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Orientation-averaged pair correlations in a molecular theory of nematic 1iquid crystals
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A molecular theory of nematic liquid crystals is presented in which the short-range spatial correlations are
accounted for by an orientation-averaged pair correlation function. This results in a two-fold self-consistency
scheme whose spatial. description resembles that in the conventional theory of classical liquids and whose
orientational description resembles a mean-field theory. Numerical calculations are made for a simple
potential chosen to describe para-azoxyanisole {PAA). Among the properties calculated are the two-phase
coexistence curve, the order parameter along the coexistence curve, temperature dependence of the order
parameter. at constant pressure, and volume change and latent heat at the isotropic-nematic transition.
Comparison with experimental data is made. There are encouraging signs to warrant further investigation.

I. INTRODUCTION

In a molecular theory of liquid crystals, one
begins by writing down a model potential that de-
scribes the interaction between a pair of molecules.
By assuming cylindrical symmetry for the mole-
cules, it can be shown' that the most general form
of the potential will be a function of five scalar

A A
variables: rl2~ ~~1 12' 2 12~ ~1 ~~2& and

0, XO2'r», where r; and 0,. denote the position
and orientation of the ith molecule. 0, && 02
actually offers only a selection between two signs.
It is associated strictly with the chiral contribu-
tion, and is responsible for the cholesteric phase.
~1 ~12 and ~2 +12 br eak the symmetry between
splay and bend on the microscopic level. In a
recent paper' we showed that functions with these
arguments can be constructed to account for aniso-
tropic repulsions, thus giving rise to anisotropic
macroscopic properties. In most molecular-theo-
retic calculations to date, only functions with argu-
ments r» and Q, ' 0, appear in the interaction for-
mula. In most' ' of our own work we have followed
Kobayashi' and McMillan' in expressing the poten-
tial in the convenient, though hardly realistic,
form:

v(1, 2)=v (r )+v (r )P (Q, Q, )

+v, (r„)P,(Q, Q,),

where P, denote Legendre polynomials. This will
again be the case in the present paper.

Given density p= N/V and tempera—ture T, statis-
tical mechanics evolves from the partition function

(n) ¹

t

(1,2, 'n) Z(N- )t

x exp( —g"''')

&& dr„& dQ„& ' ' ' dr+A&& .

and

P »&(1) =P&»(~ Q ) =P&'&(8 ) =pf(8 )—
P 2'(1, 2) —=P"'(1)P"'(2)g(1,2)

= p'f(8, ) f(8.)~( 1, 2),

(4)

where 8,. measures the orientation of the ith mole-
cule relative to the director (taken along the z
axis). f(8) provides a measure of the long-range
order, while g(1, 2), a pair correlation function,
describes the short-range order in the. system.

In the Maier-Saupe form of the mean field theo-
ry, 'o the Helmholtz free-.energy functionaL appears
as

F[f(8)]= &o+ 2Npyo+ 2Npy2a'2+ zNpy, o,

+NOT f(8) lnf(8) dQ,

where

y, = v&(r)dr

Of particular interest to a system characterized by
pairwise interactions are the one- and two-particle
distribution functions P"'(1) and P"'(1,2). When
only orientational order is of concern, we can
write

Z = exp kT dr1dQ1' ' dr d
i&9

(2) and

&7, = f(8)P, (cos8)dQ. (8)

and the n-particle distribution functions The last term in E&l. (6) came from expanding the
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entropy

S = —, P'"&(i, 2, . . . , iV)xl
P'"'~1 2

in a cluster series and then truncating the latter
by setting g(1, 2) and all higher-order correlation
functions to unity. The possible phases of the sys-
tem then emerge from extremizing P[f(8)] with
respect to f(8) under the normalization condition

f(8)dQ =1. (10)

B,= (py, /l r)a„

B,= (py, /i r)o„

(12)

exp[-Bj', (cos8) - Bg (4cos)8]dA (i4)

As will be seen later, the same results can be
obtained by first differentiating P'" with respect
to 8„next introducing into the resulting expression
the definition of P~ ', and then setting g(1, 2) to
unity. This alternate derivation makes more ex-
plicit the mean field natu-re of the theory.

