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The theory of intermolecular nuclear spin relaxation by translational self-diffusion in liquid crystals is
developed. Torrey’s treatment of simple liquids is extended and modified for the liquid-crystalline phases by
taking into account the anisotropy of the molecular motion, the elongated molecular shape, and the spin
distribution on a molecule. Results, obtained for the frequency and angular dependence of T in the nematic
phase, are presented graphically for a variety of parameters and are compared with Torrey’s results for
classical liquids. A brief comparison with the available experimental data is presented.

I. INTRODUCTION

Liquid erystals have a lower order than ordin-
ary crystals and also a lower symmetry than nor-
mal liquids. Such complex systems cannot be
treated by conventional methods used for solids
or liquids. We shall deal with nuclear magnetic
relaxation which is a powerful tool for the study
of molecular motions. In liquid crystals this re-
laxation can be caused by orientational order fluc-
tuations,’ local molecular reorientations,?? or
translational self-diffusion of molecules.®* The
relative effectiveness of these relaxation mechan-
isms depends on the temperature and on the Lar-
mor frequency at which the relaxation is observed.

In this paper we shall deal with the spin relaxa-
tion due to translational self-diffusion. This mo-
tion affects relaxation by modulating the dipolar
interactions between the spins belonging either to
different molecules or to the same molecule. As
the intramolecular contribution to the total relax-
ation rate has been evaluated already,® we shall
restrict our treatment to the intermolecular con-
tribution.

The theory of intermolecular longitudinal spin
relaxation for isotropic liquids has been developed
by Torrey.® Later, his theory was improved by
taking into account the effect of a radial distribu-
tion function,” which has essentially no influence
on the frequency dependence, but increases the
absolute value of the relaxation rate by ~20%.

The validity of Torrey’s theory has been verified
experimentally on many liquids, e.g., ethane,’
glycerol,® and water.® It has also been used, with-
out modifications, for liquid crystals.’*!°

Recently, new experimental methods have been
developed which allow accurate measurements of
the T, dispersion in a wide frequency range,'’’® as
well as measurements of the dependence of the re-
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laxation rate on the angle between the molecular
order director and the external magnetic field.?»!213
There is no theory of intermolecular relaxation by
self-diffusion appropriate for liquid crystals. In
this paper Torrey’s theory is being extended by
taking into account the specific properties of liquid
crystalline phases; such as the anisotropy of mo-
lecular diffusion, the elongated molecular shape,
and the distribution of spins on the molecule.

In Sec. II the basic expressions for the longitud-
inal spin relaxation rate are derived. In the deri-
vation it is assumed that spins are distributed on
cylindrically shaped molecules which undergo a
translational diffusive motion. In Sec. III, a model
for the particle diffusion in nematic liquid crystals
is described and the nuclear spin relaxation rate
for nematic liquid crystals evaluated. Final re-
sults are obtained numerically and presented
graphically in Sec. IV. A brief comparison with
the available experimental data is also made.

II. GENERAL THEORY

Consider a system where each molecule carries
N, equal huclei with spin I=3. Other nuclei have
negligible dipolar and quadrupole moments. For
the sake of simplicity, we assume that the mol-
ecules can be represented by cylinders having
length ! and diameter d. It may be mentioned
that the assumption of ellipsoidal rather than cyl-
indrical shape has no appreciable influence on
relaxation rates.

Further we assume that the orientational order
of the long molecular axes is perfect. This is
achieved when the oscillations of the molecules
around their short axes are small in magnitude
or fast compared to the process of self-diffusion.

. The molecular rotations around the long molecular

axes are also usually'* fast. As a consequence,
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the dipolar interactions are partly averaged out
so that spins lie effectively on the long molecular
axes.

