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One-exponent scaling for very high-Reynolds-number turbulence
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We show that two strong but physically plausible assumptions allow all the measurable scaling exponents

for very high-Reynolds-. number incompressible turbulence to be expressed simply in terms of the exponent p,

characterizing the dissipation fluctuations. The first assumption, introduced by Obukhov in 1962, relates the

locally fluctuating dissipation to the locally fluctuating nonlinear energy transfer. The second assumption is

that the same dissipation-length scale q defines the crossover from the dissipation range to the inertial range

for all of the velocity structure functions. The resulting exponent relations are the same as recently obtained

from a simple geometrical model by Frisch, Sulem, and Nelkin, but the results appear less model dependent

in the present context. In addition we introduce a locally defined energy transfer variable T(x) = q'Q'(x),
where Q(x) is any component of the velocity derivative tensor. We suggest that T(x) has the same statistical

properties as the locally defined viscous dissipation e(x) = vQ'(x), where v is the kinematic viscosity. This

suggestion is compatible with our other results, and is capable of experimental test.

I. INTRODUCTION

There is a great deal of experimental evidence
supporting the idea of a universal small-scale
regime in very high-Reynolds-number turbul-
ence. ' This regime is governed by an energy
cascade, and is characterized by scale-similar
behavior of correlation fug. ctions. In its simplest
form this scaling was already give@ by Kolmogo-
rov in 1941, and leads to the famous k ' -' behav-
ior of the energy spectrum in the limit of zero
viscosity. We now know that there are important
dynamical fluctuations in the cascade process,
and that these can lead to scaling exponents which
are not calculable by simple dimensional analysis.
In particular the k ' ' law is probably not exact.
An important theoretical objective is the calcula-
tion of these modified exponents from the under-
lying Navier-Stokes equations, but this is a form-
idable task. A more mo'dest goal is to develop a
phenomenological scaling theory which relates
measurable scaling exponents to each other.

There is a considerable history of such scaling.
theories. Following the 1962 suggestions of Obuk-
hov2 and Kolmogorov' attention has largely focused
on how fluctuations in the cascade process are
manifested in the statistical properties of the local
viscous dissipation. Several authors have corn-
mented' ' that this attention may be misplaced
since it is the nonlinear energy transfer and not
the linear viscous dissipation which is the dy-
namically relevant quantity. This criticism is
well founded, but essentially negative. In par-
ticular it does not suggest alternative experimen-
tally measurable variables whose fluctuations
would be of greater intrinsic theoretical interest.

In this paper we attempt to remedy this situa-
tion in a theoretically plausible and experimental-

ly testable way. We begin in Sec. II with a rein-
terpretation of the 1962 Obukhov assumption re-
lating velocity structure functions to averages of
the local viscous dissipation over a finite region.
In Sec. III we make the strong but plausible scaling
assumptions that power laws occur wherever pos-
sible, and that a single length scale defines the
viscous cutoff of all relevant correlation functions.
This allows all of the scaling exponents to be ex-
pressed in terms of a single exponent p. which de-
scribes the dissipation fluctuations. The results
agree with those of a simple geometrical model,
presented recently by Frisch, Sulem, and Nelkin, "
but in the present context they appear less model
dependent.

In Sec. IV we introduce a local dynamical vari-
able, related to nonlinear energy transfer, which
we suggest has the same statistical properties as
the local viscous dissipation. This is a spatially
local generalization of the 1962 Obukhov assump-
tion. We show that this suggestion is consistent
with our other results, and discuss the experi-
ments which would test it. In Sec. V we discuss
our results, pointing out that they are suggestive
of an assumed operator algebra for very high-
Reynolds-number turbulence.

An earlier paper by-one of us, ' based on formal
analogy to scaling in equilibrium critical pheno-
mena, is in the same general spirit as the present
work. In that paper, however, we did not make
the 1962 Obukhov assumption, and could draw less
conclusions about the relations among exponents.
There is also a subtle logical error in the scaling
arguments in Ref. 8. This is discussed further
in Appendix A.

