'~„(9)„,P)„,t), (3.7)

which after some straightforward algebra takes
the following form:

p„'HS)., P}„,t) =(2 ) ""~detA„~-

x exp —— „',,S,. S& (s.s)

Here A„((r)„,t) is the nx n matrix whose ij element
is the following function of Prt„and t:

[A„(Pr]„,t)]„-=8(t)cos84„ (3.9)

the time t. The condition Lw't» 1 implies v '
«l(t), and the length v ' which is the range of cor-
relation of thermal fluctuations in the mean-field
theory can also be interpreted as a measure of the
surface thickness of a fluctuating domain.

%'e shall see below that cos6 is just the two-
point (pair) correlation C20(r, t) of the linear sys-
tem (n =0} normalized to unity at r =0. Another
point to note at this stage is that no short-distance
divergence occurs in the problem except for t =0.
Both p„and C„are well-defined for t& 0 when the
distance between any two points tends to zero.
This arises from the fact that y„-(t) for t &0 tends
to zero exponentially fast as k increases, thus
providing a natural upper cutoff at l(t) '.

' I,et us now discuss some particular examples of
the above.

(i) n =1

Here we have no dependence on the spatial coor-
dinates and

p,'(S, t) = [2m8(t)] '~' exp[-S'/28(t)] . (3.16)

with
I

8(t)=-f x„-(t),

coss,.t-—tt(t) ' f coo[2 'tr; —r )]X(t).

(3.10)

(s.11) 1 S
28(t) 1 —aS') ' (3.17)

By (3.2) this yields the following one-point distri-
bution function:

p, (S, t) = [2)T8 (t)] t (1 —c(S ) '~ '

For the long times t» 1/2y, these functions become

P(t) =tXP(4 }"'l(t)'] '"", (3.12)

Ir, -r, lcos8 J =cos(9
l( ).

with

cos 8 (z) = e ~~4,

l (t)
-=(2I.t)"'.

(3.13)

(s.14)

(s.16)

The fact that a spatial coordinate r, always en-
ters in the combination in r&/l(t) indicates that l(t)
is the average size of a fluctuating domain.

If we note that L also plays the role of a diffusion
constant, this fluctuating domain size l(t) is in
fact equal to the distance over which the growing
fluctuation at a point in space diffuses away during

y(t) =o'8(t) =6(4 )„,', l(t),
e'"o'. (3.16)

For short times such that 8(t) «o! ' ' (3.17) is
basically identical to (3.16). As the time and hence
8(t) increases the wing of the Gaussian distribution
(3.16} with (S ~

& n 't ' gets squeezed into the
interval (—S,S ) and (3.17) develops the double
peak structure as described in Suzuki's work. '

(ii) n =2

Here, p, and p, depend on spatial coordinates
through r =

~
r2 —r2

~

and

This is just the Suzuki distribution' for a single
variable where Suzuki's scaled time & which we de-
note as y(t) is now given by

2v8(t) sin8 ~$ 28 (t) sin'8

Thus the two-point distribution function is

(3.19)

p, (S„S„r,t)=, , (1 —o.S',) '~'(1 —o.S',) 't'
2w8 (tj sin&

1 S', S,' 2 cos&S,S,
28(t)sat'8 1 —aS' 1 —aS, (1 —aS')'t*(1 —aS')'t') (s.20)
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From (3.19) we immediately find the two-point correlation function when n =0:

C,'(r, t) = (S(r)S(0)};= R(t) cos6,

which verifies our earlier remark. The two-point correlation function is

(3.21)

1 QO

C r, t =
2mR(t) sin6

S S2 Sy + S', —2 cosOSyS2
dS dS' (1+nS')'/' (1+nS')'/' 2R(t) sin'6exp— (3.22)

At this point it is clear that in fact we are taking the limit g-0, t-~, ir ~- ~ such that y(t), (3.18), as
well as x= ir'i/t(t) remain finite.

