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Kinetic theory for the coherent scattering function S(q, co) of classical liquids
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Within the formalism of Mori and Zwanzig a kinetic equation for the phase-space density of simple
classical liquids is derived whose relaxation kernel is obtained as the solution of a second kinetic equation.
The latter equation is closed by introducing a phenomenological relaxation rate. The solution of the resulting

equations can be reduced to the evaluation of the self-correlation function for a tagged particie, studied
earlier by the present authors. The calculated scattering functions S(q, co) for liquid argon and rubidium are
compared „with neutron scattering experiments as well as molecular dynamics calcu ations. For liquid argon
the earlier results of Duderstadt and Akcasu are improved, and it is furthermore shown that the present

theory adequately accounts for the persistence of propagating density fluctuations in liquid rubidium.

I. INTRODUCTION

pan Hove's dynamical structure factor S(q, co) is
the most relevant function characterizing the dy-
namics of liquids. It has been measured by neutron
scattering experiments, for example, for liquid
argon' ' and for liquid rubidium. ' Extensive
molecular dynamics calculations are also available
for these liquids. ' ' ' A remarkable difference be-
tween the two liquids has been found in the propa-
gation of density fluctuations. In the case of
liquid rubidium the experimental S(q, a) shows a.

well-defined propagating mode for values of the
wave vector q up to 1.2 A . For liquid argon a
well-defined side-peak ceases to exist for q ~ 0.3

Many attempts have been made in the past to
achieve a. theoretical understanding of S(q, ~).'
Here we are concerned with those theories aiming
to derive and to solve generalizations of Boltz-
mann's equation for the phase-space density; the
correlation of the phase-space density determines
S(q, ro) after averaging over the momentum distri-
bution for the particles.

The simplest improvement of the dilute-gas the-
ory is obtained by taking care of an effective par-
ticle interaction by complementing the Boltzmann
equation with a Vlassov term', but this approach
cannot account for the spectra observed in liquid
argon. The Vlassov equation yields better results
if the effective interaction is fitted to the fourth
sum rule for S(q, co) or if retardation effects are
taken into account. "" Along these lines a self-
consistent microscopic theory has been proposed
by Sjogren and Sjolander. '

Systematic improvements in Boltzmann's equa-
tion require nonlocal retarded collision kernels"
reducing to a standard collision integral in the
long-wavelength zero-frequency limit. In the
high-frequency limit the kernel should reduce to

the Fokker-Planck operator supplemented by
several mean-field terms, which can be calculated
exactly from the static properties of the liquid.
Thus Duderstadt and Akcasu'~ have proposed a
phenomenological collision kernel interpolating
between the limits mentioned. Their theory yielded
acceptable results for S(q, e) for argon, especially
when the coupling to heat fluctuations was incor-

poratedd.

"
In a preceding paper" (referred to as I here-

after) a kinetic equation was discussed for the
phase-space distribution of a tagged particle. For
the integral kernel entering the equation of motion
a second kinetic equation was derived with a phe-
nomenological collision-time approximation for
its memory kernel. This theory yielded a quali-
tative improvement of the theory of Akcasu et al. '
for the incoherent scattering function. In this
paper, therefore, it is our aim to extend the theory
of Duderstadt and Akcasu in the spirit of I in or-
der to obtain improved results for S(q, &u). We ap-
ply our theory to liquid argon and liquid rubidium.
In particular, we show that it adequately accounts
for the persistence of propagating density fluctua-

0
tions in rubidium for q ~ 1.2 A

In Sec. II the basic two kinetic equations are de-
rived and in Sec. III the collision-time approxima-
tion for the second kinetic equation is formulated.
Then, in Sec. IV, the equations are solved making
use of the results derived earlier. " In the last
section, V, the results for the dynamical structure
factor for liquid argon and liquid rubidium are
compared with experiment.