Physics resides in the recognition that among
the possible phases, the thermodynamical equi-
librium phase corresponds to that which minimizes

For the equilibrium phase, we thus obtain the
free energy F(p, T), and from this the equation of
state and phase-transition properties.

Such a theory was shown to be rather successful
in predicting certain thermodynamic properties of
liquid crystals, e.g. , phase diagrams for homo-
logous s er ies, order parameter s, etc. , but ve ry
poor in predicting volume changes at transitions,
latent heats, and maximum supercooling tempera-
tures. The reason for at least some of its short-
comings is quite clear. Setting g(1, 2) to unity
ignores all pair correlation effects. While it may
be reasonable to apply a mean-field approximation
to orientations, omitting all considerations oj
short-range spatial correlations is too drastic a
move, one that is unacceptable at li.'quid-crystal
densities. And yet, a detailed calculation of g(1, 2)
with a realistic potential is almost unthinkable.
We have made such attempts" for relatively sim-
ple potentials, and with the help of simplifying ap-

The resulting equations along with the definition of
the order parameters a„Eq. (8), form a self-
consistency set:

/

f(8) = (1/e) exp[- B2P2(cos8) —B4P~(cos8)], (11)

with

II. ORIENTATION-AVERAGED CORRELATION FUNCTION

The two-particle distribution function, or pair
correlation function, P"'(1,2), is governed by an
integro-differential equation which can be derived
easily from diff erentiating the definition of P"'

(1,2) and introducing in the resulting expression
the definition of P'"(1,2, 2). We find

-v(1, 2)
kT

+ P"' 1, 2, 3 V~
' dr, dQ3.

(i5)

v P' '(1, 2) =P+'(1, 2)v,

In the isotropic and nematic phases, we can write
+'P(1, )a2s in Eq. (5), and

proximations have made some progress in that
direction. , But our capacity to proceed further is
severely strained for want of mathematical skills
and computational facilities. Among the disap-
pointments was our inability to calculate the free
energy accurately. So, even though all the solu-
tions (representing different possible phases) were
at hand, we could not determine which one is sta-
tistically stable, and could not obtain F(p, T) from
which to extract concise, useful information.

On the one hand, then, there is the oversimplifi-
cation of mean-field theory. On the other hand,
there is the intractability of full-fledged statistical
mechanics. What we need is something in between.
In a recent paper' we proposed such a theory, in
which pair correlations are accounted for through
an orientation-averaged g(1, 2). Thus the mean-
field approximation is applied only to the orienta-
tional. part of the problem. As far as spatial cor-
relations are concerened, the system is treated
in a manner that recalls the conventional theory of
classical liquids. In Ref. 6, the relevant quantities
were expressed in terms of "moments" of the po-
tential and were deduced from experimental data.
It was a phenomenological theory based on a mo-
lecular-theoretic model. For para- azoxyanisole
(PAA') and N Q-methox-ybenzylidene)P'-butylan-
iline (MBBA), the theory gave rise to surprisingly
ac curate pr ediction of the volume change, latent heat,
and maximum supercooling temperature at isotropic-
nematic (l-N) transition. The purpose of the pres-
ent paper is to strengthen the molecular-theoretic
foundation by actually carrying out the appropriate
calculations with an assumed potential, in the
framework of this "orientation-averaged correla-
tion theory". Since the form of the potential as-
sumed is too simple, we do not expect great things
at this stage. Yet, as will be seen, there are
moderate successes to encourage continued ex-
ploration.
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P '"(1,2, 3) = p f(6,)f(82)f(8,)g'"(1,2, 3) . (16)

By making the approximations

Saupe theory. But here, in this more sophisticated
theory, we wish to substitute g, (r») for g(1, 2). As
a consequence we obtain

g(1, 2) =g, (r„), (17)

(18)

f(8) =
(~) exp P 2y, (o')P2(cos8)

)

we find Eq. (15) readily integrable over the orien-
tations 0, and 0, , yielding

-V(r„)
V,g, (r„)=g, (r„)V,

with

y, (o ) = v, (r)g, (r Io') dr.