IV. BEHAVIOR OF THE TWO-POINT DISTRIBUTION AND CORRELATION FUNCTIONS

In this section, we describe the behavior of the two-point distribution and correlation as functions of time
and distance. For numerical studies it is convenient to express these functions in dimensionless forms.
Thus we use the (time-dependent) dimensionless distance x =

~

r i/t(t) and the dimensionless time y(t),
(3.18), where t(t) is given by (3.15). We also introduce the dimensionless local order parameter 2 by

e (x) = n "/'S(r) = s(r)/s. . (4.1)

The dimensionless two-point distribution and correlation functions (for which the same notations p, and C,
will be used) then become

) . (1 2) 3/2(1 2) 3/2 21 + 2 el 2
eee e'ee(e) ' ' ~ ee eie'e(e) i ' i e' (i e')'i'(( e')'i') (4 2)

alld

] oo

2lly sin8 (x)
'Z 1 2, 2', +z', —2e,z, cos6(x)' (1+2')' ' (1+2')' ' 2y sin 6(x) (4.3)

An alternative form of C, (x, y) is obtained by changing the variables of integration to

z, = (2ya))'/2 sin((/)+ 26),

82 = (2ya)) sin((p —26),

to yield

C.(x, y) =C,'(x, y)F(x, y).
Here,

C,'(x, y) =y cos8(x) =ye " /~

(4.4a)

(4.4b)

(4.8)

(4.8)

is the two-point correlation function when n =0, and F(x, y) is the correction factor due to the nonlinearity
given by

F (x, y ) = (2ll) ' 21r cos2pd(da)e" d(p 1 — (1+2ya)[1 —cos6(x) cos2V)]+ (y(d)2[cos2(/) —cos6(x)]'} '/'. (4.7)cos8(x.)

The angular integral in (4.7) can be evaluated by first introducing the new variable t = sec2(p such that

F(x, y) = da) (d e f (a) e x, y ) e (4.8)

with

1
2 [(1+y) + y cos 6]

((d; x', y) = "(1+1/cos6) —2/(t cos6)
((t —1)[(t —f,)'+a', ])1/2 (4.9)

The variable y=ooy, with

2r[(1+r) cos6+ y]
[(1+y) + y cos6]' (4.10)

4y' sin'6 (1+2y)
[(1+y)+y cos6]' ' (4.11)

The integral in (4.9) can be expressed in terms of
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(2P~) s„e
Zi

0

!

I/2
(y~/z]

B
1

I

p,'(ro, y) =(2)T) 'e "
~ (4.15)

A geometrical interpretation of the variables in
Eqs. (4.4) is given in Fig. 3, which illuminates the
significance of the angle 6 as a measure of the cor-
relation. Note that for n 40 we obtain the same
expression (4.15) for p2((d, y) provided that z,
is replaced by z;/(1 —z',-)'/' on the left-hand side of
(4.4).

The qualitative behavior of p~ and C, can be in-
ferred without performing numerical computations.

FIG. 3. Geometrical construction of (4.4). The points
A, B, C, and D lie on a circle of radius (~zg) cen-
tered at the point O. The dimensionless order para-
eters z& and z& are represented by the vectors BC and
BD, respectively. The probability distribution of z& and

z2 depend only on the size and shape of the triangle OCD
but not on its orientation (angle y).

where E and II are complete elliptic integrals of
the first and third kind, respectively, and

& = [(1+y') —y cos8]/[(1+ y) + y cos8],
)'2 = y sin8/[(1+ y)2 —y2 cos'8]'/' .

(4.18)

(4.14)

The remaining integra, l in (4.8) must in general be
evaluated numerically. However, several limiting
cases will be discussed first.

