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We employ the:equivalence between Zwanzig's projection-operator formalism and perturbation theory to
demonstrate that the approximate-solution technique of statistical linearization for nonlinear stochastic
differential equations corresponds to the lowest-order P truncation in both the consolidated perturbation
expansions and in the "mass operator" of a renormalized Green's function equation. Other consolidated
equations can be obtained by selectively modifying this mass operator. We particularize the results of this
paper to the Duffing anharmonic oscillator equation,

I. INTRODUCTION

In the past few years there have appeared a num-
ber of allied articles'~ discussing approximate
solutions to the Duffing anharmonic oscillator
equation perturbed by Gaussian white noise $(t),

x+ o.x+ &u',x+ Px'= $(t) .
The parent ar'ticle by Morton and Corrsin"" ex-
amined this problem by making. a perturbation ex-
pansion in the response variable x(t), thereby
converting the nonlinear ordinary differential
equation to an infinite set of linear ordinary dif-
ferential equations. Each of these latter linear
equations corresponded to a certain order in the
perturbation expansion parameter P. By assigning
diagrams to various terms in the Fourier expansion
of these perturbative equations, the ensuing infinite
hierarchy of algebraic relations became equivalent
to an infinite set of diagrammatic equations. Mor-
ton and Corrsin were able to consolidate these
diagrams to obtain a set of three coupled non-
linear integral equations for the solution of the
spectral density function S(ur) in terms of a re-
normalized Green's function G(e) and a renormal-
ized vertex function I'(ur).""' In field theoretic
terms G(~) would be a dressed propagator and
I'(v) a dressed mass. Morton and Corrsin trun-
cated these consolidated equations to various or-
ders and compared the resulting numerical cal-
culations with the results of an analog computer
experiment.

Bixon and Zwanzig' tackled the problem via the
projection operator methods of statistical mechan-
ics and found that their spectral-density calcula- '

tion agreed favorably with the best of the consol-
idated equation approximations of Morton and Cor-

rsin. The spectral-density function in their form-
ulation is a simple algebraic function of the fre-
quency. Both oscillator frequency and friction
coefficient are renormalized and depend on the
nonlinear part of the original equation.

Finally, Budgor et al.3 showed that by using a
variational prescription, a number of the integral
equations derived by Morton and Corrsin could be
obtained in an exceedingly simple fashion.

The purpose of this paper is to tie together these
three seemingly different techniques and review
their interrelationships. We begin in Secs. II and
III by converting, usi'ng Hamilton's equations, a
general nonlinear stochastic dynamical equation
into a Liouville equation for the probability-dis-
tribution function p(t). The equivalence between
Zwanzig's projection formulas and an algebraic
perturbation theory is discussed. Statistical lin-
earization is shown to be related to the "lowest"-
order P truncation in the consolidated perturbation.
equations and in the mass operator of Dyson's
equation. Other consolidated equations can be
found by using a consolidation operator Q which
can be defined to selectively modify the mass op-
erator M in Dyson's equation and in effect produce
consolidated equations having quite general prop-
erties. We exemplify this discussion by applying
the results to the Duffing oscillator in Sec. IV.
Section V concludes our review of perturbation
methods with a brief description of the theory
of Martin, Siggia, and Rose4 on the type and struc-
ture of the diagrams that go into the renormalized
propagator, renormalized vertex operator, and
renormalized spectral density function. Section
VI concludes with some general considerations
on the utility of the method of statistical lineariza-
tion.
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II. PROJECTION OPERATOR FORMALISM

It is well known that any dynamical system of
the form

L separate into two parts,

L =Lo+L

with L, satisfying the relations

(2.8)

u=F(u, t), (2.1)

where u is a 2n-dimensional stochastic vector and

E(u, t) is a nonlinear vector function, can also be
represented by the linear partial differential equa-
tion

(~plst)(n t) =Lp(M t) ~ (2.2)

In classical statistical mechanics, L is the Liou-
ville operator and p(u, t) is the n-particle distri-
bution function for the system in the phase space
(u„.. . , u„)=(x„P„... ;x„,p„). In the theory of
stochastic differential equations p(u, t) is the joint
distribution function of the canonical random po-
sition and momentum vectors (x„.. . , x„) and

(p„.. .,p„) respectively, and L, can be, for ex-
ample, the Fokker-Planck diffusion operator. '
Equation (2.2) is solved with the initial condition

n

p(u, t =0)= [5[x,. —x,.(0)]6[p,. —p,.(0)],
1

(2.3)

where x(0) and p(0) represent the initial positions,
and momenta, respectively. The Liouville oper-
ator L is defined in terms of the Poisson bracket
relation

(2.4)

in which H(x, p, t) is, in general, the time-depen-
dent Hamiltonian for the dynamical system (2.1}.