(23)

(24)

where

(3) -V(r„) '

+ g, (r„,r„,r„)V, d „
(19)

o( 12) ="0(»)+"2(»)oa+ "4(»)o4 (ao)

Equation (19) is in the familiar form known as the
Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY)
equation in the theory of classical liquids. Qiven
a reasonably approximated g,'"(r», r», r~), such
as the Kirkwood superposition approximation,

g,'"(r», r», r~) =g, (r»)g, (r»)g, (r~), (21)

lnf(6, ) =—
1

(6,)g(1, 2)

this highly nonlinear equation can be solved numer-
ically using as input the effective potential V(r).
Note that U(r), and thus g, (r), depends on the order
parameters. This dependence is responsible for a
second fold of self-consistency, as will be seen.

g, (r),is what we shall refer to as the "orienta-
tion-averaged correlation function". Physically,
it cy,n be looked at as the spatial correlation func-
tion between two rapidly rotating molecules, their
interaction resulting from averaging Eq. (1) with
the one-particle distribution functions f(8,) and

f(8,) serving as weights.
To study the consequence of introducing such a

correlation function, let us derive the equation
that governs P "'(1). Differentiating the definition
of P"'(1) with respect to 8, leads to

In fact, Eq. (23) is identical to Eqs. (11)—(13) ex-
cept that y, now depends on the order parameters
through g, (r). We have explicitly displayed the
order-parameter dependence of g„y „and z, as
shown, as a reminder to the reader. Actually
there are even more complications: Since g, (r)
depends on the thermodynamic environment [see
Eq. (19)],, all these quantities vary with p and T as
well, both indirectly through g, (r), and even more
indirectly through o(p, T) Equati. ons (8), (23), and

(24) provide the first fold of self-consistency.
The program now goes as follows. Qiven. p and

T, one starts with some initial values of a, and 04,
e.g., those from the Maier-Saupe theory. Qne
calculates from Eq. (20) the effective pair potential
v(r), and solves Eq. (19) for g, (r~o'). The results
are then used in Eq. (24) for y, . Equations (8) and

(23) are next solved self-consistently. The re-
sulting o., and 0, will in general differ from their
initial values. An iterative process will thus be
needed to achieve the second fold of self-consist-
ency'. [In practice it is more efficient to solve the
BBGKY equation (19) for a set of o, and o~, and

subsequently deal with Eqs. (8) and (23) graph-
ically. ]

III. FREE ENERGY

A natural extension of the mean-field theory
would call for the inclusion of a second entropy
term in the free-energy functional, Eq. (6).
Cluster expanding Eq. (9) and using the g, (r) ap-
proximation, one finds

x,—[&,(r„)P,(Q, Q, )
1

+ v4 (r» )P~ (Q~ ' Q2)] d r2 d Q2 .

(22)

In the zeroth-order approximation, g(1, 2) is set to
unity. The differentiation on the right-hand side
can be taken outside the integral. By integrating
over 8~, we reproduce Eqs. (11)-(14), the Maier-

Thus

ideal Nk lnp+k lnNt -Nk 6 ln 8 dQ

—2Npk g, r lng, r dr+''' .

1 1 2 j.+ &Npy + ~Ãpy o' + ~Npy a'

(6) lnf(8) dQ

+ 2NpkT g, (r) lng, (r) dr+

(25)

(28)
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1

Unfortunately, this. expression is not reliable since
there is no way to guarantee that the expansion will
converge, let alone do so in just two terms. Off-
hand one might see a glimpse of hope: what one
needs is not so much the free energy, but the
free-energy difference between the isotropic and
nematic phase, i.e., between the free energies at
zero and finite-order parameter values. This dif-
ference can be written as

&& = aNp[y, (o') -y, (0)]+2Npy, (&')o2

+ ,N py4 (o—')o,' +Nk T

f(8) lnf(8) dQ —ln-
4m

or, by integration,

g2
X((rm) = ~(0)+ y, (x) dx.

0
(31)

IV. NUMERICAL APPLICATION TO PAA

Since y, (x) has been well defined by Eq. (24), we
have X((r,') and the free-energy expression.

At the center of this derivation is the assumption
that Eq. (23) is accurate. While our new free-en-
ergy expression is certainly not universally valid,
it is totally consistent with our orientation-aver-
aged correlation approximation. This is as much
as we wish to claim, and as much as we need in
our theory.

