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Numerical experiment on two-dimensional electron liquids. Thermodynamic properties
and onset of short-range order

Hiroo Totsuji
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo l13

and Department of Electronics, Okayama University, Tsushimanaka, Okayama 700, Japan
(Received 21 June 1977)

Thermodynamic properties of two-dimensional electron liquids are determined by numerical experiments
over the domain of the plasma parameter e = 2m ne '/T', 0.05 & e & 5 )& 10', where n, e, and T denote the
number density, the unit charge, and the temperature in energy units, respectively. The correlation energy
thus obtained is consistent with both the result of the plasma-parameter expansion calculation and-that- of
earlier numerical experiments in the high-density domain, The pair correlation function g(r) agrees with the
analytical result when e is small. Short-range order appears at the critical plasma parameter e„ in the range
10 & e„& 15. It is pointed out that the two-dimensional screening function h(r) = intg(r)+ 1]+e /Tr is
approximately, a linear function of the radius r in the short-range domain, as in the case of three dimensions.

I. INTRODUCTION

On the surfaces of dielectric substances such as
liquid He there are two-dimensional systems of
electrons interacting via the Coulomb potential,
with the effective charge nearly equal to a unit
charge' in the uniform background provided by a
positively charged metallic plate. Since the quan-
tum effects can be neglected in most experimental
conditions, ' these systems in thermal equilib-
rium are characterized by the dimensionless
plasma. parameter defined by e = 2wne'/T' or the
parameter I' = (c/2)'~', where n, e, and T are the
number density, the (effective) electronic charge,
and the temperature in energy units, respectively.

A characteristic feature of Coulombic systems
is an interplay between their collective and individ-
ual-particle aspects. In two-dimensional electron
liquids, the role of the individual-particle aspect
becomes more important than in three-dimensional
ones', for example, when the plasma parameter
is small, the contribution of the short-range
correlations to the correlation energy. is compar-
able with that of the long-range correlations, and
the collective aspect can be neglected in colli-
sional processes.

In theoretical investigations of three-dimen-
sional electron liquids, the numerical experi-
ments by Brush, Sahlin, and Teller' and by
Hansen4 have been quite useful. For two-dimen-
sional electron liquids, we have no such experi-
mental information except that re],ated to the
Wigner lattice fo'rmation in the very-high-density
domain e —2x10 due to Hockney and Brown. '
The purpose of our numerical experiments is to
investigate thermodynamic properties of two-di-

. mensional electron liquids for the range of the
plasma parameter 0.05 ~e & 5x 10' which includes

the low-, intermediate-, and high-density domains.
In the low-density domain, we confirm the con-
sistency of our results with analytical calcula-
tions" based on the plasma-parameter expan-
sion. In the domain of intermediate density, the
pair correlation function changes from a mono-
tonous to an oscillating function of radius. The
critical plasma parameter for this onset of the
short-range order is determined to be in a small
range. In the high-density domain, we find that
the pair correlation function can be represented
in terms of a linear screening function. The con-
sistency with the result due to Hockney and
Brown' in the very-high-density domain is also
confirmed. We expect that these results may be
useful for theoretical analyses of electron liq-
uids in two di'mensions and also for elucidating
the properties of three-dimensional ones through
the aforementioned difference due to dimension-
ality. .

II. METHOD

We simulate the equilibrium distribution by the
Monte Carlo method' which has been used by
Brush et al.' and by Hansen. ' We produce the
chain of configurations of particles by randomly
displacing them so that the chain may realize
the ca,nonical distribution.

The essential part of the numerical computa-
tion is that of the interaction energy in each step
of the chain. Due to the long-range nature of the
Coulomb interaction, some device is necessary to
calculate the interaction energy of an infinitely,
extended system. It has been shown'' that the
three-dimensional infinite system can be simu-
lated by the periodic system with rather small
number of particles in the unit cell. We thus
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adopt the periodic system, denoting the area of-
the unit cell and the number of particles in it by

S, and N„and ascertain that the results are in-
dependent of the use of the periodic system by
changing the symmetry of the periodicity and the
number of particles in the unit cell.