The 1962 suggestion of Kolmogorov' has led to
considerable interest in the statistical properties
of certain ratio variables defined in terms of the
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viscous dissipation averaged over an interval. In
Appendix B we discuss theory and experiment
relating to the properties of these variables. We
suggest that recent results in this area, although
internally consistent, have little relation to the
seal'ing exponents of greatest dynamical interest.

e,(r) =& v'( r)/r, (5)

where

viscosity is unimportant for intervals larger than
some dissipation length scale q. For x» q a nat-
ural measure of the fluctuating energy transfer is

II. THE 1962 OBUKHOV ASSUMPTION av(r) =v, (x+ r) —v, (x) (6)

Throughout this paper we will work with aver-
ages over a linear interval of length x, and with
appropriate one-dimensional surrogates for the
three-dimensional dynamical variables. This has
the advantage of simplicity, and of being closer to
what is actually measured. It has the disadvantage
of not dealing with any of the interesting geomet-
rical problems of turbulent flows. We expect,
however, for the scaling exponents which are of
primary interest here, that the results will not
be affected.

As a one-dimensional surrogate for the local
viscous dissipation, we introduce the va, riable

i(x) = vP(x),

is a typical velocity difference across the inter-
val. The average value of the nth power of e,(r)
is just

(~"(r))=r "([&v(r)]'")=r "D (r).

The quantity

is called the nth-order longitudinal structure '

function, ' and is a natural object for study in
statistical theories of turbulence.

The assumption that the statistical properties
of e,(r) and of e*(r) should be the same is just
the 1962 Qbukhov assumption, which is usually
written in the form

where D„(r) = C„r" '( [e+( r)]" '). (8)

(2)

could just as well have been any other component
of the velocity derivative tensor. Assuming that
the energy dissipation per unit mass & is finite in
the limit of zero viscosity, and that the small
scales are locally isotropic, we have

lim (i(x)) =c/15 = const.

A dynamical variable whose average is constant
in the limit of zero viscosity we call "regularized. "
This is an important property that we will seek to
generalize to other variables. We make the usual
assumption that the turbulence is in a statistically
steady state.

Now consider the average of i over a linear in-
terval of length x,

(4)

For homogeneous turbulence e* will have the same
average value as e. In 1962, Kolmogorov sug-
gested that e*(r) should be a log-normal random
variable. This is, at best, approximately true.
In any case the viscous dissipation does not de-
termine the essential dynamical behavior, and
it is not the place where we should look first for
theoretical insight.

A natural physical idea is that the fluctuations
in viscous dissipation over an interval of size r
should be determined by the fluctuations in energy
cascade rate over the same interval. Suppose that

As has been emphasized by Kraichnan, 4 there is
no need for Eq. (8) to be true, but it seems to us
to express a physically plausible idea: the vis-
cosity dissipates the energy where the energy cas-
cade deposits it. Note, however, that the physics
in Eq. (8) requires reading it from right to left
There is no reason for the dissipation statistics
Per se to be simple, but they should reflect the
statistics of the velocity structure functions.
These latter quantities, though also not simple,
are of greater theoretical interest.

We begin by looking more closely at Eq. (8) for
n=3 and for n=6. For n=3 we have

(9)D, (r) =C,er,

which is known to follow from the Navier-Stokes
equations. " For n =6 the natural assumption in
light of the scale similarity of the problem is

( [e*(r)]')= const x e'(L/r)",

D, (r) = const x &'r'(L/r)',

where p, is a universal scaling exponent, and I. is
an external length scale of the turbulence. Equa-
tion (10) was already proposed in 1962 by Kolmo-
gorov. ' For homogeneous turbulence Eq. (10) is
equivalent to

(i(x)i(x+ r)) = const x e'(L/r)" .
Equation (12) is the usual experimental defini-

tion of the exponent p, . It has been measured by
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III. SCALING RELATIONS

What are the scaling exponents defined by the
structure functions D„(r), and what are the rela-
tions among them'P In the inertial range x» g it is
reasonable to assume

D„(r)= Qp" 'r" '(r/L)~~, (13)

where the exponents f„are, in general, unknown.
From our previous discussion we have &3=0, and
the Qbukhov assumption that f, =-p, , where p, is
the exponent determined by Eq. (12). The exponent

g, is of special interest since it determines the
correction to the 5/3 law for the energy spectrum.

