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A microscopic theory for the dynamics of simple classical liquids is formulated with the longitudinal and
transverse current-fluctuation spectra expressed in terms of relaxation kernels. The kernels are
approximated by two-mode decay integrals coupling longitudinal and transverse excitations that result in a
closed set of nonlinear equations which can be so&ved numerically. The only input required is the pair
potential and the. static two- and three-particle correlation functions. The theory gives correctly the zeroth,
second, and fourth moments for the dynamical structure factor, the zeroth and second moments of the
longitudinal and transverse current correlation functions, the free-particle limit, a proper hydrodynamical
limit, and reflects the long-time anomalies of the dynamical transport coefficients.

I. INTRODUCTION

Neutron-scattering experiments' ' and computer
simulation studies" "have produced a wealth of
interesting information on the dynamical behavior
of simple classical liquids. During recent years
various theoretical attempts have been made to ex-
plain the available data on the velocity autocorrela-
tion function and on the density- and current-fluc-
tuation spectra. Basically, one can distinguish two
lines of approach in the theoretical work: general-
ized kinetic equations and generalized hydrodyna-
mics.

Kinetic equations give a description of the liquid
in terms of phase-space distribution functions.
One aims at a generalization of Boltzmann's equa-
tion. To account for the strong correlations in
liquids the Vlasov self-consistent interaction was
extended reducing it approximately to the dynamic-
al se].f-diffusion function. "" Boltzmann's equa-
tion has also been extended by including retarda-
tion effects arid spatial nonlocalities of the colli-
sion operator. ' " The studies mentioned yield
good results for the neutron scattering functi. on.
However, all of them have used phenomenological
input data. Moreover, those theories do not con-
tain the long-time singularities of transport coef-
ficients. Thus, they do not reflect all qualitative
aspects of the liquid dynamics. The kinetic equa-
tion approach has been especially successful for
the hard-sphere liquid model, "but so far the rele-
vance of those calculations for realistic interac-
tions is not quite cigar.

Generalized hydrodynamics is formulated most

effectively within the formalism developed by
Zwanzig" and Mori." One derives generalized
I.angevin equations for a finite set of variables
such as density and currents. The relaxation ker-
nels in these equations describe the coupling to
those modes not considered explicitly. Usually,
the kernels are approximated phenomenological-
ly. ' ' In this way the. experiments are para-
metrized rather successfully in a systematic
fashion (compare the review article by Copley and
Love sey').

In order to get rid of phenomenological approxi-
mations a theory for the liquid dynamics has been
proposed" based on the evaluation of the memory
kernels in Mori s continued fraction expansion by
a generalization of Kawasaki's mode-coupling ap-
proximation. " A first-principles evaluation of the
current corre1ations according to this method"
yielded reasonable quantitative agreement with ex-
periment for liquid argon at intermediate wave
numbers. However in the original work on liquid
argon some crude approximations were introduced
for the sake of calculational simplicity which
spoiled the results for small and for large wave
numbers.

In this paper we will present an improved ver-
sion of the mode-coupling approach to liquid dyna-
mics, which we have applied to compute fluctua-
tion spectra of liquid argon" and liquid rubidium. "
The quantities we want to calculate are the longi-
tudinal and transverse current correlation func-
tions. The transverse function describes shear
excitations in liquids; in particular, it deter-
mines the dynamical shear viscosity. The longi-
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tudinal function describes density fluctuation ex-
citations; in particular it determines the propaga-
tion and damping of first and zeroth sound. The
longitudinal excitation spectrum is proportional to
the Van Hove function which determines the neu-
tron-scattering cross section. The following the-
ory also yields a microscopic derivation for the
shear viscosity and for the sound damping con-
stant.

The paper is organized as follows: in Sec. II the
underlying definitions, abbreviations, and standard
formulas are given; they do not present new re-
sults, but we include them to make the paper self-
contained. Sections III and IV contain the Mori
representation for the current correlation func-
tions, the connection with sum rules, and dyna-
mical transport coefficients. We discuss our con-

, cept of considering fluctuations of the second-time
derivatives of the currents as the basic quantities
of liquid dynamics.

In Sec. V the mode-coupling approximation is
formulated and motivated. The idea consists of
interpreting the relaxation spectra as.mode decay
probabilities and approximating the decay by the
simplest channels: decays into pairs of current
excitations. It is important that an excitation
(either longitudinal or transverse) can decay into
a pair of two longitudinal modes as well as into a
pair consisting of one longitudinal and one trans-
verse mode. In this sense longitudinal and trans-
verse excitations are coupled in liquids —a feature
not reflected in previous theories. " The theory
takes care of vertex renormalizations as well as
of long time anomalies.

The decay vertex is expressed in terms of equal
time two- and three-particle correlation functions
and of the interaction potential (Sec. VI). Sections
VII-X contain the technical details for an efficient

1

evaluation of the deca, y integra'ls.
The theory in its present form suffers from two

defects. First, since there is no good information
about the three-particle correlation function, we
used Kirkwood's superposition approximation in
Sec. VI with a modification necessary for small
Fourier components. Second, energy fluctuations
are not considered. In principle, one could include
energy currents. The evaluation of the corres-
ponding decay integral would not introduce major
problems. The corresponding decay vertex, how-.
ever, would be rather complicated containing,
e.g. , unknown four-particle correlations. However
neglecting decay channels which involve energy
fluctuations for the damping of current excitations
cannot be compared with the effect ' of too small
a basis set upon truncation of a continued fraction.
Since no experimental results are known for the
energy. -fluctuation spectrum. outside the hydrodyna-

mical regime, the calculation did not seem very
rewarding.

