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We have studied the bound states of the potential V(r) = —Z/(r + P). The S-wave energy level E(P), .
as a function of the parameter p, has a logarithmic singularity at the origin, The imaginary part of E(p) for
P ~0 goes as Z + ' P ', where I is the angular momentum.

I. INTRODUCTION

The Coulomb potential 1/x has been studied ex-
tensively in the literature on quantum mechanics.
It is one of the few potentials which allows exact
closed solutions fear the energy eigenvalues and
their wave functions. Many of its interesting prop-
erties, such as the well-known "accidental" degen-
eracy of states and their 0(4) group structure, are
associated with this potential only and are inti-
mately connected with the singularity of the poten-
tial at the origin.

In the context of quantum field theory, however,
it is precisely the singularity a.t x=o (or more gen-
erally on the light-cone) which is the crux of diver-
gence difficulties. Indeed, it has been a suggestion
of long standing' that if gravitational interactions
of elementary particles are taken into account the
singularity would shift away from the light-cone.
In other words, there would be a gravitational cut-
off of Coulomb interactions resulting in a finite
theory of quantum fields. A nonrelativistic expres-
sion of this idea, is provided by the potential

v(~) = -z/(~+ p), p & o.
This potential may also serve as an approximation
to the potential due to a smeared charge rather
than a point charge, and may be a pertinent poten-
tial for the description of mesonic atoms.

The purpose of this paper is to study the behavior
of the bound-state energy levels in the modified
Coulomb potential (1), as a function of parameter
p. In particular, we study the S-wave bound st;ates
which are .the only states we have been able to ana-
lyze rigorously.

The. eigenvalue relation for the 8-wave bound
states is obtained in Sec. II by imposing the usual
boundary conditions on the wave'functions at the
origin and at infinity. It is found that the energy
E(P) has a logarithmic branch-cut at P = 0 which
precludes a. strict perturbation series for E(P)
around p = 0.

, In Sec. III the same problem is stud-

II. P) 0 AND EIGENVALUE EQUATION

FOR S-WAVE BOUND STATES

A. Some general properties

We work in units with 2m = S = 1. For P & 0, the
Ham iltonian

H(z, p) =p' — +
Z l(l + 1)

~+p

satisfies

a(z, p) &a(z, o)

(2)

so that the energy levels satisfy the inequality

E„,(z, p) &E„,(z, o) . (3)

Furthermore, since p' is a positive definite opera-
tor, the bound states also satisfy

E„,(z, p) &-z/p.
Differentiating the Schrodinger equation

If(P) lC(P)) =E(P) lc(P))

with respect to P, we get

ied using dispersion theory. The analyticity prop-
erties of E(P) admit a dispersion integral repre-
sentation of E(P). Wederivealemma which relates
the imaginary part of E(P) to the wave function at
the singular point x= -p. In the limit of J3-0, the
wave function is given by the wave function for the
corresponding Coulomb potential. By performing
the dispersion integral in the limit. of P-O, we re-
trieve the exact results of Sec. II.

The agreement (in the P - 0 l.imit) between the ex-
act solution and the result of the dispersion theory
gives support to the analysis of the singularity
structure near P = 0 by the use of dispersion theory.
This has been done by Bender and %u' for the an-
harmonic oscillator. It can also be used for the
evaluation of energy levels where the exact results
are not easily available. and where the perturbation
series is not admissible. '
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p
4(P)&+&(p)

g
4(p)& =

p
4(p)&+E(p)

ep
e(p)&.

(6)

Taking the scalar product with I P(P)& and using the
Hermiticity of H(p) for p&0, we get

sz Z(4(p) ~ I/(~+ P)'~ 4( P)&, 0
ap (4(p) ~ t(p)&

It follows from the last equation that the bound-
state energy levels are continuous functions of p
for P &0. One can obtain similarly,

(7)

(8)
8Z ($(P) I Q(P))

We now subject our system to the Symanzik scale
trans formation'

p-np, x-x/n, o&0

for which the corresponding unitary transformation
takes the Hamiltonian (2) into

B. The eigenvalue condition for g-~ave

For I = 0 and p& 0, the w'ave function for a, bound
state with energy E satisfies the Schrodinger equa-
tion

d 2+ E+ X=0, (12)

where g(x) =xR(r), R(x) being the radial wave func-
tion. In terms of the variable

y = 2v' E(~+p), -
we obtain Whittaker's equation'

dy' 4

whose general solution is

z(z, p) = (1/p')z(zp, 1) .