Now translational diffusion is, except in some
smectic phases with two dimensional order, fast
compared to the dipolar frequency w,. This means
that molecules are not coupled magnetically. Their
coupling to the “lattice” is stronger similarly asin
isotropic liquids. Therefore the spin temperature
concept cannot be applied. We shall define the
relaxation rate T7' in the same way as it was done
for polyatomic liquids.'® The effect of three spin
correlations will be omitted. In addition the spin
diffusion along one molecule is assumed to be
fast enough to spread, in a time much shorter than
T,, the Zeeman energy uniformly among all spins
on the same molecule. The longitudinal spin re-
laxation is thus monoexponential and described
by16

T3t = 3y I+ DT D) +I@(2w)]. ()

Using the equivalence of all molecules, one has
No
J(k) — ®1 Z (R)* F(k) twtd 2
@=N [ 5z 2 EPHOFP@e ar. @)

Here N is the total number of nuclei with spin I

in the sample, N, the number of spins on one mol-
ecule, and F{#’ the spacial parts of the dipolar in-
teractions. In what follows we will assume that
the external magnetic field B is parallel to molec-
ular order director. The results for any other
orientation of the magnetic field can be easily ob-
tained using the transformation properties of
spherical harmonics,*

The functions J**(w) depend only on the relative
positionT,; of nuclei. ' To emphasize the difference
between the effect of the position of the nucleiona
molecule and the effect of the relative position of
two molecules, we shall write (see Fig. 1)
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FIG. 1. Schematic presentation of two molecules with
all notations used in Sec. II.

Fiy=T+E-F. (3)

Here T is the vector connectmg the centers of the
molecules 1 and 2 while Zj and E, are vectors from
the molecular centers to the ¢th and jth nucleus.
Because of the rotatmnal averaging, the nuclear
position vectors &i lie on the long molecular axes.
If we write

- -gi = E ’ )
we can introduce the following notation:
F®[E,(0)]=F#[F()] (5)

where
P2 -2(z+ &2, k=0

iko
0= gppr X Pt D, kel
0%, k=2,

(6)
p, 2, and ¢ are cylindrical coordinates of T with
z axis parallel to the long molecular axis. The
correlation function (F#*[T(0)]JF{#[T(#)]) is the
same for each pair of molecules and depends only
on the position of the nuclei 7 and j. The sum
1
7%

in Eq. (2) can be substituted by the integral

1,dEW(E)+++, which we shall for brevity write
as the average ( ),. W(£) is the distribution of &
and is related to w(£;)—the distribution of spins

along the molecular axis—by the following convo-
lution:

W(£)= f w(Ew(E - &) dE, . (7)

Next we express the ensemble average in Eq.
(2) in terms of a probability function, P(¥', T, ),
and a static pair correlation function g(¥). Follow-
ing Torrey®!® we can, using all previously men-
tioned notations, write

J(k)(w)___.nfff(Fék)*('{.)ng)('I’.l))E

XP(I, T, t)d3F g(T)d3T et df . (8)

Here 7 is the density of the nuclei with spin I in
the sample. To understand the meaning of the
functions P(¥’, T, ¢) and g(¥), we consider two mol-
ecules 1 and 2 and observe them at time zero

and at time ¢ (see Fig. 2). g(¥)d®T/V, where V is
the volume of the sample, is the probability that
at time zero molecule 2 is in a volume d3F at a
position T from molecule 1. P(¥, T, )d3T is the
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FIG. 2. Relative positions of two molecules at time
zero and at time ¢.

probability that, if at time zero the relative dis-
tance between the two molecules was T, at time #
molecule 2 will be in a volume d37 located at T
from the new position of molecule 1.

Unfortunately, the joint probability function for
diffusive motion P(¥’, T, ) is not known even for
simple liquids. It is therefore usually approxi-
mated with two one-particle autocorrelation func-
tions G(T,, #) and G(T,, t), neglecting the two-
particle correlations. In the theory-of simple lig-
uids G,(T, ) is called the self-part of the van Hove

“dynamical pair correlation function. Gs('r'l, ¢) mul-
tiplied by ds'fl gives the probability that molecule
1, initially at the origin, is after a time # located
in d°T, at T,.

