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The mode-coupling theory for the dynamics of classical liquids formulated by the present authors has been
applied to calculate the fluctuation spectra of the transverse and longitudinal currents, as well as the
dynamical transport coefficients for liquid argon near its triple point. The results are compared with the
neutron scattering data and with the molecular-dynamics calculations.

I. INTRODUCTION

In this paper, we report. on the numerical results
for the current correlation functions of liquid ar-
gon which were obtained from our mode-coupling
theory for simple classical liquids. ' Liquid argon
is known as the representative example to.check
theories on liquids' since it has been studied ex-
tensively by neutron scattering experiments2 3 as
well as by molecular-dynamics simulations. ' '

In the calculations, we used as input data the
number density n= 2.14 && 10 ' cm ' the temperature
T = 85 'K, the particle mass m = 66.3 x 10 '~

g and
the Lennard-Zones potential v(r) with parameters
E = 119.8 k~ K= 165.37 x 10""erg, a = 3.405 A used
by Rahman. 4 The li(luid structure factor S(q) and
the pair correlation function g(r) were taken from
the experiment reported by Yarnell et al. In eval-
uating integrals of products of g(r) with second
derivatives of the potential, we adopted the com-
monly accepted approximation

4~ r'g(r—) v" (r) =3n2~(r -r,) .

For argon, the characteristic length parameter is
r0=3.4 A and the Einstein frequency is Q~ =0.74
x1(F' sec '.'

The fluctuation spectrum of a dynamical variable
A is defined by the Fourier transform of the time
correlations (5A*(t)6A) of the fluctuation 5A =A
—(4)

1 '" «„(6A*(t)5A)

with
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In addition to the spectra (3) and (4), molecular-,
dynamics calculations yield the spectrum of the
transverse current Qr'(q, (d). ' It was also possi-
ble' to determine the fluctuation spectra of the
transverse and the longitudinal stresses, Dr' ~((d).
The latter quantities ought to be considered as
dynamical transport coefficients; their zero-f re-
quency limits determine the shear viscosity q
=nmDr'(a&=0) and the sound damping constant I"

', rj+ f =nmD~—((d =0), respectively. The mode-
coupling theory gives approximations for the quan-
tities mentioned above. '

For theoretical discussions, it is most convenient
to introduce the Laplace transform of correlations

y„(s)= ~ t dt o(+t)e«'„,(6A*(t)6A)
we OO

1m' ~0. (5)

number q, A = p((I). It yields Van Hove's scatter-
ing function

S(q, (u) = y "(-)((u)S(q)/m,

which has been determined by neutron scattering. '
The fluctuation spectrum of the longitudinal cur-
rent Qg(q, to) is also given by the density excita-
tion spectrum via particle conservation

In scattering experiments, fluctuation spectra of
certain dynamical variables are directly measured.
The density fluctuation spectrum is obtained from
(2) with A replaced by the particle density of wave

These functions are analytic for nonreal fre-
quencies z and they decrease at least like 1/z for
large z. Functions E(a) with such an analytic be-
havior are discontinuous at the real axis
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E(a) ai0) =E'((o) aiE"(~) .
The spectral function E "(co) determines E(z) and
F'(ar), in particular, according to

d(d F ((d)

7T M —Z
F( )=

a CO

The spectral function corresponding to P„(z) is
given by Eq. (2). The current correlation func-
tions can be written in terms of generalized wave-
number and frequency-dependent transport coef-
ficents Dr ~ (q, z)'

II. RESULTS

In Fig. 1, the relaxation spectra Mr' ~(q, co) are
shown for a series of representative values of q.
The free-particle contribution is not important for

0
momenta below 2 A ~. However, for momenta ex-

0
ceeding 3 A ' the free-particle contribution be-
comes essential. Our crude handling of this con-
tribution to the current decay rates is expected to
account for deviations from experiment. For large

0

q —6 A, however, the liquid motion is essentially

-1
d r(q, z)=

z+q'Dr(q, z) '

-1
z — Q(q)/ z+q'D~(q, z)~q, z)=

(Sa)

(ab)

(a) t.oo

0.75- q=o.SSA'