In the uniform background, the Coulomb inter-
action is given by

e' V' 2m
exp(i k ~ r), (2 1)

where $ is the area of the system and the prime
indicates that the term with k = 0 is omitted. The
interaction energy v(r, , ) between the particle
i (at r, ) and particle j (at r,.) and its periodic
images (at r,. +p ) is given by

Np1, . 1 ~'2me
+

2

+ No Uo —No(NO —1)(2/w/So)Re

erfc(gR)(p~p
g

—N, )

(2.9)

where
Np

p- =g exp(-ig r,.) .
i =i

U, (hexagonal) = —2.106 711318 07e'/a, (2.10)

and

In Eq. (2.9), both the first and the second terms
converge rapidly. We use Eq. (2.9) optimizing the
computational time with respect to the parameter

The Madelung energies for the hexagonaL and
square' lattices are calculated as

2

v(r, , ) = 2 L expltk ~ (r, , —p)]
p

U, (square) = —1.950 132 460 00e'/a,

where a is the lattice constant.

(2.11)

e ~~ ~7T
exp(ig ~ r, ,), (2.2) III. RESULTS

where r.. = r,. —r, , and p and g denote the vectors
of the periodic lattice and the reciprocal jattice,
respectively. Rewriting 1/g as

dt exp( —g't'), (2.3)

v(r) = v, (r) + v, (r) —(4v m /S, )Re',

where

(2.4)

v, (r) = —~ erfc(gR) exp(ig. r),
Sp g g

(2.5)

v, (r) =
~

erfcr —p
(2 6)

ge

~ac

er«(x) =
/
— '

dt exp( —t') .
V 7f

(2.7)

we divide v(r) into the short-range part v, (r) and

the long-range part v, (r) using the well-known
Ewald method. We have finally

In the domain e ~5x10', several thousands of
steps are sufficient to eliminate the effect of the
initial configuration in the Monte Carlo chain. We
discard more than 8 &&10' steps in the initial part
of the chain. As the initial distribution, we take
a random distribution or a complete lattice.

In Table I, we show the values of the correlation
energy density E, normalized by the kinetic-en-
ergy density nT for the hexagonal and square sym-
metries and for Np=36 and N, =81 at the same
value of the plasma parameter e = 1x10'. We see
that the resultant values do not depend on the sym-
metry and 36 is sufficient as the number of in-
dependent particles. Having thus confirmed that
the experimental results do not depend on the
boundary condition and the value of Np, we adopt
the hexagonal symmetry and Np:81.

In the two-dimensional Coulomb system, the
Helmholtz free energy I, the internal energy E,
and the specific heat at constant volume C~ are
calculated from the ratio of the correlation-en-
ergy density to the kinetic-energy density E, /nT
as

The interaction energy between a particle and its
own periodic images is the Madelung energy U~
of the lattice p which is given by

NT f'de E,
2 ., enT (3 1)

1 ~~2ne eU„= lim —~ exp(tg ~ r) ——
N

The interaction energy U per unit cell,

(2.8) TABLE I. The correlation energy normalized by the
kinetic energy E,/nT for different boundary conditions
and for different numbers of independent particles.