The diffusion in liquid crystals has some fea-
tures of liquid phase and some of the solid phase.'®
The above approximation which is justified for the
calculation of T, due to self-diffusion in simple
liquids is often used even for crystals.® There-
fore we expect that collective features of the trans-
lational diffusion ¢an be neglected in the liquid
crystalline phases as well. So the probability
that molecule 1 moves to T, in a time #, when mol-
ecule 2 has moved to T,, can be written simply as

G,(T,, )d®T,G(T,, 1)d°T, . (9)

As we have omitted all correlations, this product
also allows for situations when both molecules
move into the same space. To avoid this we shall
multiply (9) by a kind of static pair correlation
function go('f‘), which partly correlates the final
positions of the two molecules. It can be seen
that in the case of the positionally ordered smectic
structures (periodical structure in the direction
normal to the planes), some information which is
hidden in g(F) is also in G,(T,, £) and G,(T,,?). To
exclude this interference, we assume that go('f)
includes only short-range positional order. For
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nematics g,(T) coincides with g(r).
After a summation over all pair configurations
which result in the same ¥ and T, we find

P, %, 0)=go(F) [ G, 0G,F+F-F,0dF, .

(10)

It is convenient to express GS(F, t) with its space
Fourier transform

. 1 e o e
G,(F, t):Wf 8.@, Ne'tasy. (11)
This gives
. - w1 (B van
PG, T, 0 =g s [ 8,@ 1P D0, (a2)

The spectral density of ¢ s('ci, t) is the self-part
of the dynamic structure factor

5@ )= [ 8,@ et ar. (13)

We shall follow the treatment of simple liquids?®
where S,(q, w) can be quite generally written as

- 1
Ss(q, w) = 2ARGW . (14)
This relation defines a memory function M (g, w),
which is in fact a generalized diffusion coefficient
multiplied by ¢*. In the limit of small g and w the
memory function becomes

lim MG @)=§-D-3, (15)

B w0

where D is the conventional diffusion tensor. Even
for classical liquids there is no general solution
for M (g, w). However, a number of phenomeno-
logical expressions®® have been developed, which
describe well the results of computer experiments
on simple liquids. ‘

Compared to a typical NMR frequency the kin-
etic frequency 2Tq%/m is high even for ¢ as small
as to 10 A" also in liquid crystals. Therefore
one can see® that in the NMR frequency region
the only important part of the memory function
is real and independent of frequency, except for
very small ¢ the contributions of which are in
any case negligible. Thus the memory function
may be written as ‘ra‘l, and we immediately see
that

1 27,
—iw+ 73 T 1+ (0Ty)?

S,(q, w)=2Re (16)

has a Lorentzian shape in the frequency region of
interest.

Since $.(q;?) has an exponential form et

1 and



17 THEORY OF NUCLEAR SPIN RELAXATION BY... 427

we can write

8,(4, 1)°=5,(d,27) - m)
This enables us to simplify expression (12) to
P, T,1)=g,(t)G,(T' - T, 2). (18)

Introducing the Fourier transforms

FP@= [ FO@e@ettac (19),
and
58 @= [ FPDg,He™ a’F, (20)

we éan write expression (8) in the following form:

J(k)(w) =

DF 5P (D) S,(d, w/2)d’q .

(21)

The expression for S,(q, w) can be obtained from
dynamical computer experiments, but until now
such calculations have not been done for liquid
crystals.

In the next section we shall therefore derive
some approximate expressions for Ss('(i, w) using
the random flights model.?! Because of some es-
sential differences between nematic and smectic
liquid crystals, these two phases must be treated
separately. In this paper we shall deal only with
nematics.

III. NEMATIC LIQUID CRYSTALS

For the description of the translational self-
diffusion of molecules in the nematic phase we
choose a jump model, which will be treated in
the random walk approximation.? This is similar
to Torrey’s® treatment of isotropic liquids, where
the application of this relatively crude model gave
quite a satisfactory agreement with nuclear mag-
netic relaxation data.”%?°

We adopt the following model for the molecular
motions: the molecule is in a potential well, it is
then thermally excited and makes a fast diffusive
jump into another potential well. The time spent
for a jump is much shorter then the average time
interval between two successive jumps. The mo-
tion during the jump is described by a fast aniso-
tropic diffusion.