+2Np&T g, y 0 lng, y' o dr

g, (rl0)»g, (rlo)dr +'''

(27)

P[f(8)]=(rr, +NkT

+ —,'N pa((r,'),

1 1
4~f(8) lnf(8) dA —ln

(28)

where X((r2) is as yet an unknown function. Varying
7 with respect to f(8) under the normalization con-
dition (10) leads to a Euler-Lagrange equation
whose solution is

dX o'
)or(S)= „'(,' p, (oooo) —(os(o,')

do,'
or

r(s)=, ssp .
' a (ooss)] . (29)

1 -p(r, dh(o,')
z o,' kT do",

Comparing this with Eq. (23) with the y~ term
omitted, we find

d1).((r,')/do, ' = y, ((r,' ),

The terms within square brackets measure the
lowering of free energy as orientational ordering
takes place. And since the latter is regarded as
weak enough to permit a mean-field approximation,
one is led to believe that multiparticle cluster
terms such as the last term in Eq. (27) should de-
crease rapidly. A more careful look at the ex-
pansion, however, reveals that one still faces a
density expansion, which is not expected to con-
verge well at liquid-crystal densities. Equation
(26) is therefore not trustworthy.

We propose here a new method to obtain the free-
energy functional, one which is free of expansions.
For clarity, let us do it without v, (r), and thus
without y4 and o, . Write

To illustrate the application of our theory, we
chose a simple potential to mimic para-azoxyan-
isole (PAA). We took

v, (r) = 46,[(a,/r)" —(a,/r) ],
v, (r) = 4&,(a,-/r)',

v, (r) =0,
with

(32)

&0= 145.426 k 'k,
&2= 96.950 4 ~,

a0=a2= 6.348 823 A,

so as to fix the isotropic-nematic transition at ap-
proximately 408 K when the specific volume e
= 374.94 A' (or density p=0.002 667 A '), the experi-
mental values.

Calculations were carried out at densities rang-
ing from 0.002 667 A ' to 0.002 674 A ' and tempera-
tures ranging from 404 'K to 408'K. At every
choice of (p, T), a range of o~—usually between
0 and 0.52—were used to calculate V(rl (r') and solve
the BBGKY equation (19) for g, (r jo~). Among the
output were the corresponding values of yo(o,') and

y, (o2), as obtained from the defining equation (24).
Equation (23) then gave us f(8); from which and
from Eq. (8) we obtained the outcoming o, 's. Ob-
viously, the outcoming and ingoing 0, 's did not
agree except at the one o, which represents the
double self-consistency solution. The latter we
found graphically. It was necessary to pinpoint the
0, solution to, say, three decimal places, which
was time-consuming work. However, since y, (o'2)

turned out rather flat, relatively wide intervales
in &r, (e.g. , 0.05) would suffice for use in tlie in-
tegral of Eq. (31). This greatly reduced computa-
tional demands. Table I shows a typical set of re-
sults obtained.

The next step concerned free-energy calculations
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TABLE I. Self-consistent solution at p= 0.002 667 A
and T =407'K.

Input

02

Output
-y, ( KA') —pg, /aT

0.00
0.05
0..10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.46
0.468
0;47
0.48
0.49

0.000 000
0.045 853
0.094 167
0.144 458
0.196134
0.248 521
0.300 894
0.352 541
0.402 799
0.451 103
0.460 538
0.467 977
0.469 826
0.479 014
0.488 099

678 993
679 210
679 871
680 984.
682 565
684 646
687 242
690411
694 219
698 766
699 861
700 668
700 910
701 997
703 125

4.449 32
4.450 75
4.455 08
4.462 37
4.472 73
4.486 37
4.503 38
4.524 14
4.549 09
4.578 89
4.586 07
4.591 55
4.592 94
4.600 07
4.607 46

0.0000
0.0015
0.0061
0.0141
0.0256
0.0406
0.0591
0.0809
0.1055
0.&328
0.1385
0.1431
0.1443
0.1502
0.1561

=NkT f„(8}lnf „(9}d0—1n( —)
+ —,'Xp[)((o,') )(.(0)], (33)

we were able to identify the constant-volume trans-
ition temperature Tz~(p), which is lower than the
true transition temperature (at constant pressure)
T» by about 3 'K. (see the analysis in Ref. 6).
Table II lists some of the information obtained.

at, the solutions. Equations (28) and (31) were used.
At each density p, then, by evaluating the free-
energy diff erence

The constant-volume transition temperatures are
identified in the table.