In term of the variables & and y, the two-point
distribution function for n =0 takes a particularly
simple form

integrals of Jacobian elliptic functions which can be
evaluated to yield"

2
((4); x, y) =

2 [(1+y)2 —y2 cos'8]" '

x If(a)~ 1+A 1
1-A cos6

x(-II (4) + II(-(I -A)'/4A, 4 l)I, (4.12)

8. Long. -time long-distance behavior t y -O(1),x )& 1]

Here,

P2( 1I 2I Iy) P1Z1I y)Pl(z2I y) I

C, (x, y) =—0,

where

(4.16)

y) (2)1y) 1/2 (I z2) 3/2

«~[-(I/2y)z '/(I -z')] . (4.17)

That is, there is little correlation between z, and

z, . As time goes on peaks will develop at the four
corners z»z, =+1 and then along the edges z, = +1
and z2 = 21.

C. Long-time short-distance behavior [y -O(1),x (( 1)

Since sin6 «1, we have

p, (z„z„x,y) =[22y sin8(l -z2)2] '

x exp
2y sin'8 (1 —z')'

A. Short-time behavior (y (( 1)

In this case, p, is peaked in the region ~z, ~, ~z2
~

&O(y' ). Thus, the behavior is almost the same
as the linear case (n =0). For short distances
(x «1), the peak of p, is further restricted to the
region ~z, —z, ~&O(y'/2 sin8).

. 2

4I (I —. z')) (4.18)

with z = 2(z, +z2). Here, p, has large values along
the diagonal z, =z, . As time increases sharp peaks
will develop at the two corners z, =z, = ~1. Here
C, (x, y) will be almost equal to the variance of z
with respect to p, (x,y), which approaches one as
y increases.

(I

+I
z

FIG. 4. One-point distribution function p&(z, y) (the
Suzuki distribution function) .

D. Long-time limit (y )) 1)

This is the case where the system is divided into
domains with z =+1. It is of some interest to com-
pute C, (x,y) in this case. Using the expressions
(4.5)-(4.7) we see that for y» 1 the integrand of
(4.7) is positive for 28 & V) &2 —28 and 22'+8 &(/) &22'

—&6, is negative for —26 & y & & 6 and m ——,'6 & y & m
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FIG. 5. (Continued)

C, (x, y) -=1 —(2/m)8(x), y» 1. (4.19)

1+ &8 and is almost zero in the small regions of the
width O(y '~') near y = + —,8 and p =m+ —,8. Hence
approximate evaluation of the integral leads to"

The one-point distribution function has been com-
puted earlier by Suzuki' and is shown here for com-
pleteness. The behavior of C, (x,y) is shown in

Fig. 7.

E. Long-distance 1imit (x )) 1)

Here, we are concerned with the behavior over
the distances long compared to a domain size.
Since cos8(x) is small we can examine the long-
distance tail of C, (x, y) given by (4.5)-(4.7) by ex-
panding in powers of cos8(x). The leading term is
then given by

C, (x, y) =B(y) cos8(x), —

where

(4.2O)

B(y) =— (k)
E(k)
1+y (4.21)

where E is the complete elliptic integral of the
second kind and k =—y/(1+ y). For y» 1, the inte-
gral can be approximately- evaluated to yield

B(y) =- (2/m), y»1. (422)

This result is consistent with (4.19) which reduces
for 8 near 2n to (2/m) cos8(x).

We now display the behavior of the one-point and.
two-point distribution functions for some typical
values of the parameters x and y in Figs. 4-6.

FIG. 6. Contour diagrams of p2(z&, z2, 1,1) for various
values of p2.
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to sums of exponentials. The approximation of re-
taining only the leading terms at long times'4 in
each order can be shown to be equivalent to re-
placing the lower limit of the integral in (5.4) by

In this approximation we have

S-(t) =S'-(t) + dt e".-"N-(S(t —t )) . (5.6)

Viewing this as an equation for S-(t), the explicit
time dependence only appears in S-(t). Indeed,
(5.6) has a. solution for S;(t)=o; which is a, time
independent functional of

o'- = s'-(t) . 0'- = 0'" 0')

FIG. 7. Graphs of C&(x,y) for various values of y.
The dotted line is y C2(x, y). The numbers on the solid
lines are the values of y. For large y, C2(x,y) tends to
approach the vertical axis with a finite slope. Indeed,
(4.19) shields for x«1, C2(x, y) =1—(v 2/m)x.