II. FOaMAL FRAME+Om

Let us consider a simple classical fluid of N
particles of mass m enclosed in a volume V. Dy-
namical variables describing the system depend on
positions r; and momenta p, (i = 1, . . . , N) of the
particles only. In the following we will, investigate
correlations of the three Cartesian components of
the particle current density:

A„=j„(q)= ' " e '~'~, o, =1,2, 3(p;)
5

and of the particle density

(la)

A, = p(q) =P e-* "*.

and

C„,(q; t) = (&A*„(t)M,) (3a)

~.(q) =~(q;t=o).
The angular brackets in Eq. (3a) indicate a ther-
mal average at temperature T, and 6A is the fluc-
tuation A —(A). The normalization matrix (3b)
for a classical fluid has a very simple structure.
It is diagonal and one finds that equal-time current
correlations

(1/&) ( j*.(q)js(q)) = ~,~~ h (4a)

do not depend on the wave vector, whereas density
correlations do:

1/&(&p*(q) &p(q)) = S(q) . (4b)

Here and in the following subscripts o. , P denote
cartesian components and v,„=(keT/m)' ' stands
for the thermal velocity, with Boltzmann's con&tant
ke. The structure factor S(q) is related to the pair
correlation function g(r) via Fourier transform

S(q) = 1+n d'r e ' "'[g(r) —1],

where n =N/V is the equilibrium number density.
In evaluating the time-dependent correlation func-
tions (3a,) we find it most convenient to make use
of the formalism developed by Zwanzig'4 and
Mori. " Introducing the scalar product for classi-
cal variables A and 8,

(A ( a) = (tA*ff3)/(a, r),

We therefore consider the 4&&4 matrix of correla-
tion functions

y(q; t) = c,(q)-'c(q; t)

corresponding to the basic variables defined above
with the abbreviations (Iu, v= 1, . . . , 4)
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the correlation functions of Eq. (3aI appear as ma-
trix elements of the unitary time-evolution opera-
tor

y(q;z) =~i dte(~t)e'"P(q; t) for Imz &~0 (lla)

C„„(q;t)=k T(A„le " lA, ).
The (Hermitian) Liouville operator 2 of the sys-
tem is defined by the equation of motion for any
dyriqamical vacqriable A:

'" d~q (t)" (q; u))
7

(d —Z
(11b)

where e(t) denotes the unit step function. The
spectral futiction Q" (q; ~), which is the discoritinu-
ity of ((t)(q; z) on the real axis

A. (t) = iZA (t) —A (t) = e" A (t = 0) . (8a) (t) (q; u) + i0) = y' (q; (u) a i(t)" (q; (d), (12a)

For a classical system of particles the explicit
form of 2 is determined from Newton's equations
of motion:

is given by
+ 4)0

q "(q; &u) = — dt e" (t) (q; t)

s, r, = (1/m)p, ,

9
s,p; = — v(ri, ),

with

(8b)

(8c)

1= —,[P(q; &+ i0) —(t) (q; (d —i0)] . (12b)

From the Cauchy integral (lib) one has, more-
over,

)
'" d(u' (t)" (q; (v')

)T (4) —(4)
(12c)

Here v(r) is the central symmetric pair potential
acting between the particles, , and the prime ori the
sum in Eq. (8c) indicates tliri. t particles i and j
mtist be different. We will exploit internal symme-
tries-of the system wheriever possible: Transla-
tional invariance ensiires that matrices of type (7)
are diagonal in the wave number. Time inversion
r;(t)- r, ( t); p;(t) -p;( t) ca-uses-j„(q) and
Z'j„(q) to have odd parity aiid p(q) to have even
parity. With the scalar prdduct (6), variables of
opposite parity like A and ZA. are orthogonal,
since averages are invariant under time inversion.
Rotational invariarice of averages implies that
second-rank tensors like the currerit correlations

%here PP indicates a principal-value integral.
Q(q;z) will now be expressed in terms of charac-
teristic frequencies and relaxation kernels. Ex-
plicit expressions for the latter quantities are
generated most easily using Eqs. (6) and (7).
Starting from

p„.(q; t) = g (AIA)„.'(A&le '"IA.), (13)

we have, according to (lla) and applying an obvi-
ous matrix notation;

q(q;4)c=(A)A) '(A A)

c.4(q;4)= ",'c, (q;4)+ 4., -- ".')c,(q;4) (94) = [g(q) -z —m(q; z)] (14a)

are determined by two scalar functions, the longi-
tudinal and transversal parts C~(q; t) and C r(q; t),
which depend only on the modulus q of the vector
q. Henceforth, we will assume

q= (0, 0, q), (gb)

(10)

gives rise to simple relations between correlations
of the density and the longitudinal current.

,
In the

/

following we shall adopt a dispersion relation rep-
resentation of correlation functions. " Consider
the Laplace transform of Eq. (2) defined by

so that the 3X 3 matr'ix (Qa) is diagonal. Rotatiorial
ihvariance also forbids correlations between trans-
verse currents and the density, i.e.:; C4~ = C~4=0
for z = i, 2. The particle-conservation law

Iri Eq. (14a) a well-known identity""'" for resol-
vent matrix elements wa. s used to cast (I)(q; z) into
the Dyson-equation form with the matrix

~(q) = (AIA) '(A ILIA)

arid the relaxatiori kernel

(14b)

@=I -6' with(P = lA)(AlA. ) '(Al . (14d)

pr'ojects orthogonal to the space spanned by the
A„(v= 1, . . . , 4). Note that m(q;z), like P(q;z), is
analytic off the real axis and falls off at least as
fast as 1/z for large z, so it has a, spectral repre-
sentation like Eq. (11b) giving rise to a Kramers-
Kronig dispersion relation analogous to Eq. (12c).
Tong and Desai" showed that the representation of

m(q;4)=(AIA) ' A Aq 4
4A 4). (444)