Assuming that conclusions drawn from constant-
volume transitions are not too distorted from those
based on the true transitions, we read from Table
II three immediate consequences of the calculation.
First, the order-parameter jump is 0.495, which
is quite far from the Maier-Saupe value of 0.43.
That it differs significantly from the experimental
value'~ '4 of 0.35-0.40 does not worry us. It stands
at about 0.46 at 407-408 'K. By adjusting v, (r),
one could always lower it to fit the experiment.
Clearly it will no longer be universal in our theory.
Second, the order-parameter jump remains con-
stant along the transition curve. This is consis-
tent with experimental finding, and is most en-
couraging. That the Maier-Saupe theory yields
such a result is not surprising since it gives rise
to a universal phase diagram and a universal
or der -parameter 'jump. But such a result was not
a Priori exPected to hold in our theory. Third,
even though the lnT»(p)-lnv plot gives us a straight
line, the slope of 1.45 is quite far from the ex-
perimental value" of 4.0. This indicates that
short-range order must yet be considered more
carefully. Our feeling is that it is not the orienta-
tion-averaging that is at fault, but that anisotroPic
steric effect leaves a more important imprint on
the quantity 1"—= —[d 1nT»(p)/dlnv] than on other
thermodynamic properties. We intend to study the
effect of incorporating into our theory potential
terms that depend on 0, r» and 0, 'r», which were
found earlier' to mimic anisotropic repulsions.

The numerical results can be used to deduce a
number of other properties. First, the tempera-
ture dependence of the order parameter. Figure 1
reproduces experimental data by Pines et al. ,

"
TABLE II. Free energy calculations. at selected densities and temperatures.

p(A 3)

0.002 667

TIN

0.002 670

TIN

0.002 674

TIN

T( K)

408
407
406
405
404.45
404
407
406
405.11
405
404
407
406
405.92
405

0.452
0.468
0.480
0.490
0.495
0.500
0.475
0.486
0.495
0.496
0.505
0.4835
0.4938
0.495
0.5035

189.39.
202.57
212.69
221.28

230.03
208.75
218.13

226.82
234.75
216.40
225.32

233.84 '

-187.64
—201.34
—211.95
—221.00

-230.26
—207.81
-217.69

-226.88
235 132

-215.85
—225.28

-234.36

1.75
1.23
0.74
0.28

0
—0.23

0.94
0.44

0
—0.06
—0.57

0.55
0.04

0
—0.52

Free-energy difference |' IQ'Nk)

Nk [ff~(e) 1nf~(8)dQ —ln(l/4v)] 2 Np[)(. (02) —X(0)J E~ EI-
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I I
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T(N-T (K)

( - I

5.0 6.0

view of the points mentioned above, a real quanti-
tative comparison with data is not meaningful. We
are, however, encouraged by the qualitative con-
sistency between our results and experiment.

We have not compared our o, (T) at constant vol-
ume to the data of Ref. 11 since the latter at v =221
cm'/mole= 366.80 A' lies far outside the range of
densities conside red by us. Sketching our r esults
alongside those of Ref. 11 indicates that our tem-
perature dependence may be quite a bit stronger, ,
but this is inconclusive.

The calculation of o, (T) at constant pressure
offers a useful check on the value I'. Let v, and

v2 denote the specific volumes at T~ and T„re-
spectively, at P =1 atm. Then, provided that
v~=v2, we have

v(v„ T)
= ir, (v„ T) + ( ' "'

).(v, - v, ) (14 )

But since
FIG. 1. Oq(7') at 1 atm. 0, Pines et al. (Ref. 13); 4,

Hanson and Shen (Ref. 14); curve, theory.

TABLE III. 'Density vs temperature at &=1 atm (nor-
malized to p=0.0002667 A 3 at T=408 K and used for
computing g2(T) in Fig. 1.)