In the dissipation range x«g, we expect the
structure functions to be analytic in r, and to be
given by

several workers"" and has a valu'e of about 0.5.
Equation (11) suggests that the sixth-order struc-
ture function should be determined by this same
exponent independent of any models for the sta-
tistics of the local dissipation field. This is con-
sistent with the one existing experiment, "but is
not very accurately tested.

Equations (8)-(12) apply only for r much larger
than the dissipation length scale g. In this inertial
range of distances, there is no natural length scale,
and observable correlation functions do not depend
on the value of the viscosity. It is conceptually
important to recognize that they also do not depend
on the detailed mechanism of viscous dissipation.
A small modification of the functional form of the
viscous dissipation term in the Navier-Stokes equa-
tions would affect the definition of the local dissipa-
tion in Eq. (1), but Eqs. (8)-(12) would be unchanged.
In particular the exponent //, defined by Eq. (11)
would be the same. The quantity to be measured
in Eq. (12) would be changed, but with this change,
the dissipation correlation should still be given by
Eq. (12) with the same exponent l/, . Such a change
in the dissipation mechanism is hypothetical for the
strongly turbulent fluid flows available in the lab-
oratory, but it is useful to think about. The idea
of a modified dissipation mechanism is discussed
in more quantitative terms in Hef. 6.

ility distribution of ((x). These are given by

So = -9'&/4'&' ' - v '
and

&.= &|I/'&/&0'&' - ~

where
3O-y, ——,

(16)

(18)

Q =$4 —2. (19)

2&ngz —&n-I+&I (21)

The exponents y„are a concave function of n. The
special case n =6, k =2 gives the familiar inequal-
ity

8 .~n, (22)

which states that the skewness can increase no
more rapidly than the square root of the flatness.

The structure functions D„(r) are also moments
of a probability distribution, and satisfy the in-
equalities

[D„,.( )1'=D„,( )D,( ). (23)
I

When combined with Eq. (13), which is assumed
valid for any sufficiently small value of r/L, this
gives the exponent inequalities

2&.g.—&.-~+ &n. (24)

The exponents f„are a convex function of n. The
special cases n=6, k=2, and n=8, k=2 will be im-
portant in what follows. When combined with the
result that g, = 0, and the Obukhov assumption
that (,=-p, , these become

&2+ &4- 0 (25)

Since the Qf'& are moments of a probability
distribution they satisfy the Schwarz inequalities

Q n/2&2 ~ (yn-k&(qk& (20)

When combined with Eq. (15) which is assumed
valid for any sufficiently small values of v, this
gives the exponent inequalities

D.(r) = 8"(x)&r". (14)

The quantities (g"(x)& will diverge as the viscosity
goes to zero, and it is reasonable to assume that
these divergences are also described by power
laws,

($"(x)&- v '~. (15)

The exponents y„are also unknown except for
y, =1 which is fixed by Eqs. (1) and (3). The ex-
ponents y, and y4 are perhaps more familiar in
terms of the skewness and flatness of the probab-

f2 —2)4& p. . (26)

These can be combined to give the familiar Man-
delbrot inequality""

To go further we must determine the dissipation
length scale q. This is most naturally done in
terms of the crossover of the structure functions
D„(r) from the small-r behavior of Eq. (14) to the
large-r behavior of Eq. (13). In the absence of
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dissipation fluctuations the 1941 Kolmogorov theo-
ry applies with &„=0 and y„=~2. The crossover
distance determined from any of the D„(r) is the
same within a constant factor, and is given by the
well-known expression

1j4 3/4 (28)

q-v', z=(—', —g, ) '. (29)

Thus q depends on the unknown exponent (,. From
the crossover for n=3 we obtain

Q'(x))-n ', (30)

a result to which we will return. Equation (30)
allows the unknown exponent y, to be expressed
in terms of the unknown exponent g,. In particul-
ar, it gives the divergence of the skewness in the
limit of zero viscosity in the form

&=-:&,(-:-&,) '.

Equation (31) has been given elsewhere. "
The crossover for arbitrary n, under the as-

sumption of a single dissipation length q, gives
the exponent relation

~„=(~ —&„)(~—&.)-'.