Equation (2.2), together with the initial condition
given by (2.3), is the starting point for a projec-
tion-operator formalism introduced into statistical
mechanics by Zwanzig. ' There is als'o a com-
pletely equivalent perturbation-expansion technique
for solving (2.1) which is applicable for quite gen-
eral polynomial functions E(u, t). In practical cal-

- culations the quantities of interest are the correla-
tion functions and spectral densities obtained from
a perturbation analysis of (2.1). Since these quan-
tities are identical to those obtained from a com-
parable perturbation analysis of (2.2), we shall,
for convenience, restrict our discussion to (2.2}.

Given a Hilbert space $C we decompose the Liou-
ville Eq. (2.2) by defining projection operators P
and J-P with P acting on PX such that Pp =—po and
I-P acting on the orthogonal subspace (I-P)K
such that (I —P)p—=p, . We further stipulate that
for an arbitrary phase function A,

PL,PA =0, PI ~A =PL(I P)A-,

I,PA = (I P}—LPA . (2.7)

In deriving Eqs. (2.V), we have utilized the fact
that P is idempotent, P'=P. It is thus clear that
L, is diagonal in the sub&pace PK, i.e., that L,
and P commute, and that L, connects P$C with
(I-P)X.

The equations of evolution for p, and p, as ob-
tained from (2.2) are

~P0 =PLpo+ PLp~, (2.8a)

' =(I P)Lp-o+(I-P)Lp, . (2.8b)

BP0 = PLpo+ dr PL exp[a(I —P)L]
0

x(I-P)I po(t- r)dr. (2.10)

Equation (2.10) is the projection-operator equation
of evolution for the systematic or averaged part
of the phase-space distribution function. It sim-
plifies, using relations (2.5) and (2.V) to

Lop, + d7PL, exp 7 I-P L I-P
0

xL,p, (t —&) dr. (2.11)

Writing the exponential in the form

exp[7(I —P)L,]exp[r(I- P)L, ]
= exp(rL, )(I- P) exp [r(I P)L,,]-
= exp(rL, ) exp[7'(I —P)L,](I-P), (2.12)

we obtain from (2.11)

BP0' =Lop. + dr PI, exp(rL, ) exp[r(I —P)L, ]

If for simplicity we assume I, to be time inde-
pendent, (2.8b) integrates directly to

t
p, (t) = dr exp[r(I- P)L](I—P)Lp (t —r) dw; (2.9)

0

subject to the initial condition (I-P)p(0) = 0, i.e.,
the system is initially in PK. For a time-depen-
dent L,(t), such as in the interaction representa-
tion, the exponential in (2.9) is replaced by an
infinite series df time-ordered products of the
perturbation operator. Inserting (2.9) into (2.8a)
yields the integro-differential equation

PLPA =PL0A =L0PA . (2.5)

Equation (2.5) requires that the Liouville operator' & (I—P)Lipo(t —7') dr . (2.13)
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III. PERTURBATION THEORY

The projection-operator formalism in the pre-
ceding section is based on a representation in
which the Liouville operator L, is diagonal, i.e.,
P and L, commute. In this section we consider
the perturbation sojution of

—=(L,+L,)pep (3.1)

directly. The operator L, is chosen to be the de-
teriainistic or unperturbed patt of L, and L, the
perturbation, Or equivalently, the stochastic in-
teraction.