The last two relations will be useful in determining
the asymptotic behavior of E(P) as P-+~.

Z u ii+1
x+ np

X = ye '~'[AM(1 —z/2v' E, 2, y)-
+RU(1 z/2v' Z, 2, y)), (14)

It follows therefore that the energy levels E„,(Z, P)
satisfy the property

n'E(Z/o', oP) = Z(Z, P) .
Setting o. =p and a =1/p gives two relations

where I and U are the confluent hypergeometric
functions':

a x a(a+1)x'
M( x

b x)x+b It +b(b I)2t +

E(z, P) =P 'E(z/P, P') (10) and

U(a, 2, x) = M(a, 2, x) lux+a ", [g(a+x) —g(1+x) —g(2+r)] +
1

(16)

. with

(a)„=a(a + 1) ~ ~ ~ (a + x —1), (a), = 1,
1 dI'(a)

However, if the condition (18b) holds, then the two
solutions in terms of M and U functions become
linearly dependent and we get

n& 1
+B-&" L„-y (19)

For y -~, the asymptotic behavior of the confluent.
hypergeometric functions gives for y(y),

A e y (-1+z/ 2~@)
x(x) xx "*

xxx "*"')r(I Z/2v' Z)
(17)

For Z to describe a bound state we require X(~) =0.
Therefore we must have either

(18a)

where L'„(y) is the associated Laguerre polynomi-
al. ' Further, since the radial wave function R(x)
has to be finite at the origin, we require y(0) =0
giving

L'„(2Pv' E) = 0. — (20)

This last condition (20) is, in general, inconsistent
with the condition (18b), and therefore we must
have A = 0. 'The solution then becomes

or

Z/2VZ= n, 'n=0, 1, 2, . . . . (18b)

X=zye-"'U(I-Z/2v' Z, 2, y)

and X(0) =0 yields the eigenvalue equation
x

(21)
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I/(1 —Z/2l-E, 2, 2PV E) =-0, P &0.

C. P~+0 limit

(22) E(p+i@)—E(p —iE) = 8iv'Zp'IR(p, r = —p) I' (29)

provided E(P) is a real analytic function of P.
Proof: From the definition we ha, ve

We can obtain the S-wave energy levels in the
limit of P-+0 by using Eqs. (22) and (16). We ex-
pect that for P very small and positive, E(P) would be
only slightly different from Coulomb value E(0),
and therefore write

a = 1 —Z/2v' E= -(n —I) +—6(P), n = 1, 2, . . . , (23)'

where 5(P) 0 as P-0+.
The logarithmic derivative of I'(a) appearing in

Eq. (16) may be approximated by

(/((a) -—1/5 for a - (n —1)—

a'(p -i~) =a(p+is),
we get

(31)

[E*(p —ie) —E( p —ie)] (p —i&
I p —ie)

=2i~z(p ie I5(r+p) Ip-i~).

(p —ie IH(p —ie)
I p —ie) =E(p —ie) (p —i( Ip —ii) .

(30)

On subtracting from Eq. (30) its adjoint and using
the relation

g(a + 1)- -1/5+ 1/(-n + 1+ 6) .

Therefore to order P, we obtain

1 p————+P lnP=0
g

or equivalently,

(24)

(25)

Real analyticity of E(P) and unit normalization of
states gives the desired equation (29).

For the potential of Eq. (1), we may obtain the
imaginary part of E(P) in the limit of P-0- by
using result (29) and the normalized hydrogen-atom
wave functions for the exact wave functions, which
is justified in the limit of P-0-. This immediately
gives for the S-wave bound states,

5 = —PZ —Z'P' lnP+0(P') . (26)

III. P(0 AND THE DISPERSION RELATION FORE(P)

A. Imaginary part of E(P)
I

In the last section we showed that for p&0, E(p)
has a logarithmic cut at the origin. This means
that E(P) has an imaginary part and the states are
metastable. 'To calculate the imaginary part of
E(P) however, it is not always necessary to solve
the full eigenvalue problem, and in fact for the sin-
gular potentials of the type of Eq. (1) it proves ex-
pedient (to use the following lemma:

I.emma: I.et

z
H=H, — . , P real.