Np

U= —Q v(r, ,)+N, U, ,
i&j

where U, = V„/2, is thus ca.lculated a.s
Np= 81
Np ——36

Hexagonal

-23.83+ 0.10 '

-23.80 + 0.14

Square

-23.82 + 0.10
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FIG. 1. Correlation en-
ergy normalized by tQe
kinetic energy vs the
plasma parameter. Filled
circles are experimental
values. The dotted and
broken lines describe the
result of the plasma-
parameteq=expansion an-
alysis'and the Madelung
values for two-dimensional
Coulomb lattices.
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E =I'-T =NT 1+ (3.2)
(where y =0.5't72 ~ ), and (broken line) the Made-
lung values for the lattice (UO=Uoe'/a)

Cv= =N 1+ ' —2e— (3.3)

/nT 31/4(4+) -1/2 UI ~ 1/2

= -0.7821m'/' = —1.10611'(hexagonal) (3.5)

+(1 —2y)e ln e+ ~ ..
C

(3.4)

Here I', is the free energy of the ideal gas and ~
is the tota.l number of electrons.

Values of E,/nT are shown in Fig. 1 and Table
II for the range of the plasma parameter 0.05 ~ e
~ 5x 10'. In Fig. 1, we also plot (dotted line)
the values based on the plasma parameter expan-
sion' '

E,/nT = —', e In2e+e(y ——,') ——,
' e'1n' —,

' e

or

E /nT = (2m) / Ute

= -0.7780m'/' = —1.1002I'(square) . (3.8)

When the plasma parameter is small, our re-
sults are consistent with the result of the plasma
parameter expansion, Por large values of the

plasma parameter, the correlation energy is
nearly equal to the Madelung values and our re-
sults are consistent with those of Hockney and

TABLE II. The correlation energy normalized by the kinetic energy E~lnT and the number
of effective steps in the Monte Ca,rlo chain for various values of the plasma parameter e

=2mne /T .

Steps E,ln, T Steps

5x1Q 2

1x10 ~

5x1Q
1
2
3

5
6
7

-0.068 + 0.019
-0.118+ 0.022
-0.32 + 0.03
-0.52 + 0.03
-0.78 + 0.04
-1.00 + 0.04
-1.1$ + 0.04
-1.34 + 0.05
-1.51 + 0.03
-1.65 + 0.05

1.56 x 10~

1.34 x 105
3.2 x 104

5.4 x 104

5.6 x 104

3.2 x104
3.2 x 104

5.6 x 1Q4

7.2 x104
1.24 x 105

8
9

10
11
15

5x10
1x10~
5x10~
1 x ].03

5x 10~

—1.78 + 0.06
-1.90 + 0.06
—2.03 + 0.06
-2.12 + 0.07
-2.53 + 0.06
-4.93 + 0.07

7.14+ 0.07
-16.63 + 0.09
-23.83 a 0.10
—54.18 + 0.10

1.24 x 10~

1.16 x 105
1.06 x 10~

7.2 x 104

5.2 x104
x 10'

2.2 x 104

2.4 x 1Q4

2.2 x 104

1.8 x104



HIROO TOTSU JI

I I

f
I I I I

i
I I I I

i
I I I I

]
I I I I

t

0
0

0
M

-C4 ~
C4 ~0 ~O

4
4

o

4

o o
~ r I

4

o
Il3

4

4

4-'I

CQ

H
A
O

A

Q

EI
Cd4
Cd

Cd

8

Y4
S

0
Q
8

Cd

Q

0
CD

4

CO o

I I
i

I I I I
I

I I I I

o

O
0

S
O
cd

Cd

Q

0
M

V

0
M

C4
IX '

0
U

4

~ '

4

4

t
~

4
4

4

V

CQ
M
Gl

Q

V
Cl

C4

'a
O

Q

R0
V

R0
M

C4

0
V

M

C4

5( co
o O

4

0
0

bc

o

0

QO

)( ~

)c ~

~ IQ

0

K

X ~

)C

0
X

)C

)t ~

g

'IC ~

i

PC

I

I I [ I I I

o

0
4

P4
)C ' ~

SC ~
Q ~ JC ~

0

Q
O
A
fQ

8

0
0 ~

M
Cd ~

g

0
Cd

Cd
{Q

P ~~

O Pg
fh

fv

~ Q
Q M5

O



NUMERICAL EXPERIMENT ON TWO-DIMENSIONAL ELECTRON. . . 403

TAgLZ rII. Pair correlation, function g(r) for various values of the plasma parameter
q=2mne /T . Values of g(r)+1 are tabulated. rg=3.428 & 10 2(mn)