Ih terms of Laplac'e transforins (indicated by a
cat et over a function) the solution to (3.1) is given
by'

Po=(1 —GoM) GoPo(0)=(Go ™)Po(0)

where G, is the free-particle propagator

Go= (s —Lo) ',
and the operator M is found to have the series
representation

M= PL G I-PL "P.
1

(3.2)

(3.3)

(3.4)

The perturbation operator M can be related to
the projection operator in Sec. H by taking the
Laplace transform of (2.11) to obtain

Po = [s —Lo —PLUG(I —P)L|] ipo(0),

with perturbed Green's function G given by

G = [s —Lo —(I —P)L,] ' = Go+ Go(I —P)L, G .

(3.5)

(3.6)

Coinparing (3.2) and (3.3) with (3.5) we obtain

M =PLUG(I P)Li, —

so that in configuration space,

(3.7)

Bt
' = L,p~+ M(7')p~(t —r) d7'. (3.8)

The projection operator kernel is therefore iden-
tical to the pertUrbation operator, as it should be
since both are exact wheh all orders in the per-
turbation serjes are kept. The method which gives
the more rapidly convergent approximate descrip-
tion has been the subject of much debate.

Tlie formal structure of M as given by (3.4) is
more informative than (3.'I). The operator begins
and ends w'ith a P, but contains only I—P in the
intermediate-state factors. This implies that only
the initial and firial perturbations connect to the
phase space PX with all intermediate state excita-
tions being in tlie (I- P)X space. In diagrammatic
language the operator $1 lias the form of a "linked-
cluster expansion", i.e., all diagrams are com-

&&(I-P)L,PP, (t,) dt, , (3.10)

an equation which has appeared in the stochastic
theories of fluids and plasmas as the Boltzmann
and I.andau equations. ' It has also been referred
to as the method offirst-order smoothing' since
it is the linear counterpart of the Krylov-Bogoliu-
bov method of averaging for nonlinear differential
equations. ' Thus, one can expect that when this
approximation is generalized to nonlinear sys-
tems it should yield results identical to those ob-
tained by the method of statistical linearization. '"

In the next section, (3.10) will be shown to yield
the same results as the first Kraichnan-Wyld ap-
proximation of Morton and Corrsin and is there-
fore one example of a consolidated equation. The
nomenclature "consolidated equation" refers to
a specific partial summation and r'eexpression of
the equation of evolution in terms of renormalized
quantities. Other consolidated equation approxi-
mations can be obtained by introducing a consoli-
dation operator Q. We add and subtract Q from
the Liouville operator Lo+ L, to obtain

——(I-P) (L + Q)p+ (I —P)(L —Q)p . (3.11)

If we assume that P and Q commute, " then by Lap-
lace transforming (3.11) we obtain

p, =G.(I-P)(L, Q)(p. 7,)- (3.12)

pletely linked or connected and are irreducible. &

A similar equivalence in the interaction represen-
tatiori between a total time-ordered cumulant ex-
pansion and the projection-operator technique was
noted by Yoon, Deutsch, and Freed in the context
of spin-relaxation theory. ' The inclusion of the
dperator I -P is just the concept of "connected
cumulants. "

If we identify the propagator in (3.5) with a
Green's function 9, then using (3.7) we can write

9=(s —Lo-M) = Go+ GQMB. (3.9)

Physically, M can be identified with the mass op-
erator occuring in Dyson's equation for the re-
normalized propagator 9 in quantum field theory. "'
The all-orders perturbation solution for the stoch-
astic field therefore has an equivalence to quantum
field theory and the attendent formal apparatus. 4

An important approximation to the equation of
evolution (3.8) can be found by truncating M (r) at
the first term [M(r) =M, (r)], i.e., neglecting the
interaction term in the exponential in (2.13). The
resulting equation is

t

0 0
' =L,p,(t)+PL, exp[L, (t —t,)]
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with the renormalized propagator

G =1/(s-L. -Q). (3.13)

Physically, speaking, since the Liouville operator
and Hamiltonian a,re related by (2.4), the associ-
ated effect of shifting by Q results in a modifica-
tion of the underlying system Hamiltonian. The
Hamiltonian, is a sum of a free-particle part (H, )
and interactive part (H,), which generate the cor-
responding I.iouville operators via (2.4). Tbe
consolidation operator Q corresponds to adding
an average potential V to H0 and subtracting the
same potential fr'om H, such that

H = H0+H~

= H'+ H',

with
I

H'=H + P; H'=H —V.