Here
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Eq. (14) is equivalent to results obtained in terms
of dispersion functions. " The only nonvanishing
elements of matrix (14b) are

(j,(q)I~I p(q))
(j,(q)lj.(q))

(p(q) I &I j.(q))
( p(q) I p(q) )

II,'(q)
q

(15a)

(15b)

The characteristic frequency fl, ()I) is defined by

(&(q) I
&'I p(q) )

( p(q) I p(q)) s(~) (16)

The relaxation kernel is given by correlation func-
tions of the .generalized fluctuating forces

A, =QUA, =CA, —QA„~„, . (17)

2= QQ is the fluctuation Liouville operator.
One can treat the resolvent matrix in (14c) in the
same way as in (14a), obtaining a representation
for m(q;z) as a fraction. Iteration of this proce-
dure would yield Mori s continued fraction for
q|)(q;z). Rotational invariance ahd the vanishing
fourth component A4= 0 imply a diagonal matrix
m(q;z) which will be denoted as

m„(q;z)=m„(q;z)=q Dr(q;z),

m»()I;z) = q'D~(q; z) .

(18)

(19)

The relaxation matrix g)(q;z) IEq. (14a)].thus de-
couples into a diagonal 2&2 block of transverse
functions and into a full 2&&2 block of longitudinal
functions. Transverse current correlation func-
tions therefore have a much simpler structure than
their longitudinal counterparts due to the coupling
of density and longitudinal current in the latter.

mlimD, )q:,q)=D, ) )= —q q ) .
a~p N '2-z (23)

lim D r(u) + i0) =+i lim D r'((u) = sip/(mn) . .(24a)

So, for small q and e, one arrives at the approxi-
mation

Qr((f;z) = . , for Imz ~0(-1)
zygq 'g flin (24b)

This is the hydrodynamic limit of the transverse-
correlation function. In this limit the damping of
the diffusive shear excitations, responsible for the
width of the transverse current relaxation function
(24b), is given by' the shear viscosity ti.

The relaxation functions Qr(q, t) and Dr(q, i)
can be determined by computer experiments simu-
lating cia,ssical fluids. ' Outside the hydrodynamic
regime Dr(q, z) can no longer be approximated by
a constant. . For higher wave vectors and frequen-
cies it has a pronounced dependence on both. Let
us therefore introduce a representation of
q'Dr(q; z) in terms of its relaxation kernel. Re-
writing Eq. (21) in analogy to Eqs. (14) leads to

4'D, (4;z) = &',(e)/I z-+».(~;z)] . (25)

The square of the characteristic frequency Or(q),

(j,Iq) l~'I j,(q))
(j,(q) I j,(q))

Here a r = lim, , o r(q) is a transverse component
of the ordinary stress. The spectral function
Dr'(&u) of Dr(z) is the Pourier transform of the
stress correlat'ion fun. ction. Taking also the zero-
frequency limit the real part Dr(&u- 0) vanishes
and the imagina. ry part approaches a constant, con-
ventionally denoted by q/(mn):

III. TRANSVERSE CURRENT CORRELATION FUNCTION 2 2 n= v)hq '+ — d'r (1 —e""')g(r) s ', v (r), (26)

Prom Eqs. (14) and (18) one finds for the trans-
verse current correlation function normalizes the spectrum q'Dr'(q; a). The relaxa-

tion kernel is
P r(V; z) = (—I)/[z + q'D r(Q; z)] . (20)

The generalized diffusion coefficient Dr(q; z) is
defined by

D.)q;q)= .D q, %) D, q, )qi)),= m 1
(21)

The Liouville operator 2= 0XQ is reduced by the
projector

which is a correlation function of the q-dependent
transverse stress T,(q)/q = o r(q), where

T.(q) =&j (q). (22)
I

Both spectra qt)'r'(q, &u) and D$(q, cu) are positive
and even in )v. In the limit of small momenta p(q)
and j(q) reduce to conserved quantities from which
lim, ,Z = 2 follows. Assuming regularity of

Dr(q; z) for q - 0 one gets the Kubo formula

Z=aZ=ZZ=I-6 -6 (28)

to a space perpendicular to the variables A, IEq.
(1)] and 2, (Eq. (17)]. Note that

~~a.,(q) = «.,(q) = [&'-II',(q)] j,(q) .
The spectrum M'r'(q, &), which is positive and

even in (d, plays the central role in our theory.
According to the general properties of correlation
functions listed in Eqs. (12) the real part is deter-
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mined via

M'r(q, (u) = PP, 2(d , M$, (q, a')
l(d

(d —(d
(29)

and Dr" (q, ~) is given bv

&'r(q) M'r(q, ~)
q' [~+M)r(q, (u)]'+ [M'r(q, ~)]' '

(30)

Combining Eqs. (20) and (25) we finally arrive at

IV. LONGITUDINAL CURRENT CORREI ATION FUNCTION

Like its transverse counterpart the longitudinal
current density is a conserved variable. More-
over, it is coupled to the density via particle con-
servation (10}. It is this coupling to another con-
served variable which allows for an oscillatory
propagation of fluctuations relaxing towards equi-
librium. Formally this leads to the more compli-
cated structure of longitudinal correlations due to
the appearance of the nondiagonal elements (15).
From Eqs. (14), (15), and (19) one finds for the
longitudinal current relaxation function

z+M, (q;z)
n', (q)+ zM, (q;z) ' (31a)

'z-0,'(q) z+q'D~(q; )z'g(q;z) = (32)

f~'r(q)M'r'(q, ~)
[~' -02r(q)+ (uMr'(q, +)]'+ [(uMr" (q, (u)]'

'

(31b)

and for the density relaxation function

(-1)
z -0', (q)/[z+ q'D~(q;z)]