A. Random-walk model with anisotropic diffusive jumps

Following Chandrasekhar® we can express
G4(T,?) for a random jump process as

G,(F,0)= 3 PEW,(0), (22)

where P,(F) is a distribution of the molecular posi-
tion vector T after » jumps and W,(f) is the prob-
ability that » jumps occur in a time interval ¢.
Following the theory of random flights®* one can
write

P,()= Gy [ AT@e g, (23)

where A(§) is the Fourier transform of the distri-
bution of T reached after only one jump:

A@) = f P, (F)e  PE. (24)

Further we assume a Poisson distribution for the
number of jumps which occur in a time interval
t

bl

wo0= S5 e, (25)

where 7 is the mean time between two successive
jumps. Inserting expressions (23) and (25) into
(22), we get

Gu(F, )= gy [ exo{~i: T - [1- A@Ie/7} 7.
(26)
If we write
/11 - A@)] =7, , (27)
it follows -
g,(d, 1) =et/"3, (28)

which is in agreement with our statement about
the exponential nature of §,(,1).

It is important to make a proper choice of P, (),
which is determined by the motion during the
jump. As mentioned above we assume that this
motion is an anisotropic diffusion which can be
described by the solution

! exp(— 2o _#"2—> 29)
an (@D 2 *P\” apy T 4Dy

of the diffusion equatlon characterized by the dif-
fusion tensor

D! 0 0
p'={0 p; 0} (30)
0 0 D

D} and D; describe the diffusion in the direction
parallel and perpendicular to the order director,
respectively.

The probability that a molecule finishes its
jump after a time ¢ can be described by

et'mat/r, (31)

where 7’ is the mean time spent for a jump. It
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does not depend on the direction of the motion,
because in the moment when a molecule is trapped
after performing a diffusive jump, both other-
wise independent motions, || and L to the order
director, cease.

Using (29) and (31) and averaging over all poss-
ible jump time periods, we get ‘

- 1 D! -1/2
P,(®)= 4111);7'("2* o Zz)
1

: pz z2 1/2
<eon|-(ot7 5 )| 2)
and for its Fourier transform
A@=(1+DiT’@+DiT'g3)". - (33)

We do not need quantities D’ and 7’ separately
because in our treatment only the product D’r’
occurs. This product is related to the mean square
of the jump length (+2) in the following way:

w2y=(p2)+(22)=4D!7' +2D!7’, (34)

where (p2) and (z2) are the mean-square displace-
ments in L and || direction, respectively. On the

_ other hand, the mean square displacement in an
arbitrary time #, obtained from (26) and (33) is

(Vz(t))=(4Di'r’+20,’;r')t/-r. (35)
We can now introduce effective diffusion constants
T' TI
DY=D =, D}=Dj— (36)

and derive the relation
(r2(t) = (4D + 2D0)¢ (387

which describes the overall motion of the mole-
cules even for time periods longer than the time
interval between two successive jumps. DS and
DY are the macroscopic self-diffusion constants
of the perfectly oriented liquid crystalline phase,
while in the real liquid crystal they are related®
to measurable constants D, and D,.
Now we write A(q) using (36):

A(@) =(1+D%rg?+DoTg3)™. (38)

Thus both A(§) and P(¥’,T,?) are determined.
Before we proceed with the main calculation of
the spectral densities J*)(w), the static pair cor-
relation function g(¥) and the distribution of spins
on each molecule should be discussed.

B. Static pair correlation function

The positional order of molecular centers in a
nematic phase has only a short range. As a re-
sult the long-range part of the static pair correla-
tion function g(¥) is zero, and g(¥)=g,(¥). The
detailed structure of g(¥) is unknown in the nemat-

ic liquid crystalline phase. We shall use the most
simple “square well” form

g(p,z)={

1, |z|<land p>d, or |z|>I (39)

0, p<dand |z|<sI.