II. EXACT KINETIC EQUATIONS

We consider a classical system of N identical
particles of mass m enclosed in a volume V at
temperature T interacting via the pair potential
v(r) I.et r„an. d p„(n=1, 2, . . . , N) denote the po-
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sition and momentum of the nth particle. The
basic quantity we are interested in is the one-par-
ticle phase-space density, defined as

f;rq) = „/. g 5(p —p„(t)) expbq' r„(t)) .

For the sake of mathematical convenience a nor-
malization factor has been included in the definition
(1) by means of the Maxwell distribution

y;;(q, z) =~ — dte(~t)e*"S-(q t) lmz =O

This function is analytic for nonreal z and is dis-
continuous across the real axis,

(t);;(q, (d +i&) = (t);(q, (o) + i(t ';(q, co), (8)

with PQ(q, u&) and Pt'];(q, e) being real. As (t)-„-(q,z)
decreases for large z as 1/z, the spectral func-
tion (t);"„-(q, ro) determines (t);k(q, z) by a Kramers-
Kronig relation,

q) (p)= (2mmT) '/' exp(-p'/2m') . (2)
( )(t);-„q,z—

Dynamical variables like the density and the cur-
rent density are given as moments of the phase-
space density f;(q):

prq) = d'p[ (/)(p)
'j'f-(q) = exp(iq r„)

n= &f-rq)=- s,f;rq). (io)

The time evolution of a dynamical variable like
the phase-space density is given by the Liouville
operator

pe—"exp(iq r„),
n=

(o.'=x, y, z) . (s)

To evaluate the right-hand side of (10) we have to
use Newton's equations of motion

r„=p„/m,

The information that can be gathered in neutron
scattering experiments is summarized in the
Fourier transform of the density correlation,

&U I
p„=—,U =—g v'rr„—r„)Br n&m

and get

S(q, &u) = dt e'"'S(q, t),
N

s(q, t)= — g exp[ —is r„(t)]exp[Cs r„(D)]).
n, m=1

(4)
x exp(iq' r„) &(p —p„) .

n=
" &r„

(12)

Here and in the following IrI=r, IqI=q, etc. and

( ~ ) denotes the thermal average.
We prefer to consider first the phase-space cor-

relation function,

)./2

(( Cs)( (&)

/ N

g ~[p-p. (t)1~[k-p (0)]
n, m=j.

x exp[-iq: r„(t)]exp[iq'r„(0)j (5)

for the same reason as in the case of self-diffu-
sion. " Integration of its Fourier transform
S-k(q, ro) over momentum variables, reproduces
the van Hove scattering function S(q, ro)

s(s, ~) =„' J'sos s[s(s)F's;;(s, ~)[s Cs)]'I' (s)

In this paper we apply the formalism of Zwanzig
and Mori ' to the phase-space correlation function
S;;(q, m). The formal framework will be very
similar to I. It is convenient to introduce the La-
place transform of the correlation function S-„-(q, t)

Introducing a scalar product

(f;(q) lf;rq)) = (1/1 )(f;*rq)f;rq)), (is)

the Liouville operator turns out to be Hermitian
and P;-„(q,z) can be written as a, resolvent matrix
element of Z,

0-;(q z) =(f;rq) I[1/( -~)~ If"(q)) (14)

We define a projector 6'o onto the subspace
spanned by the phase-space density f;(q)

ng(q) =—Q (exp(iq r„„))
num

and the density n =N/V. The normalization matrix

~.= g If;rq»(;),-„(f;r)I. (15)
p, k

Here p and k are used as matrix subscripts and

(X,);„- denotes the normalization matrix

(x,);;=(f;rq) If-.rq))

= K/T)[5(p-k)+t;t;. ~(q)l, t;=I 9 (pH"',

(16)

with the pair correlation
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can be easily inverted' to yield ~, = g le.~f;(q)) [x ];;(~.+;(q) I, (24)

y(q, .) =x, ( x, —I~, -M, )-'x, .

The restoring force matrix 00 abbreviates to

(IIo);g= (f;(q) I &f.-(q))

= (N/r) $ q/m)6{p k) .