'(q;z) = (33)

This exact result expresses the transverse-cur-
rent correlation in terms of 0'r(q), Eq. (26), and
the relaxation kernel, Eq. (27). The above repre-
sentation guarantees the correct zeroth and second
moment of the spectral distribution of transverse
current fluctua, tions. Our subsequ'ent appr oxima-
tion for Mr(q, z) does not destroy that property

We consider the relaxation kernel Mr(q;z) to be
the basic quantity for microscopic approximations
rather than the generalized viscosity, since the
latter is unsuited for approximations in two limit-
ing regimes of a fluid. In the weak coupling limit,
i.e., in the low-density limit of a fluid or for the
model of small interactions, the absence of an ef-
fective relaxation mechanism leads to a divergence
of Dr(q;z). This result is well known from kinetic
gas theory. On the other hand, a straightforward
perturbation expansion for Mz, (q;z) yields a value
for p compatible with the Boltzmann equation re-
sult. ' Thus the singular behavior of Dr(q;z) in
one limit of physical interest gives a first hint that
it is better to focus on the relaxation kernel
Mr(q;z) for approximations. An investigation of
the strong coupling limit suggests the same: high-
density liquids have short-range correlations sim-
ilar to a solid. One therefore would prefer a theo-
ry for liquid dynamics that also allows a simple
identification of possible phononlike excitations.
Indeed, Eq. (31) is the standard way used to dis-
cuss phonons in lattice dynamics. Qr(q) repre-
sents the ideal phonon dispersion and Mr(q;z) is
the polarization operator. In particular M$(q; v)
describes phonon damping due to imperfections
and anharmonic effects. A small Mr(q;z} yields
sharp phonons; according to Eq. (25) this limit im-
plies a strongly varying Dr(q; z) making it inac-
cessible to simple approximations.

Obviously density correlations and current corre-
lations are related by

happ(q;z) = ——+ ', pg(q;z),
f~'. (q)

8 z'

)I)~pp(qi &) = 41.(q ~)
0', (q) „ms (q; &u)

CO S q

(34a)

(34b)

reflecting the continuity Eq. (10). It is important
that this conservation law and the information on
static density correlations contained in 0', (q)
[Eq. (16)] be incorporated explicitly into a theory
for the current spectra as it is done here. In the
second part of Eq. (34b), the relationship with the
classical Van Hove scattering function' is indicated
for convenience. The generalized longitudinal
damping function

P2
& )0;z)= .~ zv. )t))

&
kv. lt))) (35)

correlates generalized longitudinal stresses o ~(q),

~) Z,(i),(a) ~) .(q)
q q q' (36)

Note that 7, (q) has an overlap with the density. In
the small-q limit 2 may again be replaced by 2
leading to

ln 1limni)q;z)=D )~ )=
& v v,), )37a)

q ~Q N g—

lim Dl (&uai0) =+i lim D~(&u) =+iDz, (37b)
td-+ Q (g)-+ Q

to obtain the standard hydrodynamic form

which is a correlation function of vz, = lim, , vz(q).
Assuming Dz(q; z) to be regular in the hydrodyna-
mic regime one approximates it by the zero-fre-
quenc y 1im it D ~ of (37a),
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P~(q;z) = — » . , . . Imz &0, (38)—cthQ + '4&4 Dg,

where cth denotes the isothermal sound velocity

A A

Here again the Liouville operator Z = CS is re-
duced by the projector Z= ZZ (28) to a space
orthogonal to A, lEq. (1)] and A„[Eq. (17)]. Note
that

Q,'(q) v', hc,h= lim (39) ZZ&T, (q) = &ST,(q) = [2' —Q~(q)] j,(q) . (43)

q'D~(q; z) = -b, '(q)/[z + M~(q; z)] . (40)

The positive quantity b. '(q) normalizing the spec-
trum q'D~(q, ~) is given by

~,( )
(j,(q)l&&&lj, (q) Q. ( ) Q2( )(j.rq) I ~.(q))

(41a)

where Qz(q) is a characteristic longitudinal fre-
quency

(j.(q) I
&'I j.(q) )

(j.(q)lj.(q))

= 3,,'hq + — d'r (I —8"" )g(r) a,' t (r) .

(41b)
For a discussion of the characteristic frequencies
Q, (q), Q);(q), and Qz, (q) see e.g. , Ref. 6. The re-
laxation kernel M~(q;z) has the following struc-
ture:

m
M~(q;z) =

~ )—

X &, q gg gg T q
1

(42)

Actually the generalized sound damping function
D~(q;z) is not regular since the longitudinal cur-
rent couples to energy-density fluctuations. Be-
cause of the nonzero overlap of ~,(q) with the ener-
gydensity, Dz(q;z) [Eq. (35)] exhibitshydrodynamic
singularities due to energy fluctua. tions. It is not

, difficult in principle to extend the set of basic vari-
ables to take account of this effect." In such a
scheme the correct adiabatic sound velocity would
enter instead of the isothermal one appearing in
Eq. (38). In our numerical work, however, we
have ignored heat fluctuations and so we do not in-
clude them here either. Experimentally D~ is de-
termined from sound damping measurements.
Neutron-scattering supplies information on

Qp~(q, e), and computer simulations yield D~($) as
well. "

The correlation function (3g) has a form similar
to the phonon propagator in lattice dynamics.
From the point of view of analogy to solid state
physics it would be tempting to consider D~(q;z)
as a candidate for simple approximations. How-
ever, in the weakly coupled gas limit Dz, (q; z) di-
verges in the same way as Dr(q;z). So we prefer
here also to use a representation in terms of the
relaxation kernel generated by Mori's formalism

x ~ Q~(q)+ (~ Q'(q))

+ (~*-&'(v)) ' '

) (44b)

This form ensures the correct zeroth and second
moment of the spectral distribution of longitudinal
current fluctuations, i, e. , the second and fourth
moment of the density-fluctuation spectrum (34).
In addition to that the above representation gives
static density correlations, since Eqs. (44) guaran-
tee also the correct zeroth moment of the dyna-
mical structure factor.