A better approximation could be obtained by a
“square well” surrounded with a & function whose
strength can be determined by a well-known rela-
tion between g(¥) and the compressibility of the
substance.

C. Distribution of spins

We shall treat three different spin distributions
(Fig. 3): '

(i) Spins are concentrated in the center of the
molecule. This is described by w(z) =6(z), a de-
scription which greatly simplifies the calculations.
It will be shown later that this distribution yields
results which do not differ appreciably from those
obtained for a more realistic spin distribution,
provided one deals with elongated molecules,

i.e., I>d.

(ii) Spins are uniformly distributed along the
molecular axis except on both ends which are as-
sumed to be free of spins.

1
l-a’
0) ]zIZ(l—a)/Z,

where /2 is the length of molecular ends without
spins. We must introduce these free ends because
in our picture the molecules may touch one another.

lz|<(l—a)/2

w(z)= (40)

w(z)

i)

e
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FIG. 3. The spin density along the molecular axis
w(z): (i) spins are concentrated in the center of the
molecule, (ii) uniform distribution of spins, and (iii)

“spin density increasing toward molecular ends like in

real molecules.
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Performing the convolution (7) with (40), we get

(1-1t[/G-a)
W(E) = (- a) ’

0, |&]>1-a. ' (41)

(iii) The spin density is increasing from the
center toward the ends of the molecule and, for
the same reason as before, it drops to zero at
z=(l-a)/2. We assume

2 —-a)/2
w(z) = {a + B2, zl<U-a)/
0, |z|=(U-a)/2,
" which roughly describes the increase of the spin
density on a molecule when going from the benzene
protons along the CH,- chain to the CH,-end groups.

The constants @ and 8 depend on the nature of the
molecule.

lEl<l-a

(42)

D. J& )(w) due to translational self-diffusion in nematics

Using the above model one can easily show that
(21) yields

79 & [ [ (5@ 5,6 /2, 0,40,

(43)
where
5, /2= T (44)
1+ (wTy/2
and -
F B Q) = 2miket*e o tant
x[@®(@)+ 8™, £)] (45)
with '

a® @)= f J.(pg.) f "’“'f”’)(p,z)dzpdp ,  (46)

G, 0- | “antoad( [ " o [ e, 21iz pp.

v (47)
Here f*(p, z) are
p® =223, k=0
1
F®(p, )= 7T % k=1 (48)
. pz’ k=2-

@™ (J) includes contributions of all molecules
which lie in the region with p>d, while 8 ¥ (J)
describes the contribution of the molecules which
are in the region where p<d and |z|>1. @®(g)

is thus independent of the position .of spins on mole-
cule (£). It alone describes rigorously only long
molecules (I>d), with spins concentrated in the
center of the molecule. After the evaluation of

the integrals, one gets
@"’)(ﬁ)= 2¢, q qlq [qnde-l(q"d)Jk(‘hd)

+q,dd,., (Q.Ld)Kk(CIud)]; (49)

with
1, k=0
cp= <3, k=1
3 k=2

The term ®&*'(§), which cannot be written analy-
tically in a closed form, must be taken into ac-
count if molecules are not appreciably elongated
(I~ d) or if spins are distributed along the whole
molecule.

Introducing a dimensionless function Q(wT, (r2)/d?,
DY/D?) we can write the relaxation rate in the

form

Tol=Ly%2 ”3 Q(wr, (r2)/d?, D3/ D3). (50)

The function @ must be calculated numerically.

A double integration over q space must be per-
formed, if one includes only the @*)(§) term in
Eq. (45). On the other hand, the addition of

®*) () requires its numerical evaluation, followed
by a double integration over J space and an aver-
aging over the distribution w(%).