7'{ K)

408
407
406
405
404

0.0
1.0
2.0
3.0
4.0

374.95
374.42
373.97
373.59
373.19

0.002 667 0
0.002 670 8
0.002 674 0
0.002 676 7
0.002 679 6

and Hanson and Shen. '4 There are several points
to ponder before a comparison of our results to
the data can be made. (i) Without the aid of a v, (r)
term, our order parameter at transition is quite
a bit higher than the experimental value. There
is no rational way to "normalize" our results to
fit the experiment. (ii) While our constant-volume
transition temperature T»(p) can be located ac-
curately, the determination of the true transition
temperature is somewhat model dependent. By
identifying Tz~(p) with the maximum supercooling
temperature as in Ref. 6, we locate the true trans-
ition temperature at 407.5 'R. In Fig. 1 it will be
taken as 408 K for convenience. (iii) The data are
at constant pressure. We must therefore first ob-
tain at various temperatures densities which cor-
respond to the same pressure, and then plot the
order parameters obtained at those (p, T).pairs.
Table III gives a list of (p, T), at P = I atm, as in-
terpolated from the Maier-Saupe data' and scaled
to give p=0.002667A ' at T=408'K. The curve
shown in Fig. 1 resulted from our analysis. In

J

Bv (B, T) (Bv
) (BT) (Bv)

=-'(" .)"H ("')
and

(36)

as was observed earlier, E(I. (34) becomes

rr (v, T)=v (v„T)+1T( ')„,(—
' —' I),

or

I'=[a,(v„T)—(r2(v„T)] T —'
„, —' —I

(37)

The I' value thus obtained from our results turned
out to be about 1.3, within numerical unc er tainty
from the directly obtained value of 1.45. This
merely serves as a consistency check since our
I differs significantly from the experimental '

value of 4.0.
Next, using the theoretical results listed in Table

II, we were able to calculate the volume change at
transition bv/v and the latent heat AH. The know-
ledge of I'„—I', at a range of (p, T) gave us the
pressure change and the entropy change at fixed
volume v. In the notations of Fig. 2, the pressure
change was given by
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C
I'~

I

I

C'

I

'e

I

(S,~ -S,) —(S„, S„)=(v,~ v,),—BS

rl c'
85—(v, -v )A' A ev

Qg +

F, -F„=P,(p, T) F„(p,T)

I N 069+A3 (38)

at p = 0.002 667 A ' and T = 407.5 'K. The entropy
change was given by

S, —S„=S,(p, T) S„(p,T)

FIG. 2. Graphic aid for carrying out a Maxwell con-
struction.

Experimental data~' gave ~v/v = 0.30lo-0.36% and
~=574-760 J/mole, so our results are too big
by a factor of 2-4. We are not surprised by this
discrepancy. With the knowledge that y, varies
slowly with 02, a little analytical work on the

separate terms in Eg. (28) convinces us that
(F„—FI) varies roughly as o2 ~ The numbers in
Table II lend further, support: all separate contri-
butions to F„-FIvary as o',2 to well within 1% for
all cases considered. Since our 0., at transition is
significantly larger than the experimental value
I"„-I'I and thus all quantities which are propor-
tional to F. Fz, e.g-. , ~v/v and ddI, would be too
big by the same ratio, which accounts for a factor
of 2.

A final note on the dependence of y, on p and T.
We found

=0.52 g . (38) CC ~1~ 11T Og95
/2 (42)

From thermodynamics, a Maxwell construction
led to

~v/v=SC(P, P„)=O.714%, (4o)

where K denotes the isothermal compressibility,
and was taken to be 7 ~ 5 && 10"cm'/dyne from Ref.
6, based on Ref. 15. Also,

~= T[(Sc.-Sc) —(S„,-S„)]+T(Sc -S„)
= (PT/z)bv+T(Sc —S„)=2448 J/mole, (41)

where P denotes the coefficient of thermal expan-
sion and was taken to be 7.8 &10~ M' from Ref.
14. The second line of Eq. (41) came from the
realization that

in total contrast to our expectation' of a nearly
linear temperature dependence, which gave rise
to good theoretical values of phas'e-transition
properties when used in a phenomenological an-
alysis. This suggests that our model potential
is much too unrealistic. More work is required
along the present direction to establish a sound

molecular model for liquid crystals.
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