0.05 0.1 0.5 1.0 0.05 0.1 0.5 1.0

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

0.25 0.06
0.40 ' 0.21
0.55 0.36
0.67 0.46
0.71 0.58
0.76 0.66
0.77 0.68
0.82 0.74
0.86 0.77
0.87 - 0.79
0.86 0.84
0.89 0.86
0.90 0.86
0.92 0.88
0.93 0.90
0.93 0.91
0.96 0.93
0.94 0.94
0.94 0.93
0.94 0.94

0.02
0.17
0.24
0.36
0.49
0.55
0.60
0.63
0.72

. 0.77
0.83
0.83
0.85
0.87
0.93

- 0.88
0.89
0.92
0.94

0.02
0.11
0.22
0.26
0.32
0'.47
0.50
0.62
0.63
0.72
0.73
0.80
0.78
0.82
0.87
0.89
0.84
0.87
0.87

42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80

0.98
0.96
0.97
0.97
0.98
0.99
0.99
1.00
1.00
1.01
1.01
0.99
0.99
0.99
1.00
0.99
1.00
0.99
1.00
0.99

0.93
0.95
0.96
0.97
0.96
0.98
0.97
0.98
0.98
0.99
0.96
0.98
0.99
0.98
0.98
0.99
0.98
0.97
0.97
0.98

0.91
0.94
0.92
0.95
0.94
0.94
0.96
0.98
0.98
1.01
1.00
1.02
1.02
1.00
1.05
1.02
1.-01

1.02
1.01
1.01

0.89
0.95
0.91
0.88
0.97
0.97
0.92
0.98
0.99
1.00
1.00
0.99
0.97
0.95
0.98
0.98
0.98
1.01
1,04
1.01

E, /nT = aI'+ bI'+ c, (3.7)

where the three-dimensional parameter I" is de-

Brown."
Recently, DeWitt has proposed an interpolation

formula for the correlation energy of the three-
dimensional classical electron liquids in the form

fined by I'= (4mn/3)'i'e'/T and s= 1/4. The first
term on the right-hand side is nearly equal to the
Madelung value and the second and the third terms
represent the excess thermal energy.

In the two-dimensional case, we find that the
values of the correlation energy for 1 (e (5& 10'
can be represented by the formula of the same

1.0
X

X ~ X
~ A y ~

+

h(r)/(c/2 1/2

c=5000

+ c, =500

x v=50

~ «;=15

FIG. 3. The two-dimen-
sional screening function
h(r) =ln[g (r) +1]+ (e2/Tr)
as a function of the re-
duced distance (7tn)
The ordinate expresses
the values of h(r)/(e/2)~

0.5

REDUCED DISTANCE

2



404 HIROO TOTSU JI

TABLE IV. Thesame as TableIII.

10 50

t'g = 5.143x 10 (7t'yg) second term, however, cannot be determined
uniquely because bf the sma1. lness of the range of
values of e' with s= —,'. For example, the formula

E /nT =-0.80e / +0.52e ~ —0.24
2

4
6
8
8.5
9.5,

10
10.5
41.5
12
12.5
13.5
14
14.5
15.5
16
16.5
17.5
18
18.5
20
22
24
26
28
30
32

36
38
40

4g
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80

0.002
0.02
0.11
0.21

0.35

0.49

0.61

0.66

0.74

0.79
0.83
0.88
0.93
0.92
0.95
0.94
0.93
0.95
0.96
0.99
0.97
0.98
0.99
0.99
1.01
1.03
1.03
1.02
1.02
1.00
1.02
1.01
1.01
1.01
1'.02
1.01
1.00
1.01
1.02
l.02