&+ P +i&
(28)

If H has bounded normalized eigenfunction I p sic)
and if IIO is Hermitian, then

Substituting Eq. (26) into (23), and solving for E
gives

z„=—,( — — )+o(((') . . (2'()4n' n n

The expression (2V) for the S wave energy lev-els

exhibits logarithmic branch point at P = 0 with a
branch-cut along the negative real axis of P. Since
E(P) has a singularity at P = 0, perturbation series
for E(P) around P =0 is not strictly possible. This
result is similar to that of Isham et al. ', . the elec- '

tron's self mass as a function of the gravitational
coupling k has a singularity at k=0.

vZ'p'
Im E„o(p) ~

g p 2n (32)

in agreement with the imaginary part of Eq. (27).
A similar procedure for the higher angular mo-

mentum states gives

~ z4+2l p2+2l
n1g 0

(33)

B. Dispersion relation for E(P)

We now write a dispersion relation for E(P). We

restrict ourselves to the negative energy bound

sta, tes with I = 0, and assume that E(P) has no sin-
gularity in the complex P-plane cut along the nega-
tive real axis. Since we are assuming that there
is no essential singularity at infinity, it is suffi-
cient to determine the asymptotic behavior of E(P)
along the positive real axis. If the leading term in

E(P) is P
~ as P ~ then from Eq. (4) of Sec. II, P

~ 1. Furthermore, as P -~

I
E(z/p, p')

I

&
I
E(z, p')

I
(34)

which follows from Eq. (8). Therefore from Eq.
(10) one has

(35)

which implies that IE(z, p) I~1/p'. Hence, we ob-
tain for P going to infinity,

I/p= IE(z, p) I
= I/p' (36)

The asymptotic behavior (36) admits a dispersion
relation for E(p) without any subtra. ction,
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1 I.ofmE(p')dp'
(37)

lf the imaginary part of E(P') were exactly known
for all p', then Eq. (37) would complete our know-
ledge of E(P). Since we know the imaginary part of
E(P') only for P'-0, we use the dispersion relation
for evaluating E(P) only for P-0. For this pur-
pose, however, it is more expedient to write a
twice-subtracted relation

Z' PZ' P' t'lmE(P')dP'
(p p)p" (38)

in agreement with the exact result of Sec. II.
The agreement (in the P-0 limit) between the ex-

act solution and the result of dispersion theory in-
stills confidence in the use of dispersion theory for
the analysis of singularities near P =0. This may
be the reason why the Bender and Wu' analysis in
terms of dispersion relations, of the singularities
of the energy levels of anharmonic oscillator gives
the correct singularity structure. It also provides

J

where the first term is the unperturbed value E(0)
and the second term is the first-order perturbation
correction to E(0). Using Eq. (32) for the small
part of the integra. l in (38), we get

Z(()), ,=, ) '~ '~' ''"~).O())) (3))4n' n

some justification for the use of dispersion tech-
niques for practical evaluation of energy levels
where either the exact results are not easily ob-
tainable or where the perturbation series is not
strictly admissible. For instance, for screened
Coulomb potential'

Z —1
V(r) = ——+

x+P

the energy levels again have singularity at P =0 and
the perturbation series in P for E(P) is not admis-
sible. The dispersion theory, on the other hand,
gives results which are in very good agreement
with experiments.

IV. SUMMARY

We have discussed in this paper the bound states
of the potential —Z/(x+P). We find tha, t the energy
level as a function of the parameter P has a loga-
rithmic singularity at the origin p =0. The imagi-
nary part of E(P) for the negative energy states for
P going to zero goes as Z""P'"', where l is the
angular momentum. We have not. discussed the
positive energy states in this paper, but we expect
that for P negative the positive energy states are
all quasistationary. It would be interesting to con-
struct the 5 matrix for this problem and trace its
singularities as a function of P.
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