(IS)

(Xo~),"„-=(T/N) [&(p —k) —nc (q)b- b"„], (17)

with the direct correlation function nc(q) =ng(q)/
[I+ng(q)]. Application of the Zwanzig-Mori
formalism" leads to the following representation
of Q;-„(q,e) in matrix notation:

p, k

~ ——1 —Pq,

where X, denotes the normalization matrix of the
fluctuating forces, '4

(x,);,=(z.&f;(q) Iz.&f,(q)).

N (), () &2 (
=N np-+ —nc(q)q q ("q p.b('b b-

pk T m' rm
(

(26)

F-„- is the Fokker-planck operator

With /0=1 —6', the relaxation kernel M, is another
resolvent matrix element of the reduced Liouville
operator 0~ taken between the fluctuating
forces 6)„oZf (q-) and 02' and ~'~(q) are defined as

(26)

(M,);„-=(zpf;(q) I z I,~f;(q)) . (2O) Q~= d3rg x ~Vs,

Equation (20) can be rewritten in the standard form id', 8(q)= —Jd+g'(r)e "', V(r) . (27)

g —;;,q, z +neq In analogy to (18) one gets 'the following represen-
tation for M0,

g ——6 —p ++g q b-b-. M =x~(ax~ —Q~ —M~) (26)

dgpggpZkpgy821 with the restoring-force matrix '

@,);.-=(z.&f;(q) I «.&f.-{q))

The correlation function at t =0,

y;„-(q, t = o) = (x,);;, (22)
=Nm&+-„(q) Nm&[q "~',—(q) -qv', (q)]

p k

9 9 9 9 9 9

is determined by the Fourier transform g(q) of the
pair-correlation g(r) [compare Eq. (16)]. The
co~relation function changes in time, first of all
because of the free flow of the particles. This
gives rise to a streaming term p'q/m in the kinetic
equation for Q, ensuring the correct free-gas limit
for the present theory. Interaction effects art'
taken into account by the memory kernel M0 and
by a mean-field term

P is an operator similar to F:

(3O)

and v'()„(q) is defined as

3

iver

v', ~(q) =iq — d'r e" "g(~)', „V(~) .

mc(q) (;fd'kb P ;(q, z), --. (23)
The relaxation kernel M, reads

whose effective potential is given by the direct
correlation function. Neglecting memory effects
(Ma= 0) in (21), one gets the well-known Vlassov
equation, which was discussed in the literature
extensively in connection with the existence of
high frequency collective modes. ' Retardation ef-'
fects as well as nonlocalities are represented by
the z and q dependences of the memory kernel
1I/I0.

For the latter we can derive a second kinetic
equation. Let us define a projector +~ and its
orthogonal complement , :

(M,);;(q,.) = (z,z,«.f;(q) I

1 0 0 1

l&i&o «of I(q» (»)

In analogy to (21) the kinetic equation for M, con-
tains a streaming term PF, a relaxation kernel
M, and several mean-field-type expressions.

Up to now we have derived exact kinetic equa-
tions, which are equivalent to the first two steps in
Mori's continued-fraction representation for the
set of variables f;(q). It should be noted, how-
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ever, that the formulas (18) and (28) imply the in-
version of infinite matrices, i.e., the solution of
kinetic equations. Furthermore the kernel
M'-„-(q, z) is unknown. The representation of
g;-»(q, z) in terms of the unknown kernel M&;(q, z)
is nevertheless advantageous. First of all it
guarantees four sum rules for the spectral func-
tion )P;;(q, &u), no matter how the kernel M~@(q, z)
will be approximated. It should be noted, that a
knowledge of the pair correlation ng(r) is suffi-
cient to evaluate the first four moments of the
spectral function ))))'-»(q, &u)." Furthermore the
representation of )))) in terms of M, ensures the
conservation laws for the number of particles and
their momentum. This can be seen as follows:
Conservation of particle number requires

d'pb;(M );g(q, z) =0

lim d'p b;p ()),)-„-

N~Q2 d3p ~ Q p

b» llm co g(q) .