(31)

(32)

Thus the exponents y„and g„are not independent
of each other, but we still have no relation among
the g„ for different values of n. We can get such
a relation by making one further scaling assump-
tion which is very much in the spirit of what we
have already assumed. As an alternative calcula-
tion of the exponent y4 consider

In the presence of dissipation fluctuations we make
the strong assumption that the crossover deter-
mined from any of the D„(r) has the same depen-
dence on viscosity. From the crossover for n= 2

we obtain

IV. DYNAMICALLY RELEVANT LOCAL DISSIPATION
VARIABLE

Equation (8) applies to dynamical variables de-
fined for a finite interval large compared to a dis-
sipation length scale. We would like an extension
to local dynamical variables defined at every spat-
ial point. We want an energy transfer variable
which refers only to the small scales of motion,
and does not explicitly depend on viscosity. The
former condition requires that we use only vel-
ocity derivatives and not velocity directly. The
latter condition is more subtle. The only length
at our disposal is the dissipation length scale q.
This certainly depends on viscosity, but the de-
pendence is implicit in the sense that such a length
scale would still exist if the mechanism of viscous
dissipation were slightly different. Using only q
and'velocity derivatives, we can define a local en-
ergy transfer variable by

T(x) = q'q'(x). (38)

Using Eq. (30) we see that T(x) is "regularized"
in the sense that

lim q'(g'(x)) = const && c.
P~Q

(39)
I

The variable T(x) is dimensionally appropriate
as a dissipation rate. We now make the assump-
tion that T(x) and the local dissipation e(x) have
identical statistical properties. There is an im-
mediate experimental consequence of this assump-
tion. In the inertial range, r»q, we predict

(37)

is not consistent with the assumption of a single
dissipation length scale. This assumption leads
to a very strong constraint on the relation among
scaling exponents.

(33)v'(g'(x)) = lim (e(x)e(x+ r)),
and a,ssume that this limit can be calculated by
extrapolating the inertial range form of Eq. (12)
back to r =q. This gives us

v'(P(x) lP (x+ r)) -q'(iP(x) tP(x+ r))

q'v(y'(x) q'(x+ r))
-e'(L/r)". (40)

y4= 2+pz,

a plausible result which we have used before. ' If
we combine Eq. (32) for n =4-with Eq. (34), we ob-
tain

(35)

The only solution consists with Eq. (35) and the
exponent inequalities of Eq. (25) and (26) is

(38)

This is the result obtained from a simple geo-
metrical model by Frisch et al. ' Note that the
1962 Kolmogorov result

(41)

(42)(q'(x))- v 'q ' ",

These three correlation functions should all be
governed by the same inertial range exponent p, .
There is no experimental information on this
question, but it should not be too difficult to ob-
tain. .

In addition we can calculate the values of these
correlation functions for zero separation by ex-
trapolating their inertial range form back to the
dissipation length scale q. Thus we expect

t

(q'(x))- v 'q ",



17 ONE-EXPONENT SCALING FOR VERY. . . 367

(q'(x))-q ' ". (43)

y, =-, +9p, /2(4 —p. )) g, = -s p. . (44)

All of our results to date can be combined in the
form

(45)

Equation (41) has already been used to get the
exponent relation of Eq, (34). Equation (43) is
equivalent to Eq. (32) for n = 6, and thus contains
no new information. It does, however, demon-
strate the internal consistency of the scaling ar-
guments of the preceding section with the dynamical
assumption made here. Equation (42) can be com-
bined with Eq. (32) for n = 5 to give us two equa-
tions in the two unknowns y, and g, . Their solu-
tion is

Those scaling relations given here which can be
compared with his description correspond to a
special case which he calls "fractally homogeneous
turbulence. " He also argues that this special
case is less pathological mathematically and more
plausible physically than one might expect on dy-
namical grounds. In a recent paper Frisch, Sul-
em, a,nd Nelkin' have expressed the "fractally ho-
mogeneous" case of Mandelbrot in terms of a- sim-
ple dynamical model, and have explicitly derived
Eqs. (45) and (46).