V. MODE-COUPLING APPROXIMATION

Within the preceding exact formalism the calcu-
lation of current correlation functions has been
reduced to an evaluation of the resolvent matrix
element

1 m
N„8(q;z)= ~„(q) Z& @- - ZZ 78(q) —,( 5)

with 9 projecting orthogonal to the variables A. ,
[Eq. (1)] and 0 = 8 0, elfminating in addition the var-
iables 4, [Eq. (17)]. The two independent functions
N„(q; z) = N»(q; z) and N»(q; z) determine the
transversal relaxation kernel Mr(q;z) [Eq. (27)']
and the longitudinal kernel Mz, (q;z) [Eq. (42)],
respectively.

Our approximation for them consists in the fol-
lowing: In an expansion of the resolvent operator
(QgZ-z) ' with respect to a complete set of vari-
ables we retain only matrix elements between the
most simple variables consisting of products of
the basic variables A.„. Due to invariance with
respect to time inversion only combinations of
currents with density fluctuations

Dk(q) = Zj.(~)5p(q —k)/N, (46)

Formulas (29) and (30) hold with an obvious change
of notation. The longitudinal current relaxation
function expressed in terms of Mz (q; z) is, how-
ever, slightly more complicated than its trans-
verse counterpart (31),

z+Mi(q;z)
z'- Q,'(q)+ [z' —Q,'(q)]M, (q;z)/z '

(44a)

P&(q, ~) = [Q,'(q) —Q.'(q)]M,"(q, ~)
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have nonzero overlap with g2v„(q). So we approxi-
mate

'k k0 -„p(q; cu)" mnv, „=5g pK k2 F&(kp K&(A))

(47a)

with 6', denoting the projector onto the two-mode
variables [Eq. (46)],

+ 50', 8 2 F2 Q~g~ (
k~4g

+ 5
p k„z8 F3(k, K; (u) (51a,)

in terms of convolutions of current spectra

6', =Z Q IB),(q)}[(BIB) ']),p(B"p(q)i
0. .8: k, p

(47b) F, ,(k, K; tu) = nv,'h
de—

&j)~ r(k, u) -e)r
In the long-wavelength limit, Eq. (47a) is still ex-
act. This can be seen as follows: 27„(q) is given
by a sum over two-mode variables js(k)p(q —k)
plus a free streaming term '2', j (q) which vanishes
like q',

«.(q) = &'j.(q)

F, (k, v; &u) = nv)'),

0f(~, e) —.,

—4)z(k, (u —e)

&& Qf, (z, e)

(51b)

(q. - )
(Pi)a -sq r;

m 8
where v = q —k. The functions F;(k, v; a) are di-
mensionless. The normalization matrix for the
two-mode variables thus reads

=—g—Z V.,(q;q-k) j,(k)P(q-k)
8 k

(B-(q)
I
B-, (q)) = d+ ~8

+),p(q; ~)"

5 85-„p S(~)
O'L

(51c)

+ &'.j.'(q) . (48b)

-i(5 sq V+2V„qe)]v(r), (48c)

V„8(q;Pc}= d'r e '"
V )I(q; r)

is its Fourier transform. In evaluating the resol-
vent matrix elements

us (x $ 8
+r, ;)t);~)= &x)t)) z, &;)i)), (49)

which enter in Eq. (47a}, we assume the two
modes to propagate independently, i.e., in-addition
to Eq. (47a), we approximate

( tj (k}5P(q k))&*,qj 8(p-)5P(q p))—
—= (j (k, &)*i8(p)) «P(q-k, t)*5P(q-p))

+ &j.(k, t) "5P(q-p)) (5P(q-k, &)*j8(p)) (5o)

Equation (50) implies that factorizing correlations
approximately takes care of the projectors Z as
well. The spectral function of (49), $k p(q; &u)", is
given by the Fourier transform of Eq. (50),

So ZS'j (q) is a linear combination of Bk(q) in that
limit. Here

V„s(q; r) = [(1—e'"') ~ V8

y~(q; k) = — d'r e ' ' ' V„„(q;r)G-, (r), (53a)

with

G-(r) = ~g(r)+ n d'r' e ' ' '
K

x [g)r', r) -K(r )g(r)]) S(x) . (53b)

The vertex is thus given in terms of potential de-
rivatives (48c) multiplied by pair-correlation func-
tions (5),

))'

n'g(r) =—Q (5(r —r, ,)),i,j
and triple correlations

(54a)

/

n'g(r; r')= —Q (6(r —r, ,)5(r' —r, ))) . (54b)
i,j, r

The summation includes only particle triples with
pairwise distinct positions. Combining the pre-
ceding results we find the following two-mode con-

Furthermore, we have to evaluate the vertex func-
tion q) (q; k) given by the overlap of QZv (q) with
the two mode variables B„(q) "divided" by the
normalization matrix (51c),

q, (q; k) = (gZT. (q) I B~k(q) }miS(K) . (52)

One finds that free-particle contributions to the
vertex in Eq. (52) vanish, and we finally have
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)"=, (2,).
3

x Q f„~(q; k) K F; (Q, x; ~),

where F;(k, ~; o)) are the convolution integrals
(51b) and

(55b)

tribution Ni„'I)(q;z) to (45):

Ni:).(q;.) = —~ ~ ~,"(q; k)
k, P y6

~-",-, (q;.)q l(q; p)*. (55.)
The spectral function reads

time hard-core singularities by static correlation
functions in the vertex (53).