Evaluating &u2 z(q) in the limit of small q,

IiinuPq(q) =b ~Q»z,

shows indeed

lim d'p b;P

(37)

Since the energy cannot be represented as a mo-
ment of the one-particle phase-space density en-
ergy conservation is violated within the present
theory; this feature is shared with most of the pre-
ceding work. ~2'4

ol
III. COLLISION 'fIME APPROXIMATION FOR N(

Within the formalism of Zwanzig ahd Mori, ap-
proximations are formulated by modeling the re-
laxatidn kernels like Mp or M, . In this paper we
want to keep the first exact kinetic equation (21)
and calculate M, by means of Eq. (28). In the
latter we propose a collision time ansatz for the
kernel M,

[M, (q, z)X, 'j;„-=—~(q, z)b(p-&) .

d pbjh»)j»

Inserting the explicit expression for (X,);», we get

—NW~E dpa ~ ~ p ~p k

(38)
(34)

Essentially the same approximation has been used
in I for the self-part of the correlation function.
The damping function v(q, z) has the analytical
properties of Q with v" (q, a&) «0. Eqs. (2i) and

(28) will be solved in the next section for a general
v(q, z). However, to get useful results, v(q, z)
has to be specified further. One can get some in-
formation from the well-known form of the longi-
tudinal current correlation in the hydrodynamic
limit2'

To conserve momentum, we have to require"

lim d'pb;p (M,)-,(q, z) =0, (n=x, y, z)
q~P

or

lim d'P b;P 0),);»-=0.

Direct computation yields

)» )) ~2 (
+ —nc(q), — '~'

)fd'0 b;9').'b;b„=0. -

4, (q, z) =(i~(q) I [I/( —&)j l~. (q»

N 1
m z —q»Cr»/z+iq»D, —q'(C&/C„- l)Cr[z+iq (A/mC„)] ' (38)

D, = (1/mn) (4ri+ $) denotes the longitudinal viscos-
ity, q is the shear and g the bulk viscosity. C„
(C~) denotes the specific heat at constant volume
(pressure), Cr the isothermal speed of sound, and
A. the heat conductivity. Neglecting thermal fluc-
tuations, one cannot reproduce the hydrodynamic
result (39) unless complicated frequency depen-
dences of v(q, z) with new additional parameters
are introduced. Ailawadi et al. ~ have tried to

estimate, how much thermal fluctuations contri-
bute to the relaxation of longitudinal current cor-
relations. Evaluating their formulas for liquid
argon, one concludes: For wave numbers q&0.5

0
A '—that are available in neutron scattering ex-
periments —the contribution of thermal fluctua-
tions is of minor importance. We therefore ignore
frequency variations and replace v(q = 0, z) by a
constant
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v(q=0, z) =+if, Imz «0. (4o)

One way to fix the constant P is the z —0 limit of
the transverse current correlation

= lim lim —
3 y $(q, (o)—,~n ~-«-O q'

with (t)r(q, z) defined as

er(q z) =(i r(q) I
[1/(z —~)]

I jr(q)) .

(41)

(42)

Eg. (41) has been used by Duderstadt and Akcasu"
and by Jhon and Forster. " Considering the mo-
lecular dynamics data of Levesque et al. ' it seems
questionable to replace the relaxation frequency
v(q, z) by its value atz =0. Levesque et al. have
calculated the Kubo integrand for the shear vis-
cosity, i.e., the correlation of the stress tensor,
as a function of time. The Fourier transform q(&u)

can be represented as a sum of two Lorentzians.
If one wants to replace this function by a constant,
the'approximation for intermediate frequencies
will certainly be improved by using a mean value
g instead of the value at ~ =0. We therefore re-
place ri((d = 0) in E(l. (41) by a mean value q, which
we choose about one-half of the value at (d =0.