(3.14a)

(3.14b)

(3.15)

Prior to the effective transformation in (3.14b) the
initial phase space in (3.14a) is defined such that
H, is diagonal and the projection operator P com-
mutes with 1.0. Upon transformation to the re-
normalized system (3.14b) the initial phase space
is now defined such that H.,' is diagonal and the
projection operator Po commutes with La+ Q.

The equation of motion for the diagonal part of
the ensemble-distribution function in the subspace
Po76 is given by

poo ——Gopoo(0)+ Gomopoo, (3.16)

where the series representation of the renormal-
ized mass operator is

o = o(Lx -@)Z [Go(I Po)(4 Q)]"P-o, (3-.17)
0

and Go is defined by (3.13). Note that we have as-
sumed in (3.16) that p, o(t= 0) = 0 rather than p, (t
=0) =0 as used earlier. Since this. initial condition
is arbitrary we can choose, with the same degree
of confidence, the initial state to be diagonal in
either PK or P+X

When Q is zero the mass operator (3.17) re-
duces to (3.4) since lim@, Po =P. If, on the other
hand, Q is selected to cancel certain prescribed
diagrams from the Q =0 perturbation series, then
consolidated equations other than first-order
smoothing can be derived. The classes of dia-
grams associated with Q are based on physical
arguments closely tied to the system of interest.
For example, in the theory of nuclear matter, or
hard-sphere scattering in kinetic theory, the in-
teraction potential can become singular. Brueck-
ner'2 showed that by summing all two-particle in-
teractions which appear as "ladder" diagrams,
the matrix elements of the resulting "effective

interaction" (H, —V) are finite. Bloch, " in a com-
prehensive review of the diagrammatic approach
to quantum statistical mechanics, showed how one
does a similar renormalization of the hard-core
potential in kinetic theory.

Note that the approximation leading to (3.10) in
the renormalized representation yields

,", =(L.+ Q)p.&

+PAL, exp[(L, + Q)(t —t,)]

x (I —Po)LiPop o(t —t, ) dt, , (3.18)

W. THE BUFFING OSCILLATOR

In practical situations, especially for nonlinear
systems, one is almost always limited to calcula-
tions of the stationary autocorrelation function
R„„(t)and its Fourier transform S,„(~), the spec-
tral-density function. In such cases the consider-
ations of the preceding sections seem somewhat
esoteric and;the connection with applications ob-
scure. To remedy this situation we recall the an-
alysis of the Duffing oscillator as a prototype of a
single-degree-of-freedom nonlinear system and
investigate how to apply the preceding analysis.

The correlation and spectral-density functions
for the Duffing oscillator were calculated using a
diagrammatic method by Morton and Corrsin. a
projection-operator technique by Bixon and Zwan-
zig, and a more straightforward algebraic tech-
nique by Budgor. , Morton and Corrsin, and Budgor
computed these quantities in the same. manner,
whereas Bixon and Zwanzig defined the autocor-
relation function as

o,',„(v) fx(v)e 'x(o)v„(o) v)xdv, = (4 1)

where x(t) is the displacement of the oscillator

which although of the same form as (3.10) has a
much different interpretation. The distribution
function p0~ has. correlations at time I;= 0 corres-
ponding to the difference in P~ and P. These cor-
relations are not present in p0 and by construction
result from the change in the definition of the "un-
perturbed" state of the system. %hen the method
of statistical linearization is applied to (3.18) these
correlations manifest themselves as an alteration
in the mean-squared response of the "unperturbed"
system.

In Sec. Dt we illustrate the above statements
about renormalization using the specific example
of a Duffing oscillator for our nonlinear system.
Extensions of these ideas to general nonlinear
systems are made in See, V.
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at time t, and L is the Fokker-Planck diffusion
operator for the nonlinear system. Equation (4,.1)
was evaluated numerically after expanding R„„(t)
in terms of its moments,

(t) Q R„t (4.2)
2

Truncating (4.2) at m = 2. yields [apart from a
scaling factor of 2 which results from the differ-
ence in definition of R„„(t)]expressions identical
to the first Kraichnan-Wyld approximation of Mor-
ton and Corrsin or, equivalently, the statistical-
linearization result of Budgor. A detailed discus-
sion of the consequences of this equality is made
elsewhere.