0.002
0.04
0.15

0.27

0.38

0.46

0.61

0.70

0.80
0.84
0.89
0.91
0.93
0.98
0,97
0.95
0.95
0.96
0.98
0.96
0.98
0.97
0.99
$.01
1.02
1.02
0.99
0.99
0.99
0.99
1.00
1.01
1.02
1.02
1.02
1.01
i.03
1.04
1.00

0.03
0.07

0.18

0.29

0.43

0.55

0.62

0.77
0.80
0.87
0.91
0.94
0.95
0.97
0.99
0.99
0.99
1,01
1,01
1.01
1.02
1.01
1.01
0.99
0.99
1.00
0.99
1.00
1.01
1.01
1.01
1.01
1.01
1.01
1.02
1.01
1.01
1.01

0.01
0.06

0.15

0.26

0.38

0.52

0.62

0.71
0.78
0.84
0.89
0.94
0.97
0.98
1.01
1.0i.
1.00
1.01
1.00
0.98
0.99
1.00
0.99
1.00
1.01
l.02
1.08
1.01
1.01
1.02
1.02
1.00
1.01
1.01
1.00
1.01
1.01
1.01

0.10 0.07

0.22 0.15

0.33 0.29

0.41

0.59 0.57

0.70
0.80
0.86
0.89
0.94
0.98
0.98
1.00
1.01
1.00
1.00
1,01
1.02
1.01
1.00
1.01
1.00
1.00
1.01
1,00
1.01
1.01
1.01
1.01
1.02
1.02
1,03
1.03
1.01
1.02
1.01

0.67
0.81
0.86
0.91
0.92
0.96
1.00
0.97
1.02
1.00
1.02
1.02
1.06
1.05
1.03
1.02
1.04
1.02
1.01
1.00
0.99
1.00
0.99
1.00
1.00
1.03
1.02
1.01
1.01
1.00
1.03

0.001
0.008 0.006
0.03 0.02

0.003
0.004

0.014
0.023

0.056
0.080

0.113
0.161

0.252
0.299

0.399
0.503
0.680
0.793
0.950
1.019
1.070
1.107
1.118
1.099
1.067
1.051
1.033
1.005
0.987
0.982
0.979
0.989
1.004
1.001
1.013
1.020
1.021
1.009
1.013
1.023
1.008
1.016
1.011
1.020
1.011
0.999

= -1.13I'+ 0.58 7'~' —0.24 (3 9)

or

E, /nT = -0.79&' '+0.85'' "—0.58

= —1.12 1"+ 0.91I'~' —0.58 (3.IO)

can also reproduce the -results for 1 ~q &5x10'
with the error nearly the same as Eq. (3.8). In
the domain 0.05 & e& 5x10', our results are re-
presented by the formula

E, /nT = -0.78&'~'+ 0.53&'/' 0.26

= —1.10I + 0.58''~'- 0.26

with the error less than 8% (less than 2$ for
0.5 & e &' 5 x 10'), or by the formula

E, /nT = -e' '[0.76 —1/(2. 2e' '+ 1.8)]
= —j"[1.07 —1/(2.2 r+ 1.3)],

(3.11)

(3.12)

with the error less than 6/z (less than 2% for 0.5
~ e «5 x 10').

The values of the pair correlation function g(r)
are shown in Fig. 2 and in Tables III-V. When
the plasmia parameter is small, the pair correla-
tion function is calculated as'

g(x) =e xp[-u(r) /T] —1,
where

pOO x
u(r) = — dxZ, (x)r o X+ kg)r

(3.13)

10& e &15 or 2.2 & I"„&2.7. (3.14)