Since the two-mode variables 8j(q) (46) have no
overlap with the free streaming term in (48), the
latter is projected out in (52) by our approximation
(47). The vertex y" (q; k) [Eq. (53a)] and hence
N~„'I)(q;z) [Eq. (55)] vanishes for vanishing interac-
tion potential. Approximation (47) was shown to be
exact in the limit q 0 since only the mode-cou-
pling term in Eq. (48b) survives. For large q,
however, the free-particle motion represented by
the second term in (48b) becomes relevant. To
keep these free-streaming contributions to
N„z(q;z) (45) one has to include single-particle
functions of the type

f.'8(q; k) = g q,"(q; k) ~.
'

W'(q; k) *,
y

(55c) g e-'&'*(p, ).(p, )8

f.*s(i; &) =P v,")a; &)(&, — '„.')q')a;k)',
y, 6

f'8(q;k) = g W,"(q;k) '.' q~(q;~)*.
K

(55d)

(55e)

We have replaced (1/N) Z in (55b) by
(1/n) J jd'I/(2v)']" .

Mode-coupling approximations have been used
earlier by Kawasaki" in the discussion of dyna-
mical critical phenomena. Since one is interested
in asymptotic expansions only, further arguments
in favor of the approximations can be given"'" in
that case. Mode coupling approximations are
known to yield the correct power laws for the long-
time singularities of Dr(t) and Di. (t)." Hence the
present theory takes care of these singularities
also. Within the phonon theory of solids, approxi-
mation (50) is used to calculate the polarization
operator in leading order. The factorization (50)
is also correct in the weakly coupled gas limit; in
this case one is in addition allowed to work out the
functions F in Eqs. (50b) for the noninteracting
system. "

The physical content of the preceding formulas
is obvious. N„"8(q; &v) is the function describing the
current excitation damping. According to Eq. (55)
this damping is approximately determined by the
decay of a current into pairs of current excitations.
The decay rate is given by N„"8(q; o)), which is a
generalized Golden Rule expression for the transi-
tion probabilities including kinematical restrictions
due to momentum and energy conservation. The
vertex q)8(q;k) in Eq (53a) is g.iven in terms of the
potential and the two- and three-particle correla-
tions. These functions occur in such a way, that
they screen the strong repulsive parts of the inter-
action. Crucial features of the preceding formal-
ism are the handling of the long-time singularities
by the factorization (50) and the screening of short-

as intermediate "sta,tes" in an expansion of the re-
solvent in (45) also. Since these contributions to
N become relevant for large q we approximate
them by the value N~')z(q;z). of the noninteracting
system Tec. hnically one evaluates biz') z, (q; z) in
terms of error functions. After determining
Q~,'(q) and A~" r(q) for the ideal gas one uses Eqs.
(3la) and (44a) to obtain N~p r(q;z). The present
theory thus uses the formula

N„,(q; z) = N'„'&, (q; z) + N'„', (q; z), (55f)

VI. DECAY VERTEX

In Sec. V the vertex was shown to be determined
by the interparticle potential v(~), the pair-corre-

which is exact in the limit of the noninteracting
system. This splitting is also exact for time t = 0.
Thus Eq. (55f) assumes that property to hold for
all times.

Since the relaxation kernels Nz r(q;z) have been
expressed in terms of the current correlation func-
tions according to Eqs. (51b)-(55), a closed set of
nonlinear integral equations has been derived to
calculate ))))I, r(q;z). There are no problems in
solving these equations by straightforward itera-
tion: the nth approximation for the current corre-
lations via Eqs. (51b)-(55) determines the (n+ 1)th
approximation for the relaxation kernels M~(q;z)
=N~(q; )z b/. '(q), Mr(q;z) =N (qr;z)/Q~(q). These
in turn yield via Eqs. (29), (31), and (44) the
(n+ 1)th approximation for the spectra of current
correlation functions. Practical calculations have
been carried out for liquid argon" and liquid rubid-
ium" on an IBM 360/91 computer. One iteration
step requires about 2 min computer time, and,
starting with a reasonable zeroth-order guess for
the Q'r z (q; &u), about three iteration steps are nec-
essary to get the solution stable within 1/o.
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lation function g(r), and the triple-correlation
function g(r; r ). For realistic liquids the potential
v(r) exhibits a strong repulsive core and a weak
attractive tail. For liquid argon and liquid rubid-
ium, v(r) is sufficiently well known. The reliabil-
ity of an effective interionic potential for our pur-
pose in the case of rubidium is discussed in Refs.
6 and 13. Also the structure factor S(k) has been
measured in x-ray and neutron-scattering experi-
ments. Regarding the third ingredient of our ver-
tex'there is unfortunately still a lack of detailed
information on the triple correlations g(r; r').
Therefore we used the Kirkwood superposition ap-
proximationn

vl 2 'v~@'g 1
V (q; r)g(r) -=——n'

x 5 (r r,-)(1 —e' " '
) . (57c)

We checked the validity of (5Vc) by carrying out the
integrals (53a) numerically for some representative
values of q. The results for the relaxation kernels
are not influenced significantly, Note, however,
that approximation (57) is appropriate for the
dense liquids because of the peaked pair correla-
tion g(r), but is not allowed in gases. Our final
result for the vertex is

I

gas�

(q; k) = —Qe

g(r; r') = g(r)g(r')g(lr —r'l) (56a)
x (1 —e'"' )F-„(r), (58)

which does not destroy the effective shielding of
the divergent bare potential for hard-core dis-
tanc es in (53) .