We shall not go into the details of the Morton
and Corrsin diagrammatic representation of the
perturbation analysis for the Duffing oscillator
here. It is worth pointing out a few of the salient
features of their analysis, however, which may
have application to other nonlinear systems. We
recall their notation: an interaction at a vertex
is represented by a point, a free propagator by a
straight line, a renormalized propagator by a
rectangle, a renormalized interaction at a vertex
by a circle with a point in the center, the unper-
turbed spectral density by a wavy line, and finally,
the renormalized spectral density by a wavy rec-
tangle.

Dyson's equation (3.9) for the renormalized
Green's function has the following terms for the
mass operator M@' .

Mg=3 +18 (4.3)

in the perturbation analysis of the Duffing oscil-
lator. There is a term-by-term correspondence
between Mo in (4.3) a.nd the effective frequency
0' [= (2n o'„) '] discussed by Bixon and Zwanzig. The
effective frequency is defined in terms of a trun-
cated memory kernel, and from (3.7) and (3.8)
we see that (4.3) is just the diagrammatic form of
the memory kernel. The spectral density as de-
fined by Bixon and Zwanzig is expressed in terms

Ps

of M as

S.„( ) = - ',;, , (4.4)
(1+M o —aF)'+ o.'uP

When M ~ = 0, this is the spectral density of a lin-
ear oscillator with internal fr-equency set equal
to unity. Mz truncated at the first term in M, i.e.,
when Mo=1& =M, [see Eq. (3.10)], becomes statis-
tical linearization; at its second term, the Bixon-
Zwanzig result for S„„.(&o) up to coefficient R„etc.

The truncation of 1&+ at its first term, Mo —Mo„

becomes statistical linearization with the correla-
tions induced by the nonlinearities included in the
mean-squared response of the oscillator. That
this gives a marked improvement in the calulated
spectral density was observed by Budgor et al.'
This approximation, referred to as the modified
statistical linearization approximation, corres-
ponds to using the steady-state solution of the non-
linear Fokker-Planck equation for the Duffing os-
cillator in the calculation of the mean-squared
response of the oscillator.

V. COMPLETELY RENORMALIZED THEORY

Wyld's analysis" of the quadratic nonlinearities
in turbulence and Morton and Corrsin's analysis
of the cubic nonlinearity in the Duffing oscillator
suggest some general features of perturbation ex-
pansions which may be used to calculate correla-
tion functions in nonlinear systems. From these
analyses one might expect that for a scalar-dy-
namic equation with polynomial nonlinearity (x";
n=2, 3, . . .) the complete characterization of the
spectral density will involve three coupled non-
linear integral equations. These equations relate
the renormalized (or consolidated) spectral den-
sity S„„(&u) to the renormalized propagator G @and
renormalized vertex operator f'Q((dy (d J).
The vertex operator f'@ is related to the renormal-
ized mass operator M~ by means of the Ward iden-
tities. 4'"

Martin et al. (MSR) point out that the renormal-
ization technique of Wyld does not work to order
higher than four and also that the renormalized
expansion used by Morton and Corrsin is not sys-
tematic since the series are not expressible as
coupled equations in terms of renormalized quan-
tities orally, i.e., their series is an expansion in
terms of both the bare and renormalized vertex
operators and not in the renormalized operators
alone. MSR remedy this defi.'ciency by introducing
a variable conjugate to that in the original non-
linear equation of motion with a corresponding
dynamic equation for the conjugate variable. "
Using MSR's notation, the variables 4 and 4
define a two component matrix 4, which at position
x and time f, obeys Hamilton's equation

C(l) = [C (1),e], (5.1)

with the "non-Hermitian" Hamiltonian

H= y, 14 1 d1+
r j21 2C 1C'2 dld2

1
+— y, (1, 2, 3) && O(1)C (2)4(3)dl d2d3. (5 2)

al

The notation condenses all the variables for a
given particle to the single numerical index in
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(5.l) and (5.2); y~, y2, and y3 are vertex matrices
and repeated indices~ are summed over.