(b) i.oo-

0.75-

Here Q, (q) is a characteristic low-frequency re-
storing force for density fluctuations which was de-
fined in Eq. (4). Formulas (8) ensure the correct
zeroth and second frequency moments for S(q, cu)

and the correct zeroth frequency moment for the
current correlations. Dr ~( q, z) have a spectral
representation (7); for q = 0 they reduce to the dy-
namical transport coefficients mentioned before. '
Dr ~(q, z) can be expressed in terms of relaxation
kernels Mr ~(q, z):
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P
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q"'q '=-, .M (, .)
~

&'(q)
z+M (q, z) ' (9b)

where 6'(q) = Q2~(q) —Q2O(q), and Q2z r(q) are the
well-known second frequency moments of the cur-
rent fluctuation spectra given by the potential and
Z(x) "The cor.rect fourth frequency moment of
S(q, v) is ensured by the representation (9b).

In addition to the free-particle contribution, the
relaxation kernels include terms which reflect the
damping of current fluctuations due to decay into
pairs of current excitations. There are two de-
cay channels: decay into two longitudinal modes
[contribution E„E,in Eqs. (51) of Ref. 1] and de-
cay into one longitudinal and one transverse mode
[contribution E, in Eq. (51) of Ref. 1]. The decay
rates have to be calculated self-consistently with
the fluctuation spectra Q$ ~(q, ur). Longitudinal
and transverse excitations influence' each other
via the decay processes.

For later use, let us finally mention an exact
expression for S(q, ur = 0), a quantity which is
needed for the interpretation of relaxation rates of
NMR experiments, for example. Combining Eqs.
(2), (9), and (7) we have

S(q, ~=o)= S(q) ~ 1 M;(q, &=0). (10)
1 Q2~(q)

0
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FIG. 1. Relaxation spectra for (a) transverse and (b)
longitudinal current fluctuations (full curves) compared
with the results of Ref. 8 (dashed curves). Free-particle
contribution is indicated by the dotted curves.
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free, mode-deca ry p ocesses become unimportant,
and the relaxation kernel [Eq. (55f) of Ref. 1~ is
exact.

In agreement with our earlier work, ' we find a
sharp decrease of M" (q, ro) for frequencies lar erger

sec, since the energy of a two-
e ~ considerably.mode excitation cannot exceed 2Q

The introduction of other decay channels should
add only a small and smooth background to our
M" (q, &u); we therefore consider the cut-off at
about 20 in M" &~co' ' '

ui&~q, co& a realistic feature of liquid
dynamic s.

Over short di.stances, there is no remarkable

(a)

(a)
2.5 qI ail

(b)
30. q.all'

difference between longitudinal and transverse
particle motion. In particular thr, e mode-decay
vertices' for a decay into a pair of longitudinal
modes or into one longitudinal and one transverse
mode do not differ appreciably for wave vectors
q larger than sa 1y, ." A . As a result, we find

q, o ecay chan-that for intermediate and large both d

tion s ec
ne s contribute about equal amounts to ths o e relaxa-

how
ion spectra. This feature is changed d t'ras really,
owever, for small wave numbe Wh'rs. ale the con-

volution integral of one long't d' 1 di u dna and one trans-
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FIG. 2. NNormalized coefficients (a) D~ . N
' a ff) z(q, )~'~z(q)

) q I (q, cu)/4 {q) corresponding to the relaxation
kernels given in Fig. 1.
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verse mode [E, in Eq. (51b) of Ref. 1] yields a con-
tribution to relaxation which decreases monotoni-
cally as a function' of ~, the contributions due to
decays into longitudinal modes [E, and E, in Eq.
(5lb) of Ref. 1] tend to cancel each other for v- 0. Indeed, for q = 0 and v = 0 the decay into longi-
tudinal modes is impossible [1.(k, ~ =0) =0 in Eq.
(74b) of Ref. 1]; for q = 0 the decay into longitudi-
nal modes contributes a term to the relaxation
spectra which increases as v' . This explains
the low-frequency dip in M" (q, e) which is the
more pronounced the smaller q. The singular be-
havior of M" (q = 0; &o) implies the well understood
long-time anomaly2 of D" (q=0; v). Since the pres-
ent theory ignores the low-frequency heat fluctua-
tions, the value of M" (q = 0; e - 0) is underesti-
mated. Hence the long-time singularity seems to
be overemphasized by our approximations. In our
first version of the mode-coupling theory, ' the
long-time anomaly has been treated incorrectly,
since our crude treatment of the vertex implied
a wrong long-wavelength asymptotics for D(q, s).