IV. RESULTS AND DISCUSSION

Values of the function @ have been calculated for
the frequency range w7=0 to w7 =10 for a number
of different values of the parameters which deter-
mine the ratio D}/DY and the average squared jump

length. In most of these calculations the a™(q)

term only was used since the inclusion of the
03(”((1') term required much more computing time.
However, fortunately, the cases, in which the
®*)(d) term was included, showed that its effect
on the final value of @ was negligible, provided that
there were one or more spins at the center of the
elongated molecule. This result is obvious (see
the definition of (B(”)(fi)!), because the distance be-
tween the molecular centers is much larger in the
direction of the long molecular axes than in the
direction perpendicular to the latter. Much more
surprising is the fact that the inclusion of the
®&*)(d) term in the calculation of the overall re-
laxation rate T;'o @ is still negligible even if a
uniform distribution of spins along the molecule

is considered, and does not exceed 1% for a spin
distribution, in which the density of spins increases
toward the ends of the molecule. In these calcula-
tions of @ the following molecular dimensions were
used: /=25 A, d=5 A, anda=2 A. Results do
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not change appreciably even if the value of a is
further decreased to 1 10&, or if the ratio 7/d is in-
creased. The influence of the (B(")(Zi) term on the
angular dependence of T, will be later considered
in connection with Fig. 7. All other theoretical
curves, which are presented, are calculated by
retaining in Eq. (45) the @®(q) term only. The
accuracy of the numerical integration is better than
1%.

The frequency dependence of the relaxation rate
is considered next. It is calculated for the case
when the molecular director is parallel to the ex-
ternal magnetic field in the entire sample (A =0).
The sample acquires this orientation by itself,
when placed in the magnetic field. All measure-
ments of the T, dispersion up to now were per-
formed on these self-oriented nematics. Figure 4
shows the dispersion of the anisotropic relaxation
rate. The function @, which is directly propor-
tional to 77, is plotted for the low-frequency
range from w7,=0to wr,=1. Here 7, is defined
with the relation 7,=d?/4D?. Typical values of 7,
are ~6x 107° sec for MBBA (7' =18°C) and ~2
X 1071° sec for PAA (T =120°C). The correspond-
ing values for w7, are 0.37 and 0.01 at the Larmor
frequency v;=10 MHz. In the calculation of @ we
used a value of 2 for the ratio D}/D?, which is taken
from the experimental data,?*~2* and does not differ
much for different nematic compounds. On the
other hand, there is no definite knowledge of the
value of {(r2)/d? which is also involved in the cal-
culation of @. For this reason three different val-
ues, i.e., 1, 0.1, and 0.01 were used for (r2)/d>

It can be recognized at first sight that the fre-
quency behavior of the anisotropic relaxation rate
is very similar to the isotropic one, calculated by
Torrey®: (i) the relaxation rate is increased as

0,/03=2

<rl>/d?

(1
(2)
(3)

1
0.1
001

0 00 02 03 04 05 06 07 08 08
(wt,y)"?

FIG. 4. Frequency dependence of @ o« T{l for three

different jump lengths.
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the ratio (r?)/d? increases from 0.01 up to 1, as
wT approaches zero; (ii) at low values of w7, T7'
o« const. = (w7’ 1/2, which is a well known relation
from the isotropic theory”; (iii) in the high-fre-
quency limit, the anisotropic relaxation rate is
proportional to w™? [see Eq. (43)!]. This is again
the same frequency behavior as predicted by Tor-
rey. ;