This approximation however cannot reproduce
the correct small v behavior of the numerator in

Eq. (53b). Since S(v) becomes very small, this
entails too large a vertex for values of ~ less than
1 A '. We corrected this unpleasant feature of our
vertex, caused by the deficiencies of the Kirkwood
approximation, by replacing 1/S(v) by unity in Eq.
(53b), i.e.,

G-, (r) = g(r)F-, (r-), (56b)

F-, (r) =1+n d'r' e" ' g(lr —r'l) jg(r') —1] . (56c)

~G+8 y r„rs v'(r)
V V~v(r)=, v" (r)+ 5 8—

y' r jv'

multiplied by the weight factor g(r). Since the
pair-distribution function g(r) shows a peak, where
v"(r) isbigand v'(r) is small, we neglect the first
derivatives in (53a) and use the approximation'"

47r(n/m)r'g(r)v" (r) = 3n'5(r —r, ) . (57a)

Here the Einstein frequency of the fluid is given by

We have also investigated the effect of a lower cut-
off for the v integrals at about 1 A ' in Eq. (55b).
There was no remarkable difference of the results
compared to those obtained with Eqs. (56). Ac-
cording to (48c), the vertex (53a) contains deriva-
tives of the potential

Vv(r) = v'(r) r/r,

where ~ =q —k.

VII. VERTEX FOR q 40--DETAILS

We list some formulas necessary for a tabulation
of the vertex (58), which is a symmetric 3x 3 ma-
trix. Its elements are real, which is easily dem-
onstrated using the property. F-„(r)= F-„(—r) of the
scalar function

F-, (r) =f(~, r, x)-
= 1+ 27TP2

dr' r"jg(r') —1]

dx' e"""" g(R)

x cl (K(l x')' 'r'(-1 x")' '), -(59a)

x = cos(z, r) .
I

Here fl = (r'+ r" —Rrr'x')'~', and the azimuthal.
angle integration has been carried out in Eq. (56c)
leading to the Bessel function J,. Since the re-
maining fntegrals in Eqs. (59) contain the pair-
correlation function, they have to be done numeri-
cally.

For further evaluation of the vertex we must de-
cide on a basis ]e„e„e,] for the representation
of the matrix ya, and we must choose a coordinate
system ]a„a„a,] in which to carry out the r inte-
gration of Eq. (58). The matrix yz(q, k) can then
be written

yg = (e.isle~&

Ae = —— d'r g(r)av(r), (5Vb)

and the parameter r, is determined by a fit to
Qr 1(p) jEqs. (26) and (41b)]. Thus we approxi-
mate V„s(q; r) jEq. (48c)] in Eq. (53a) by

(60a)e .a, &",6' a, e8,
y, 6

where the index a refers to the a basis. The r in-
tegration is done most efficiently in a coordinate
system with basis vectors
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K ~ K~k
3 ) 2 a~= a~Xa (60b)

we get from Eqs. (58) and (59b):

y = cos(q; Tc) = (q'+ ~' —k')/2q~, (61a)

i.e., with the z-axis pointing into the direction of
K = q —k and q in the x-z plane. Then the azimuthal
angle integration in addition to the integral over
the magnitude of r can be carried out in Eq. (58).
Denoting

By'~) (q, k, )() = -', nz' dx e '"()"f(~, ~„x)

~bI~())(q, k, ~; ~„x) . (61b)

The integral must be computed numerically using
a table of f()(:,x„x) produced from Eq. (59) and the
functions

0

x(1-x')'".C,

0

(1-x')(C, —C,)

0

x (1 —x ') '(' c,)
x'C0

(6lc)

The b&, were arranged in a matrix with the index
a denoting the basis (60b), and we introduced the
abbreviations

and

g = qxxy, z = qx(1-x')'('(1 —y')'~' (62b)

C =
0

C, =

C =
2

—(1 —e'"') = 1 —e'~ J,(z),
2m

7I

(1 —e'~') cosy = -ie'~ J,(z),

7I

2m
(1 —e'"') cos'y

(62a)
(63a)

ln the decay integrals (55) it is more convenient
to use a representation of the vertex matrix with
respect to the basis (e„(k)]

q qXk
e3= —, e2=a2=, ~, e

~qXk

From Eq. (60a), the transformation matrix is

~i(z)=2 —e Z (z)—0 z

where

e ~ a&= 0 1

(l y2)1/2 0

0
( )' 0 -((-(')")

(63b)

q. r = qr[xy+ cosy(1-x')'~'(1 —y')'~'] and one then finds

I
y'B n —2y(1 —y') "Bas+ (1 -y') B,s]

y„s(q, k, ~) = 0

[y(1-y )"(B„-B..)+ (2y'- l)B,.]
where Bz, abbreviates B'„'(I(q, k, ~) given in Eqs. (61).

[((1 )')"(((„-B..) ~ (&)"—-()((„))
0 , (63c)

0 [(1—y')B„+2y(1 —y )'( B,3+y B,3]f,

VIII. DECAY INTEGRALS (55) FOR q 4 0—DETAILS.

Here we want to write the two-mode contribution
f((~„'z)(q; (())" in a more-detailed form accessible for
a numerical treatment. In order to evaluate the
longitudinal and transverse part we must, accord-
ing to Eqs. (55), determine

('I »~)= 2 (( s )f s(t('&) (((4b)
0. , 8 0'

for i=1, 2, 3. This is achieved by simple matrix
algebra using the representation of the vertex
(63c) with respect to the basis (63a) in which

I

f&'(q, k, ~) = g ".' f.'z(q; k),
n, a 9'

(64a)
q = q(0, 0, 1)„k=k((l —u')'i', O, u), ,

with
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u = cos(q; k) = (q'+ k' —«')/(2 qK) .
One finds

(65b) We thus find

fl. = [(I-u ) (p»+up»)

f"= -', [(1-u') 'i'(p „+u(p „]',
f', ' —[uq „-(1-u')"q'»]',

(66a)

(66b)

(66c)

(66d)

In the above formulas all matrix elements y 8 de-
pend on the same argument combination (p„a(q, k,
K). The third component fz', r(q, k, «) requires
more attention since according to (55e) also the

ys(q; Tc) = (P, (q, «, k) = i (p (q; z, k) i,
enters with t = e„(k) e„(K). A straightforward
calculation yields

f(~"(q, k, «)

= [(1 -u')'i'(p»(q, k, K)+uq)»(q, k, «)]

(k/«) [-(1 y') 'i'
p „—(q, K, .k) + y(p „(q,«, k)],

(66e)
f'P(q, k, «)

=2 [(1-u')' 'q)„(q, k, «)+u(p»(q, k, «)]

&& (k/«) [-(1-y') ' '
(p „(q,«, k) + y(p»( q, «, k)] .