Evaluating the right-hand side of Eq. (41) one has
to take care of the 0-eigenvalues of the matrices
0, and X,. Forster and Martin" showed how to
handle that problem by projecting out the subspac e
of the hydrodynamic modes. Choosing the exter-
nal wave vector q parallel to the z direction the
result is

q/mn = (1/S)[5,/2 —v3(1+ 53)]+P v'/2Qz', v = T/m

(43a)

Neglecting the restoring force Q, in E(l. (28), one
recovers the theory of Duderstgdt' and Akcasu.
The restoring force leads to a streaming term
PF ' in the kinetic equation for Mo. This term,
not treated appropriately in the earlier theo-
ries, ""increases linearly with q and dominates
the collision frequency v for q exceeding 3 or 4

IV. SOLUTION OF THE KINETIC EQUATIONS

In order to obtain the correlation function
Q-„-„(q,z) we have to solve two integral equations

1
(t) =X() X„zxo- 0 -M (45a.)

M =X
1

' (z+v)x —Q
(45b)

d3ff *R«v), (48)

treating the space of p-dependent functions as a
Hilbert space. The operators

The matrices X, and A, consist of differential
operators —the Fokker-planck operator F and the
operator for the restoring force P—and of sep-
arable terms. The inversion of the differential
operators was accomplished in I and the separable
terms are easy to handle, so that the solution of
the kinetic equation (45) does not offer new prob-
lems. When dealing with the differential opera-
tors P and F it turned out to be helpful to use crea-.
tion and annihilation operators. Exactly as in I
we introduce a scalar product,

with

dxgxz 8 Vy' (48b)

(4mT)'~3 ~
Sp

1 8
(47)

and

53 = lim [co3 (q) —2v3„„(q)]/Q3r . (43c)

are conjugate to each other and obey the canonical
commutation relation

[a, at)] =5 3, [a, a3] =[at, at3] =0.
The q dependence of the damping function will be
chosen exactly as in the case of self-diffusion.
Since the fluctuating force goZf;((1) and hence
Q,LQ,Lf (q) is proportional to the interaction,
the memory kernel vanishes for a free gas
and it is plausible, that M, should approach
zero, when q tends to infinity. As in the
case of self-diffusion, it is very important to take
this feature into account. We propose the same
simple ansatz as in I,

v(q, z) = v(q = O, z)/[1+ (q/q*)'],

&p I
~& = b;. (49)

Functions such as P;; and (M,);-„are considered
as matrix operators, using the notation

The space can be spanned by an orthonormalized
set of functions

1./2
In, n, n, &

= ((3,')") (a3')"3(at3)"3
( ) ) I

0) qi
~ 2 ~ 3~

n. =O, 1,2. . . (48)

with the vacuum state

with the same cutoff

q *= Qz/(4m T)'~ ' (M,g)(p) fd% (M.)-„-g(&)=. (50)
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The density correlation is the vacuum expectation
value of

s» ——qu (z + 'v) (I/h' —1/Qz2), s» ——0,
S2l —Sl2

(57a)

p(q, z) =( p(q) 1
[1/(z —2)] Ip(q)) = (51&t' lo&,

(51)

and the current correlation appears as

(q, z)=(j (q)l[1/(z —&)] l j (q))

= (T/m)(l 080„l& ll 0~0„). (52)

We formally rewrite Eqs. (45) to get a single equa-
tion for &&&&,

&x,'[(z+ v)x, —Q,lx, '(z —Q.x.') —x.']0
= X,'[(z+ v)X, —Q,]X,'X, . (53)

%e furthermore try to reduce the problem to a
one-dimensional one by taking matrix elements
of Eq. (53). More precisely we calculate
(0„0, l

(53)
l 0„0,1,) to get an equation for' the nor-

malized correlation function 6,

e(q, z)=(o o ly(T/N)lo„o 1,&,

which only depends on one variable, P,. Delegat-
ing some simple but rather lengthy calculations to
an appendix, we just want to state the resulting
equation for 6:

2 2

e + r'eiv g „„~ „&~
&-,~'e,eT~„&,&&o~~e)

V ~/L =l v=. l

1 1G=-
T z -qv(a, +at) —TN (55a)