After the establishment of low- and high-frequen-
cy limits, we compared isotropic rate with the an-
isotropic relaxation rate in the whole frequency
range. To this end we calculated R=T7; /T -
This ratio depends appreciably on the relations
between the parameters used in the isotropic and
anisotropic case. An interesting result is obtained,
if we take Diw =D0, 7, =d, and 7 equal in both
cases. With these parameters R becomes inde-
pendent of the frequency in a wide frequency re-
gion, as shown in Fig. 5. R is equal to 1.4 from
the lowest values of w7, up to wr, ~0.1. This con-
stant region is followed by a small increase in R
until it reaches a slightly higher constant value in
the high-frequency regime. The change from the
low-frequency to the high-frequency value of R is
approximately 15%. It can be further decreased to
only 5% by a suitable choice of D. This result
seems to be of large practical importance. When
a theoretical expression is needed to describe the
dispersion of the intermolecular spin-lattice relax-
ation due to translational diffusion in nematic lig-
uid crystals, Torrey’s results, reduced by a fac-
tor, can be used instead of tedious numerical cal-
culations for the real anisotropic case. The error
incurred by this approximation is rather small es-
pecially for low values of w7r. Even for the entire
frequency range it hardly exceeds the usual experi-
mental error. '

In addition to the frequency dependence, the anis-

20 o

0,/05=2

—<rlz>/d7=1

<>/ 47200

0.5 I 1 1 1 I
? 0! o 1 10 10? 10°
WT,

FIG. 5. Frequency dependence of the ratio R = T{L,
T[;niso for Dy, =DY, 7 = d and T equal in both cases.
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otropy, i.e., the dependence of the relaxation rate
on the angle A between the molecular director and
the magnetic field, has also been studied. After
the application of the transformations for spherical
harmonics*® we obtain spectral densities J*(w, A)
for an arbitrary orientation of the preferred mole-
cular direction in the magnetic field:

J D(w, A) =%(sin?A - sin®A)J () (w, 0°)
+(1 - Zsin’A +2 sin®*A)J V(w, 0°)
+3(2 sin®A - sin?A)J @ (w, 0°) (51)
and
J @ (w, A) =1 sin*AJ ©(w, 0°)
+2(2 sin®A - sin?A)J Vi(w, 0°)
%(1 — sin®A + g sinfA) ) (w, 0°) .
(52)

Here J ®(w, 0°) stands for the spectral densities
calculated assuming A=0° The angular depen~
dence of T;'is obtained by inserting the expres-
sions (51) and (52) into expression (1).

Figure 6 shows the angular dependence of the
reduced relaxation rate T;%(A)/T7%0°) at three
different frequencies but for the same ratio DS/
D% =2 and (r2)/d?*=0.1. The main feature of these
dependences is the decrease of the relaxation rate
as the angle A increases from 0°to 90°. This be-
havior is quite opposite to that caused by order
direction fluctuations, where an increase in A re-
sults ina strong increase in T, 1.2** A typical value
of the calculated decrease is 25% for frequencies
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FIG. 6. Angular dependence of T';! for three different
values of wT. ’
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FIG. 7. Angular dependence of 7! at w 7=0 for three
different spin distributions: (i) spins concentrated in the
center of the molecule, (ii) uniform distribution of spins,
and (iii) spin distribution w(z) =a + Bz%.

with w7,< 1, as shown in Fig. 8. In the limit of
high frequencies, the decrease is smaller (=10%).
The relative decrease in the calculated relaxation
rate seems to be essentially independent of the
jump length and the distribution of spins on the mo-
lecule. We see that the anisotropy of 77! does not
depend strongly on the model of spin distribution,
Fig. 7. The assumption of uniform spin distribu-
tion changes the anisotropy of 7' only by 1%
compared to the result obtained when spins are
assumed to be located at the center of the mole-
cule. The same holds for the assumption of a
spin density distribution which increases towards
each end of the molecule. In this case the change

09+ Anisotropy of T}
for DW/D] =2

1790/ 1700)

— <>/

-——-<rf>/d7 =01

1
10? 0

wT,

FIG. 8. Frequency dependence of the anisotropy of
T1! for two different jump lengths and D}/D§ =2.
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FIG. 9. Angular dependence of @ o Tl'l at two differ-
ent frequencies for: (1) DY/D{ =3, (2) D}/D{ =2, (3)
D} /DY =15, (4) D}/DY =1, and (5) D) /DY =2 using the
same value of D} in all cases.

amounts to 5%.