J,(x) is the Bessei function, and k~=2mne'/T. The
values given by (3.13) are plotted by crosses in
Fig. 2 for e &1.0. For c =0.05, experimental
results agree with Eq. (3.13). As the plasma
parameter increases, the correlation function
deviates from Eq. (3.13) in the short-range domain
r = e'/T. With further increase of the plasma
parameter, the oscillation around the zero level
appears. Noting the errors which associate the
values of g(r) as shown for e =8, 10, and 15 in
Fig. 2, we observe that the critical value for
the onset of the short-range order is in the range

type as Eq. (3.7),

E, /nT =-0.79&' '+0 65e' ' —0.3.8

= 1.12~+0.71' ~ 0.38, (3.8)

with the error less than I'E. The exponent of the

X r'=n(sp/sn)r, (3.15)

where P = —,K, + nT is the pressure, diverges at
e =e, =4.4y0. 1 or += I =1.48y0.02 according to
the interpolation formulas (3.8)—(3.12). Thus, as

On the other hand, the isothermal compressibility
X~ defined by
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TABLE V. The same as Table IH. x3-—6.857 x 10 (~)

100 500 1000 5000 100 500 1000 5000

7.5
8.5
9.5

10.5
11.5
12.5
13.5
14.5
15.5
16.5
17.5
18.5
19.5
20
20.5
21.5
22
22.5
23.5
24
24.5
26
28
30
32

36
38
40

0.001
0.001
0.008
0.044
0.081
0.123
0.203
0.311
0.443
0.599
0.707
0.891

1.015

1.152

1.164

1.144
1.115
1.065
1.019
0.997
0.958
0.970
0.986

0.001
0.008
0.027
0.071
0.141
0.280
0.444
0.632
0.824'

0.003
0.016
0.060
0.139 0.010
0.250 0.024
0.426 0..090
0.696 0.244

1 300 - 1 313 1 279
1.668

1.372, 1.549

1.406
1.317
1.175
1.082
0.970
0.879
0.885
0.915

1.627
1.463
1.268
1.051
0.950
0.824
0.783
0.810

1.962
2.135
1.935
1.500
1.091
0.820
0.606
0.559
0.567

l.022 0.948 0.505
1.232 1.154 0.834

42

46
48
50
52
54
56
58
60

. 62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

0.995
1.018
1.015
1.041
1.037
1.019
1.008
1.021
0.997
1.028
1.007
0.996
0.998
0.994
0.998
1.019
1.007
1.040
1.024
1.013
0.996
1.007
1.001
1.013
1.027
1.026
1.014
1.027
1.021

0.927
0.966
1.007
1.040
1.062
1.052
1.054
1.041
1.027
0.996
0.999
0.985
0.972
1.000
1.022
1.028
1.039
1.052
1.034
1.000
0.989
0.962
0.979
1.008
1.007
l.024
1.028
1.048
1.043

0.869
0.945
1.037
1.040
1.111
1.111
1.096
1.070
1.046
1.009
0.964
0.982
0.939
0.984
0.968
1.031
1.007
1.028
1.006
1.038
1.058
1.051
1.012
1.020
0.977
1.010
0.994
0.979
0.993

0.686
0,.827
1.040
1.199
l, e313
1.351
1.242
1.106
1.024
0.948
0.873
0.801
0.824
0.865
0.972
1.058
1.139
1.156
1.143
1.075
1.067
0.995
0.969
0.928
0.917
0.934
0.949
0.993
1.048

in the case of three dimensions, " the onset of the
short-range order occurs near the critical density
where the isothermal compressibility diverges.

In the three-dimensional electron liquids, the
screening function P(r) defined by

/

g(r) = exp[- (e'/Tr) + h(r) ] —1 (3.16)

is accurately represented by a linear function of
x in the short-range domain. "'" The values of
the two-dimensional screening function are shown
in Fig. 3 for 15 ~ & &5x10'. It is clear that the
two-dimensional screening function can also be
represented by a linear function for 50 & e &5x10'.

We have finally

h(r) = F[1.18 —0.33(wn)'~ r] (3.17)

as an interpolation formula for 50 ~ & &5 x10 .
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