=TO
l
I&+T'&N Qu„ll„). (54)

v=1

Concerning the notation: one can write the Hilbert
space as a product space and denote by

l
v) the

vth eigenfunction with respect to the only nontrivial
component of p, i.e., p, . G and N are defined as

= —(q'v'/M2 &'Qz2)[Qz~ a'+ (u'„(q) —v'„,(q)],
(57b)

Ql = Sll Q'V )

u, =s„/qv.
(58a)

(58b)

V. RESULTS

In the exact equations the restoring-force matrix
contains a term that couples the density correla-
tion to a transverse matrix element (2„0,0, l Q

lo„o,l,). This coupling is neglected in deriving
Eq. {54) from Eq. (45). We consider this a small
error only, since the coupling vanishes in the hy-
drodynamic as well as in the free-gas limit.

To get a closed system of equations we multiply
, (54) successively by(ol, (1 &t&,', and (2l&t&,'. The
resulting equations include several matrix ele-
ments of the functions G and N. These have been
calculated in I for an arbitrary relaxation frequen-
cy v(q, z). It remains the solution of a 3 x 3 ma-
trix equation.

Let's make a brief comment on Eq. (54) for e.
Neglecting all projector terms, one recovers the
results, we got for the case of self-diffusion. "
In this approximation all the information about the
collective motion of the particles is hidden in the
relaxation frequency v(q, z). Comparing these fre-
quencies for the correlation function and its self-
part, we find, that the two quantities are of the
same order 'of magnitude providing some justifi-
cation for some preceding work. ' '" The main
difference between the motion of a tagged particle
and the collective motion of many particles is re-
flected in the kinetic equation for 9 by the presence
of several projector terms, which guarantee the
conservation laws and take care of the static cor-
relations.

1 1
N =—A@a~ 0T z 'z+v-qu(a, +at) (55b) The preceding theory has been used to calculate

the van Hove function for argon at T = 85'K and n

t, =qv[nc(q)/a'] (z+ v),
4'= Qz+q'v'nc(q) —&d'„(q),

f, = [nc(q)q'v'/2&'Qz2][Qz'+ u)'.,(q) —v'„,(q)],

(56a)

(56b)

(56c)

These functions can be identified with the self-part
of the correlation function and its memory kernel
according to Eqs. 41(a) and 41(b) of I. &t&, denotes
the free-gas function

&,=qv/[z -qv(a, +a~)] .
The q and z dependence of e, Qe, G and N has
not been indicated explicitly, the same is true for
the q- and z-dependent coefficients

=2.14 x 10"cm ' (particle mass m = 66.28 && 10 'e
g)

and rubidium T= 319'K and n=1.058&1022 cm '
(particle mass m =142 && 10 'e g).

~

For argon the pair-correlation function of Yar-
nell et al."and a 12-6 potential with &=120 K, o
= 3.4 A have been used to calculate the various
static averages like c(q), &d'„(q), v'„,(q), etc. The
characteristic frequency Q~ is 7.4 x10" sec '
(parameter as in I). The phenomenological damp-
ing parameter P in Eq. (40) is taken as 4.17 & 10"
sec . Substituting this number into Eq. (43a) one
gets q about half the hydrodynamic shear viscosity
g

Since the plots of S(q, &u) are not sensitive enough
for a comparison between theory and experiment,
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earlier theory of Duderstadt and Akcasu'4 such
that the first four frequency moments of the phase-
space density-fluctuation spectrum are reproduced
correctly. The particle correlations are then
described [compare Eqs. (54) and (55)] by the cor-
relations of a tagged particle modified by a num-
ber of frequency and wave-number-dependent
molecular field terms. The latter terms dominate
the motion, and thus the anomalies of the self
correlations, discussed earlier, "do not yield re-
markable qualitative features of S(q, ~).

ApPENDIX

q(A'') &

FlG. 4. Peak positions of Q~(q, ~) (dots) compared
with the neutron scattering results of Copley and Howe
(Ref. 4) (crosses) and Suck (Ref. 24) (squares) for liquid
rubidium.