Finally, the influence of the parameter D /D%
on the angular behavior was studied, Fig. 9. In’
the zero-frequency limit a decrease in the relaxa-
tion rate is observed as long as DS > D%. It
amounts to 15% at DY) /D% =1.5 and to 28% for DY/
D?=3. All experimental values of the ratio DS /DS
fall into this region.”*"** If D} were equal to D%
the anisotropy of Tl'1 would nearly disappear. It
would even exhibit quite opposite behavior if DY
were smaller than D9. This indicates that in the
zero frequency limit the anisotropy of 77" is main-
ly determined by the anisotropy of the diffusion
and less by the molecular shape. On the other
hand, the same calculations at higher frequency,
.w7=0.08, .show nearly the same anisotropy of the
relaxation rate for various values of the ratio
.D3 /DS It seems that at higher frequencies the
molecular shape becomes the dominant “anisotrop-
ic factor.”

As shown above, the relaxation rate caused by
translational self-diffusion in nematic liquid cry-
stals exhibits a specific angular dependence—it
decreases with increasing A—which is essentially
independent of the Larmor frequency, the jump
length, or the ratio D9 /D%. The measurements of
the angular dependence of proton 7[', performed
up to now, do not exhibit a definite decrease in the

relaxation rate. Yet, 7' seems to be constant
(in MBBA-EBBA mixture)'? or shows a slight in-
crease (in pure MBBA)® which cannot be explained
by the usual order director fluctuations relaxation
itself. This situation indicates the possibility of
“combined” (1/Twitaitr + l/TIODF) spin relaxation in
low temperature nematics which has been already
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suggested in order to explain the observed T, re-
laxation dispersion.® .

The only measurements of proton T, dispersion,
where the intermolecular contribution to the relax-
ation rate is strictly separated from the intramole-
cular, are done on PAA-d6.?® The measured fre-
quency dependence of the intermolecular contribu-
tion is of the form 7L, =A’w™Y2+B’, as shown by
Wade.?® The frequency dependent term is charac-
teristic for order director fluctuations. The relax-.
ation rate, caused by translational self-diffusion,
should be in PAA-d6 nearly frequency independent
in the MHz range if the large value of self-diffu-
sion constant (D~3 % 107 cm?/sec)?* in this com-
pound is taken into account. The estimated value
of this contribution (0.05sec™ for the following
parameters: 7=0.02 spins/A%, d=6 A, D,=3%x10"°
cm?/sec (at 120 C), (»%)/d?<0.1, D}/D%=2)is nearly -
equal to the experimental value of B’, which is
about half of the total value of T, at 60 MHz or
100 MHz. This indicates that the intermolecular
contribution to the relaxation rate in PAA-d6 is
partly due to the self-diffusion and partly to other
relaxation mechanisms.

V. CONCLUSIONS

In this paper the theory of intermolecular longi-
tudinal spin relaxation due to molecular self-dif-
fusion in liquid crystals is developed. It has been
assumed that other molecular motions have differ-
ent rates so that their direct effect on the relaxa-
tion can be treated separately. The motional av-
eraging—the indirect efféct of fast molecular ro-
tation around the long axes—enables us to treat
spins as lying effectively on the long molecular
axes. The use of perfect local orientational order
of molecules is well established if tumbling of
molecules is fast or has small amplitude.

Numerical results are evaluated for the relaxa-
tion rate in nematic phase. It is shown that the
frequency dependence of T, in nematics is similar
to that obtained for simple isotropic liquids.  We
proved that the Torrey’s analytic expression for
T,(w) can be used, with proper adjustment of para-
meters, for the treatment of T, in nematics in a
wide frequency-interval. Further, the anisotropy
of the relaxation rate in nematic liquid crystals
is calculated. The angular dependence is opposite .
to the one characteristic for the order director
fluctuations relaxation mechanism. As the angle
between the molecular preferred axis and the ex-
ternal magnetic field is increased from zero to
90°, the relaxation rate decreases. A typical value
of the decrease is 25%.
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