The field operator 4 satisfies the Poisson brack-
et relations

[e(n, f, r, f), c (~', f', ~', I)]

=io, (n, a')6„,6(x &—'),
where o, is the Pauli matrix

(5 3)

1 0
o

(0 —1

and n is either +1 or -l. Using Hamiltonian (5.2)
and the commutator (5.3), the equation of motion
for 4 1s

(5.4)

—zo @(1)=y (1)+y (1,2)C'(2)

~ —,'y, (1, 2, 3)C(2)'C (3), (5.5)

which is precisely the form obtained in quantum
field theory with y, the bare-particle mass and y3
the bare-particle charge.

The equations of motion for the average value
of C and the two-point correlation function are ob-
tained by MSR using the generating functional

S= exp C 3q3
&z +

(5.6)

where the brackets indicate a time ordering be-
tween t,- and t&. The correlation functions. are ob-
tained by taking functional derivatives of (5.6)
with respect to q, averaging, and then taking the
limit as g goes to zero. The first- and second-
moment functions are defined schematically as

M,"=-(6/6q) ln(S) = (SC»„/(S&,

M." -=(6'/6n')»&s& = &s@'&./&s& —&s@&!/&s&', (5 7)

so that

(4 &
= limM,", variance 4 = limM", . (5.8)

q~P g~ p

The renormalization of the vertex functions y, and

y~ correspond to the "mass" and "charge" renormal-
ization of quantum electrodynamics. This procedure
yields two renormalized propagators and three
renormalized vertex operators which appear as
the nonvanishing parts of a matrix propagator and
matrix vertex operator. MSB obtain a cEos ed set of
nonlinear integra1 equations for the average function
M", and its two-point correlation function M," en-
tirely in terms of these renormalized quantities.

The closed set of equations in the MSR formal-
ism may be expressed in terms of projection op-
erators by identifying the generating functional S
with the projection of the matrix 4 onto the dynam-
ic subspace P„&. The projection operator P„can
be used to rewrite (5.7) as

M"=P O' M"=P 4' (& C)'. (5 9)

VI. CONCLUSIONS

We see from the equivalence of the memory
kernel and mass operator'(3. 7) that, in principle,
there is no difference between the projection op-
erator and perturbation techniques. Just as pro-
jection operators restrict the dynamical problem
to a subspace of the Hilbert space of probability
densities, the consolidated equations reflect this
same restriction in the dynamical state space.
Variational calculations determine the Hilbert
space P~X that is stationary with respect to vari-
ations in the mass operator M@. The generating-
functional technique used in Sec. V is a procedure
for making systematic the consolidations of such
perturbation series. The key to using the MSH
formalism is identifying the conjugate variable.
MSR point out that in the case of the Duffirig os-
cillator, the conjugate variable is the square of
the oscillator displacement. In terms of this vari-
able the coupling in the dynamic equation is cubic.

A great deal more effort is required to deter-
mine which of the above representations of the
nonlinear problem will yield the more rapidly
convergent solutions. It is also probably the case
that the physical problem itself will dictate the
method of approximation. For example, from the
first-order smoothing approximation (M@ =M =M,)
one can infer that the average of Dyson's equation,

(8& = Go+ (GPIQ&, (6.1)

is equivalent to

( 6.2)

This implies statistical independence of the per-
turbation field and the response function whenever
these occur under a configuration space or time
integral. All the diagrams related to (6.2) are
therefore of the same type and unconnected. The
physical systems for which this should in fact be
a good approximate solution is not at all clear,
although in fluid mechanics it is apparently suc-
cessful for Reynolds numbers B«1.7

On the other hand, by reinterpreting first-order

Lax" has discussed the linked moments of a stoch-
astic variable in a nonlinear system using the gen-
erating function for the normalized probability-
density function. The generating function in that
kinematic case is just the characteristic function.
The MSR formalism is a generalization of that
concept to dynamic nonlinear systems and the
generating function is replaced by a generating
functional.
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smoothing as statistical linearization, ' we can
immediately determine the criteria which insure
the success of this approximation. Similar argu-
ments may be profferred for other consolidated
equations.
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