In this appendix we want to give some of the de-
tailed calculations entering the derivation of Eq.
(54). Starting from Eq. (53) we first have to con-
sider the matrix X„which is given as the sum of
a diagonal matrix

this feature is reflected by the present theory, but
the resonance is overemphasized to some extent.

For the memory kernel entering the general
equation of motion for the phase-space density a
kinetic equation has been derived improving the

0.005

and a separable ter.m,

nc(q—)q va I~0)&0 Ia,

——g:.(,) .Io&&0I ..

0.0025

o ]=0.6A
The inverse matrix reads

0.005

0.0025

o 0-00

0005

3 00025

0.03
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ui (10' sec ')

97A

q =1A

q =1.204 A

o

q=l, 4A

n = n + 1 1
n.

with the abbreviations

In&= In, n, ng, x=n, +n, +n„ Il &=at Io&

and

= [&u' (q) -nc(q)q'v'5, ].

x[n~ (u', (q)+nc(q)q'v'5„] '.
Inserting the explicit expression for X, . into Eq.
(53), we can proceed in reducing the integral
equation to a one-dimensional one by integrating
over all transverse components. We furthermore
multiply the resulting equation for P(p„k,) by the
first Hermite polynomial in k, and integrate over
k, . In short-hand notation, we take matrix ele-
ments of Eq. (53) between the "states" &0„0, I

and
I0„0„1,). Since the formulas are rather lengthy,
we consider the various terms separately,

&0.0, I (x..'(s+ ~)( —&ox.')p I0.0,i.&

FIG. 5. Dynamical structure factor S(q, co) of liquid
rubidium. Full curves represent the present theory and
dashed curves are Rahman's (Ref. 7) molecular dynamics
results.

'„;"P In&-'g I@,-'+nc(q)(i+f, )
I

l&&0I
E n

+f.l»&~le.')~.
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The notation is the same as in Eqs. (53)-(58) with ln& denoting the nth eigenfunction with respect to P, .

&o„o,lx, 'n, x,'(8 —0 x ')y I0„0„1,) '(0'/q'v )

=E l~&-@I"&~+"&~+I~&—
& I&.'&+s. ( I»+I»)&&I+I»( &&I+«I) «.'~

2 2 I+(:.-".,) '„:(I»&1I+ l»&21)e.'&.-(q)(1+f.)

+(~..—v...) ~ I1.&&2„o,o, I go e I0„0,1,&.
2 Qs

We are going to neglect the last term, an approx-
imation that becomes exact within the theory of
Duderstadt and Akcasu. '4 The last term on the
left-hand side of Eq. (53) is easily evaluated,

&o„o,Ix,'e I o„o,1,&= [1—nc(q)
I
0&&0 l]e.

as well as the right-hand side,

Q~
&o„o,lx, '[(~+ v)x, —fl,)x,-'x, l0„0,1,& (,&. 1 0 x && g 1+

=(e+ "&I&& —qU(lo&+ 2 ~s&)

——,( '„-v'„,)I2&.g2 gg gzg

Collecting the various terms we arrive at the final
equation for 6, which is of the general form
++a)e =C. A denotes a diagonal matrix, B is
the sum of all separable terms, and C denotes the
inhomogeneity. Given the explicit form of A,

', g ln&-'&. Iat(a, a~)aim&
'

&ml q.p;

= (1/T) ((X') '[(~+ v)X' —~'](X') '[s —~'(X') ']

—(x ) '],
we recognize the corresponding susceptibility and

restoring forces for the incoherent function, de-
noted by the index s. Using the results of I the in-
verse matrix can be written down

A '= TGQ'a~ 1 a = T'GN,
z+v —qv a+at

or, inserted in the equation for 6,
6+A-'a6 =A-'C

we finally arrive at Eq. (54):
2 2

~+T'"~ p ~..1»&g I&.'+&. g Iv&&ol~)e
vga =1 V=1

= 7'G I1&~ 7'GN p u„ I
v&,

v=1

with the coefficients given in Eqs. (57)-(58).
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