I

V. GENERALIZED TRANSFORMATION OF VARIABLES

c ,-(S)= y;S-+N, (S), (5.1)

where y; is a function of q which is positive for
certain regions of small q in which we are inter-
ested and N;(S)is nonline-ar in (S). For instance,
one might choose

y; = I.q"(x'+ q'),

N-(S) = — q"gL
q 6

(5.2)

6(q —k, —k —k~)sk S-„Si, (5.3)

The success of the method presented in this
work hinged on the existence of the simple time-
independent transformation (2.18). Hence it would
be useful to discuss such transformations for more
general models. Thus we consider a class of sto-
chastic models of the form (1.9) with

Namely, (5.6) becomes

0'- 0( =0' + dt, e"~'iN;(o (e "fiiaof)) . (5.7)

The functional relat'ionship o (o' ) obtained by
solving (5.7) viewed as a time-independent non-
linear transformation of the variables 0'-0 is
indeed a generalization of (2.26).

The existence of such a time-independent rela-
tionship is traced to the fact that (5.6) in fact spec-
ifies the initial condition S;(t) =S,'-(t) at t= -~, and
hence, the relationship o (o') is the result of time
evolution from the initial condition during the infi-
nite amount of time starting at t=-~. However,
o(r, (o')) differs from its saturation value ao. 't',
where

o (r, (o')) = o,.(oi~)e«'

because actually we have specified S;'(t) to assume
a finite value S; at t =0. [Indeed, both S;'(t) and
S;(t) become infinitesimal as t- -~.) The violation
of this true initial condition at t =0 is very small in
our weak coupling situation as long as S& is not ex-
cessively large, and has been ignored.

Now, for the models described by (5.2) and (5.3),
we can write (5.7) in terms of the densities

where a=I and 0 correspond to the TDGL models
with the conserved and nonconserved order param
eters, r espec tively. The deter ministic equation
of motion dS,"(t)jdt = C, (s(t)) with the initial condi-
tion S,(0) =S, can now be cast into the integral
form as

o(r, (o')) = o'(r) ——(-V')'

dt e 'io'(r (e 'io'))' (5.8)

s;(t) =s;(0)+

with

dt e"~" 'i'N-{S(t )) (5.4)
where o'(r) = Jo e"' and D is the following dif-
ferential oper ator:

I

D=L, ( v') (~2~v').

S-(t)= e" S-. - (5.5)

In the iterative solution of (5.4) we encounter the
same type of multiple-time integrals as those that
appear in (2.8). Evaluation of these integrals leads

For our models, the linear growth rate has a max-
imum y at k =k where y =Le, A; =0 for a=0 and
y =4I&4, k =2 ~~2m for a=1. Vfe then have-
e 'io"=e "~'ioo since oo(r) =S'(r, t) has large Fourier
components for k near k for large enough t. Thus



GROWTH OF FLUCTUATIONS IN QUENCHED. . .

(5.8) can be further approximated by

X yt eDtlg r e t~tgo0 3

0 .

(5.9)

The major contributions to the time integral come
from the short times except for the cases where
uo(r) is excessively large so that o(r) is nearly
equal to its saturation value.