In principle, relaxation spectra may be extracted
from molecular-dynamics experiments. To do so,
one evaluates Pr (q, z) according to Eq. (7) using
the experimental spectrum and then one solves
Egs. (8) and (9) for M»(q, s).' This procedure is,
however, most sensitive to small changes in

Q "(q, m), which often result in big variations of
M" (q, to). We therefore consider such a compari-
son between theory and experiment not very rea-
sonable.
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The behavior of the riormalized coefficients
q Dr'(q; ~)/Q'r(q) and q'D~(q, ur)/62(q) in Fig. 2 is
implied by the properties of the relaxation kernels
discussed above. These coefficients exhibit a res-
onance of width not larger than 0.2 x].0 sec due
to long-time anomalies and a broad background
with a sharp cutoff at about 20~. The central
resonance is the more pronounced the smaller q.
As a result Dr' z (q, ur) look like superpositions of
two resonances. In fact, Levesque et al. ' fitted
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FIG. 4. Dynamical transport coefficients Dz'(~) and
Dz (~) as a function of cu (full curves) compared with the
molecular-dynamics results of Levesque et al . (Bef. 5)
(dotted curves; representing fits to MD results).
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FIG. 5. Normalized fluctuation spectra for (a) trans-
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dashed curves are the earlier results of Gotze and Lucke
(Bef. 8) and the dotted curves are Bahman's molecular
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their data for the transverse current correlation
functions by a superposition of two Lorentzians
for D$(q, e). In the longitudinal case, they found
that no satisfactory fit could be achieved by using
only one Lorentzian in addition to a heat diffusion
term which was introduced explicitly in their fit',
thus, the longitudinal correlations were fitted by
a superposition of three Lorentzians for D~(q, &u).

In Fig. 3, their results are compared with the
present theory. There is an overall agreement be-
tween theory and experiment, although the theoret-
ical spectral functions exhibit a more pronounced
structure than the experimental curves. The dis-
crepancy between the present theory and the ex-
perimental results' is also evident from Fig. 4,
exhibiting the dynamical transport coefficients.
Contrary to the experiment, . we get a plateau in
the spectrum for frequencies between 0.2 and 1.0
&& 10"sec '. We do not feel able to judge the rele-
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FIG. 9. Dynamical structure factor (full curves) com-
pared with the molecular dynamics results (Ref. 5) of
Levesque et al . (dotted curves, fit produced as in Fig. 7).
For q=0.2 A and q=0;3 A ~, we also indicated the
actual MD results taken from Fig. 8 of Ref. 5 (circles).
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FIG. 10. S(q, m =0) (fu11 curve) compared with the neu-
tron scattering data of Skold et al. (Ref. 3) (circles).

vance of these discrepancies, since the uncertain-
ties of the only existing very difficult experiment'
are unknown to us. Moreover, of course, the fit
of the original data with two exponentials intro-
duces artifacts for very high and for very low fre-
quencies. Discrepancies between the fit and the
molecular dynamics data due to the high-frequency
Lorentzian tails have been reported in Ref. 5 for
q ~ 1 A ' already. Pn the other hand, for very low
frequencies, it is well known that D"(~) =D"(0)
—o.co, while the experiments are reported' to
be best fitted by a narrow regular Lorentzian.

The molecular-dynamics results for the trans-
port coefficients given by Levesque et al.' are
g~vr=xmD'r'((@=0) = 3.64 x 10 ' P(3.71 x 10 ' P) and
I'~« =nmD~ (&u = 0) = 5.81 x 10-~ P (7.10 x 10 ' P)
with i;~«=0.26(0.58), where we added the (q
=0, ar =0) limits of the fitting curves in parenthe-
ses. For unknown reasons, these numbers differ
from the transport coefficients found for liquid
argon, ' g,„,=2.8&10' p, and I',„,=6.0&&10 ' P with

f,„gq,„,=0.8. The correct v'~' extrapolation of the
Levesque et al.' data yields even larger values for
the transport coefficients g~«—-4.7 x 10 ' P and
I" =9.8x10 ' P with g'/q'=0. 74.