(66f)

We note that the vertex functions f(~) r depend only
on scalar variables q, k, w, which enables us to
carry out one angle integration in Etl. (55b). The
remaining integral over a polar angle-can be
transformed into one over «using relation (65b).

fi~'r(q, k, «)

&& F; (k, v; (v) . (67)

q)„8(k, u) = limn8 (68)

This will be given by Eq. (63c), with the matrix
elements Byt; replaced by

By(;(k, u) = lim B,(q, k, &)/q .
q~P

Performing that limit one finds from E(ls. (62),

Co= -ixoxy )

C, = --,'ir, (1 -x')'~'(1 —y')'i',
1C, =2 Co.

(69)

Since y= -u for @ =0 all elements By& can be ex-
pressed in terms of u and two integrals (v= 1, 2)

'+ l
A, (k) =i ~nsr, dxx"—'

-1

xe ' ()"f(k,r„x). (70)

Both are real and vanish linearly for small k. The
final result is

IX. VERTEX FORq=0 —DETAILS

In the zero wave-number limit the function Dr(z)
[E(ls. (23) and (25)] and Dz, (z) [Eqs. (37a) and (40)]
re(juire knowledge of

u 3u' —2 A, + 4 —5u' A,

(p(k()(k;u) = 0

1-u' 'i' 1 —3u' A + 5u' —1 A,

u[A, -A, ]

0

~ (1-u')'k((l-. ku')k, ~ (kk —1)k') )-
0

u [(3 —3u')A, + (5u' —3)A, ]

(71)

X. DECAY INTEGRALS FOR q = 0—DETAILS

In the long-wavelength limit one has to evaluate

N&') (q ~)" 1
ljm q' v („(27(n)'

OO

.'cg f dkk'E;(k, k;el
i, = 1 0

q)„8(q, k, «) . (p„i)(q, K, k)

q~ Q

(73a)

Here we changed the integral over «[Eq. (67)],
into an integral over u = cos((I; k). For i = 1, 2,
fl', ~(k;u) is given by Eqs. (66a)-(66d) with q)„z(q,
k, «) replaced by (p„s(k;u) [Eq. (71)]. For i = 3, ap-
plication of

with

+1
du ft~' r (k; u), in Eqs. (66e) and (66f) leads to

f('I (k;u) =f~~) z(k;u) . (73b)

f(' (q k «)f~" r (k; u) = 1im
q-+ 0

(72b) Relation (73aj is most easily demonstrated in its
equivalent form
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V'F (q;k) „. qa(q;q-k)
o e q o

From Eqs. (74) and (75) we can derive a, simple
expression for the quotient f/q of a liquid. Follow-
ing Hefs. 32 and 33, we obtain the shear viscosity

in Eq. (58) with the help of F ~(r) = F~(—r). The
integral. over u can be performed and leads to the
final result for the decay integrals:

q = mn lim lim, p'r'(q; &) =
o, o q

' Nr
(76a)

N~g', (q; ~)"
q' v~p(2mn)'

dk k'[ f ' (k)L (k' (u)

from Eqs. (3lb), (27), (45), and the bulk viscosity

4)
g + 3 g = mn lim lim, p'I'(q; rg)

oa o

with

L(k; u)) =F,(k, k; &u)+F, (k, k;(u)

+ f~P r(k)T (k; (u)]',

(74a)

mn(c~ —ct'h)'

Ng

from Eqs. (44b), (42), and (45) with

N() (q ~ )
N~ ~ = lim lim

~~ Q q~o Q'

(76b)

(76c)

=nv(p(d $1,(k~ 4P —&)Qg(k; &)
jr

T(k; ~) =F,(k, k;(o)

1
E ((d —f) (74b)

c = lim
0 (q)

LsT (76d)

The isothermal sound velocity c,h is defined in Eq.
(39). Since lim, L(k;&u) =0, we see from (74a),
(75d), and (75e) that

=nv&h Q" (k' &u —c)Qz", (k; e) —,, (74c)
7r E. Nr/N~ = 4, (77)

describing the q = 0 decay into two longitudinal or
one longitudinal and one transverse excitation, re-
spectively. The decay strength is determined by

(75a)

f&u(k) = —,', [X,(k) —3a,(k)]',

f';&(k) = —,', [a,(k) -W, (k)]',

f'Pi(k) =-,' [A. ,(k) -A, (k)]'.

(75c)

(75d)

(75e)

with

fi~~(k) = —,', [2A', (k) + 3A', (k) —2A, (k)A. ,(k)], (75b)

within the mode-coupling approximation discussed
in this paper. Combining Eqs. (76a), (76b), and
(77) this means

2 2 2 4 3 2 2 2Nr c~ —cth cg —cth

NI, cp 3 4 cz 3

It is not hard to convince oneself that result (78)
does not depend on the solely technical approxima-
tions (56) and (57), but rather is a consequence of
the two-mode approximation described in Sec. VI.
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