For a=0, (5.9) can be further approximated by
replacing D -by y =y, since the wave numbers in-
volved are small [s(2I.t) ' '] and t, is small. Thus
(5.9) becomes

0 r, o0 =o0r ——

dt~e"0'~cr r, e "0'ux (5.io)

This equation for o contains r only in o'(r), and
hence v(r, fvof) can be found in the form of an ordi-
nary function o(o'). Then (5.10) can be readily
converted into the following integral equation for
o(x) by changing the variable of integration:

(5.ii)

(5.12)

with o. given by (2.13). This equation is easily
solved if we note that satisfies the following differ-
ential equation:

particularly useful when the enhancement of fluc-
tuations occurs in a decreasingly small region

' around a point in the wave-vector space as in the
TDGI model with the order parameter not con-
served. This does not mean that the wave-number
dependence can be asymptotically dropped (if so,
the problem reduces to that of a single degree of
freedom such as a laser model). However, the
existence of the solution (Suzuki's solution) in the

absence of diffusion makes it possible to treat the

diffusion effects separately from the nonlinear

aspects of the problem
Although so far in this paper, we have been out-

,
side the critical region, it is of some interest to
view the problem as an example of nonequilibrium
critical phenomena. The first point to note is that
even in the mean-field approximation, the problem
is far from being trivial. We have. here merely
provided such amean-field solution. The nextnatu-
ral step is, to try an expansion" in & = 4 —d where the

corrections to our mean-field results arise from
solving (2.1) more precisely and from restoring
the second-derivative term [I.J„52P(ILS],t)/&S25S I]
to the stochastic equation (1.9).

As an example of nonequilibrium critical phe-
nomena it is interesting to see whether our results
conform to the usual dynamical scaling law of cri-
tical phenomena. In our model the characteristic
length and time are, respectively, K

' and, a&
'

=— (2L,K2) '. In Sec. IV the quantities of interest are
expressed in terms of the properly scaled order
parameter z, and the dimensionless variables x and

y(t), (3.18). In terms of K and e we can then write

with the condition that c/x- 1 as x- 0. Thus we
obtain

(5.13)

x = K
)
r [/((dt)' ',

gf I + K2/K2] eld j

6(4m)" 'K' ((at)" ' '(t) = 0 (8.2)

which is just (2.18).
For a= 1 (conserved case), we have not succeed-

ed so far in reducing (5.9) further. The difficulty
here stems from the fact that the wave vectors at
which the initial growth rate reaches maxima
form a d —1 dimensional spherical shell with

~
k~

=2 2g rather than a single point k=0 as in the
case with a =0. As a consequence, we have to deal
with wave vectors which are composed of more
than two wave vectors nearly on the shell with
~k

~

= 2 ' 'K and hence the resultant vectors can be
far off the shell.

VI. DISCUSSION

In the preceding sections, we have presented a
method to study the enhancement of fluctuations at
long times in unstable systems with an infinite
number of degrees of freedom. The method is

If we suppose that the renormalization of the con-
stants in the stochastic model mentioned in Sec. I
has been don'e properly. (with the reference wave
number chosen to be K) then the coupling constant

g should take the form g~~' ' whereg~ is now the

dimensionless coupling constant. " Thus, our re-
sults conform to dynamical scaling provided that
we include the additional length scale x0 which
characterizes the correlation range of fluctuations
in the initial state.

Now, the fact that we are concerned with the
regime K~r ~» 1, cut»1 means that we are well in

the hydrodynammic regime where thermal fluctua-
tions are of little importance. The large fluctua-
tions we find are not of a thermal nature although
the probability distribution for them is influenced
by the thermal fluctuations that existed in the
initial state. Thus, here again we see a close
parallel between our problem and that of hydro-
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dynamic turbulence where the deterministic equa-
tion (2.1) plays the role of the Navier-Stokes equa-
tion in turbulence.

Finally, we discuss the range of validity of the
present treatment and its possible extension to re-
lated problems. There are at least two limitations
of our work, namely, the approximations involved
in solving the deterministic equation of motion
(2.1) and in neglecting the thermal noise. Regard-
ing the former aspect we note that the approxima-
tion which leads from (5.8) to (5.10) is valid only
when we are far away from complete saturation
at time t. Otherwise, o(r, {e 'ural) stays almost
constant for small t, ( 1/2y . The necessary con-
dition that this does not happen is that the ratio of
the quantity e '|o(r, {e 'iu')) at t, =0 and at t, =t
be much greater than unity. If we replace the
value S'(r, t)' that enters by its average value
P(t) [(3.10)] and use (3.18), this condition takes the
following form:

1+y (0)2vpt ))1
1+y (t)

(8.3)

Since y(0) is small and of the order of (glt 4), we
have

e'"o' "[1+y(t)]"'. (8.4)

This condition is certainly satisfied over a wide
range of t in the weak coupling situation with which
we are concerned. In Appendix 8, we shall show
that essentially a similar constraint is also a suf-
ficient condition.