The present theory leads to still larger values
of the transport coefficients [Sec. 4 of Ref. 1]: q
= 6.9 x 10 ' P and I' = 32.7 x 10 ' P with f/ri = '3.4.
These numbers were calculated from Eqs. (74)-(76)
of Ref. 1 using cr = (Qr(q)/q), ,=853 msec ', c~
= (Q~(q)/q), 0=1478 msec ~, and c,„=(Qo(q)/q), o
= 595 msec '. The latter velocities were calculated
according to Eqs. (26) and (41) of Ref. 1 using the
g(r) data of Yarnell et a/. ' By plotting [Dr'(~)
-Dr(&v = 0)j2 against ru we found a straight line for
m ~0.1 & 10 sec" showing that the central peak in
the dynamical transport coefficient Dr'(&o) caused
by the long-time anomalies obeys the expected

~' ' law for frequencies up to ~~Q = 10 psec ~. In
the longitudinal case, we can only conclude v$ Qs 5 psec ', since D"(u&) was calculated in steps of
4e = 0.05 && 10 sec prohibiting a more precise
statement. Clearly, the present theory overem-
phasizes the low frequency resonance, since
damping mechanisms due to decay into heat fluc-
tuations have been neglected. This is also re-
flected by the large value of f/q, which according
to Eq. (78) of Ref. 1 is not influenced by any ap-
proximations made in the calculation of the decay
vertices.

In Fig. 5, the results for the current fluctuation
spectra are compared with Rahman's data and
with our earlier calculations. ' For large momenta
(q =2.8 A ' and q =3.36 A ~), there are systematic
deviations between theory and experiment, pre-.
sumably due to our rough treatment of the free
particle motion. Otherwise we consider the agree-
ment between theory and experiment satisfactory.
The earlier results for the long-wavelength fluc-
tuations have been improved. An overall charac-
terization of the liquid excitations is given. in Fig.
6 where the resonance peak positions and widths
are shown together with the characteristic liquid
frequencies Q, (q) and Qz r(q). Notice that in agree-
ment with experiment we find that transverse ex-
citation peaks cease to exist for wave numbers
smaller than about 0.3 A '. The long-wavelength
current fluctuation spectra agree satisfactorily
with the results of Levesque et al. ' as is demon-
strated in Fig. 7. In Fig. 8, Van Hove's dynamical
structure factor is compared with Rahman's data
as well as the neutron scattering cross sections
of Skold et al.' This set of figures is the least
sensitive one for a comparison of theory and ex-
periment. Notice that the present theory exhibits
a side peak of S(q, &u) for q = 0.56 A ' in qualitative
agreement with Rahman's data. This side peak is
a consequence of the cutoff at about 20~ in our
M~(q, do). If the frequency dependence of M" (q, &)
is ignored, which is often done in phenomenologi-
cal discussions, ' this interesting detail will be
missing. In Fig. 9, the long-wavelength structure
factor is compared with the molecular dynamics
results of Levesque et al. ' Contrary to Rahman,
no side peak of S(q, (o) for q = 0.5 A ' is reported
by Levesque et al. ; their curve indicates only a
slight shoulder. The reason for this inconsistency
of the two existing MD results is not known to us.
Nevertheless, we would conclude from Fig. 9 that
the present theory overemphasizes the side-peaks,
which is presumably caused by ignoring heat fluc-
tuations.

Finally, in Fig. 10, S(q, ~ =0) is compared with
neutron scattering data of Skold et al. ' The quan-
titative discrepancies between theory and experi-
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ment reflect our overestimating the long time
anomalies in D~(q, ~), which is equivalent to under-
estimating M~(q, &v=0). According to (10) this
leads to larger values for S(q, + =0).

Taking into account that the mode coupling the-
ory ' is the first attempt to calculate current
fluctuation spectra for a realistic classical liquid
using neither phenomenological assumptions on
the relaxation kernels nor fit parameters, we con-

sider the comparison between our results and ex-
perimental data encouraging. For improvements
of this theory, it would be extremely helpful to
have experimental or other theoretical information
on static and dynamic energy fluctuations as well
as on the coupling of energy fluctuations with den-
sity fluctuations. Another bottleneck for improve-
ments is the present-day ignorance of static three
and four particle correlations in liquids.
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