The second approximation is such that, as was
remarked in Sec. I in connection with the laser
model, the theory does not correctly describe the
final equilibrium state where any deterministic
path ends at +S . Here of course thermal fluctua-
tions (which are contained in the second-derivative
term dropped in our theory) play a role. The im-
portance of thermal fluctuations in the one-point
distribution function can be examined by consider-
ing the variance Y'(t) for the part of the distribu-
tion function with positive S which is divided by
S„. Thus, from (3.17) we obtain for y(t)»1,

Y'(t) = [(8/v)' ' (-,'v)'t—'jy (t)-'~ (8.5)

On the other hand, for the equilibrium distribution
function, this variance was obtained in Ref. 9 and
is

(e.e)

where

(8.8)

As was noted by Langer" and verified by a com-
puter study, 20 thermal fluctuations also become
important in. those neighborhoods in the function
space {S(r))which satisfy ec/&S(r) =0, where S is
zero in the absence of noise. In our problem, this
will be the case for the metastable state obtained
by adding an external field to the model. Here,
it is essential to restore the second-derivative
term in the stochastic model equation, in order to
describe the slow decay of the metastable states
towards the equilibrium state. In our approxima-
tion scheme, such a process enters as higher-
order corrections to our "mean-field" theory. We
certainly intend to extend our work to include this
inter esting case.

ACKNOWLEDGMENTS

The authors would like to acknowledge fruitful
conversations with the members of the statistical
mechanics group of Temple University, in parti-
cular, Professor S. K. Kim, which led to improve-
ments of the manuscript. One of the authors
(K.K.) is particularly grateful to the hospitality of
the Physics Department at Temple University,
where this work was carried out.

APPENDIX A

Here, we discuss the approximation that led
from (2.8) to (2.10), in particular, the following
multiple time integral:

t
f„({xj„;t) =- dt,

t~
~ 6 O

2 dt~ exp

(Al)

where {x}„=x„x„.. . , x„with x, real and positive.
Consider the Laplace transform

f„({x)„;~) = e-"'f„({x)„;t) dt . (A2)

(A3)

This is readily evaluated by changing the variables
of integration from t, to s, =t,-, -t„i=1,2, .. . ,n+1
with to—= t, t„„=0, and we obtain

f„({xJ„;(o) =(o '((o —x, ) '(~-x, -x,) '

g «) =- «[8(«)""~'t(t)"1 (8.7) Taking the inverse of the Laplace .transformation,
we have

Note also that y(t) =g(t)(1+ z'/z', )e'"O'. Thus our
theory will be valid for the times satisfy'ing the
condition Y'(t) & Y;(t). That is, (A4)
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~n
with c&M, ,x,

For large t such that x t » 1 for all i, the leading contribution to f„comes from the largest pole Z, ,x,
and we obtain

I

n

q„((s]„;S) exp(-=S g x,) (x, + x, + ~ +x„)(x,+x, + ~ ~ ~ +x ) ~ ~ ~ (x +x )( (A5)

(A6)

which leads to (2.10).
The error estimate of (2.10) is obtained by 'noting that the leading correction to (A5) is roughly exp(-tx )

times (A5). This implies in (2.8) that three of the wave vectors k's can range up to )( rather than up to
(2Lt) ' '. This is however, restricted by the presence of a 6 function. Thus the net gain due to the en
»rged k space amounts to the factor a'M(2Lt)~. Therefore, the relative correction to (2.10) coming from
the correction to (A5) is zM(2Lt)(exp( 2y,t).

Also we observe that if the lower limits of the multiple integral (A1) are extended from p to -~, (A1)
exactly reduces to the right-hand side of (A5). This fact was used in See. V.

Finally we note that an alternative description of our approximation can be obtained by recasting the de-
terministic differential equation of motion (2.1) in terms of the variable S (r, t) given by

$(r, t) = $'(r, t)/[1+ nS'(r, t)']'~'

Then (2.1) becomes

S'(r, t) =L(IP+ v')S'(r, t) (6Le(S-'(r, t)'/[1+2e(S'(r, t)'1] [~ ~$'(r, t) ~']/$ (r, t) . (A7)

Now since the transformation (A6) is precisely that
given in (2.18) and (2.19) with S'(r, t) = exp[tL(vo
+ v')]$(r) we expect that in some sense the gradient
term in (A7) is small. This is obviously the case
for small nS'„since then

S (q, S) = exp(q s S —I q S e Iq d (s)ds) q'(q, 0) .

6L~S" I vS'~'
1 vS'I'

1+2a8+ S' S'

«Lv'S'

for aS «1. On the other hand, for very long
02times such that e(So =O(1) this is no longer the

case, since then

(A8)

A(s)ds =(g/2y )(e "o —1) —ge o/2y
0

=A(t)/2y, «t . (A13)

Therefore the effect' of the last term in (A11) and
correspondingly the last term in (A7) has only a
small effect on $(r, t).

APPENDIQ B

6LnS" l vS'1' I vS'I'=6I
1+2~S S . S

(A9)

so that the gradient term is then comparable to
LV' S . However, one can make a heuristic argu-
ment to suggest that nevertheless the asymptotic
solution of (A7) is the same as S'(r, t), in agree-
ment with our previous derivation. To see this,
note that in the region where the gradient term
might be important we have

In order to examine the validity. of the approxi-
mation that led from (5.8) to (5.10) let us consider
the integrand

gL „, exp[3yo(t t~)]$(r)
6 $1+ nexp[2yo(t —t, )JS(r)2)~~'

'

o ~

~So ~o- vt'$o =LA(t)V'So. (Alp)
1+2nS 1+2+8

Consider the ratio

In order to simulate the effect of this gradient
term we therefore consider the equation

S'= L[~'+ v' —A(t) v']S' (A11)

with A(t) =ge"o' such that g«1 and A(t) = O(1) for
large t. Then the solution of (A11) is

1+ e(e'"o'$ (r)'~-2 sty (ee exp[ps, (S —S,)]p( ) )
(»)



470 KA WASAKI, YA LABIK, AND G UNTO N

(
1+y (t)

1+y(t —t, )
(B5)

In order for our approximation to be valid we must
require that this quantity decreases substantially
within a time which is much shorter than t. Name-
ly, defining t, by

R(r, t, t~)=q,

where q is a number less than unity, say 2, we

, require

(B4)

We can estimate (B2) by replacing y, inside the
square bracket of (B2) by the differentia, l operator
D(r), (S, q), and then replacing S(r)' by its average
over the initial distribution. Thus (B8) becomes

The most dangerous case is when we are close
to the complete saturation, that is, y(t}»1. Then
we have

y (t) = rt" 'e'""~"Il+.y (t t,—)J . (B8)

y(t —t,) can be consistently ignored since using

y(t) =rp 'e ~c'& ' and y(t —t, ) =y(t}e s"ci& we have

y(t —t,) ='gy(t) 't, which is small. Thus the con-
dition (B4) takes the form

r.t » '»l -y (t)/n"'] .

By choosing o'. to be sufficiently small, (B7) can
be satisfied over a wide range of t for any fixed
number q less than one even near saturation.
Since in (5.8), I k't, = t,/t, our approximation of
replacing D by y, in. (5.8) is thus justified.
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