In Sec. IV we proposed that the locally defined
variable T(x) =q'g'(x) should have the same statis-
tical behavior as the local dissipation e(x). This
was shown to be internally consistent with our
scaling assumptions, and is more easily testable
experimentally than any of our other results. It
may also be a useful guide to the structure of a
future dynamical theory. Consider the dynamical
v aria, ble

(„=-,'(3 -n) p.. (46) A„(x) = v'~ g"(x), n o- 2, (47)

Equations (45) and (46) apply for 2 ~ n & 6, but it
would be straightforward to extend to larger
values of n if we choose to make the scaling as-
sumption on D„(r) for larger n.

This variable is regularized in the sense that

lim (A„(x)) = const.
v~0

(48)

V. DISCUSSION

We have derived one exponent. scaling from two
assumptions: the Obukhov assumption of Eq. (11)
relating the sixth-order structure function to the
dissipation fluctuations, and the assumption that
there is a single dissipation length scale descr'ib-
ing the crossover of the structure functions from
their small-r behavior to their inertial range be-
havior. This is sufficient to determine all of the
exponents in terms of the exponent p, defined by
the dissipation correlation function. In particular
it is sufficient to logically exclude the 1962 Kol-
~ogorov results.

The assumptions we have made are simple and
plausible, but they give much stronger results than
one would have expected. Just because these re-
sults are so strong, the underlying assumptions
deserve critical analysis. There is certainly no
a priori dynamical reason why the relations among
scaling exponents should be as simple as derived
here.

Although the derivation of one exponent scaling
given here is new, many of the results are not.
They have been obtained earlier iri a variety of
ways, most of which seem much more model de-
pendent than what we have presented. Similar
results were first obtained by Novikov and Stewart
in 1964 (see Chap. 25 of Ref. 1 for a discussion).
A description of intermittency in terms of statis-
tical geometry has been given by Mandelbrot. "

A natural generalization of our scaling results in
that

(49)

In other words, all of the A„(x) for u ~ 2 are regul-
arized scaling operators with scaling dimension

p P. o

Having given a physically plausible structure
for a simple scaling theory of very high-Reynolds-
number turbulence, we conclude by analyzing what
went wrong in two earlier attempts. In Appendix
A we discuss the errors in earlier work by one of
us' based on analogy to critical phenomena. . In

Appendix B we discuss how recent experiments
throw doubt on the relevance of the 1962 Kolmo-
gorov idea and its subsequent development.
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APPENDIX A: SOME ERRORS IN REFERENCE 8

In an earlier paper by one of us, some of the
same relations among exponents given here were
obtained by apparently quite similar reasoning.
For example, Eq. (37) of Ref. 8 is the same as
Eq. (31) here, Eq. (17) of Ref. 8 is the same as
Eq. (34) here, and Eq. (25) of Ref. 8 is the same
as replacing the inequality of Eq. (22) here by an
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C(r) =(~(x)y(x+r)).
'

In the limit of small r we have

C(0) = v(g'(x)),

(A1)

(A2)

so that C(0) determines the skewness S,. We made
the natural assumption that C(r) had the inertial
range form

C(r) (I./r)-', q =-,'——,'(, +-.'. p, , (A3)

C(0) —(~/n)'. (A4)

We did not recognize, however, that since P(x) is
a velocity derivative, we must have

equality. In Ref. 8, however, we made no assump-
tion of the 1962 Qbukhov type relating local dis-
sipation to local energy transfer. In retrospect
it is clear that we obtained results which could not
be obtained without some physical assumption of
this type. The error in Ref. 8 lies in the argu-
ments leading to Eq. (25), particularly in Eq.
(20). It is worth analyzing this error in detail
since it points out some subtle features of the
scaling theory. We considered the correlation func-

tionn

defined for the problem is worth repeating. The
variable g(x) has scaling dimension —, in the Kol-
mogorov mean-field theory. If as in Ref. 8 or in

a similar discussion by deGennes, "fluctuations in
P' are considered to be dynamically important,
the natural critical dimension for the problem is
4(-', ) = —,'. In light of the criticism in Ref. 6, how-

ever, and the ideas presented here, it seems that
fluctuations in P' are the most natural dynamical
quantity. This leads to a natural choice of critical
dimension of 6(—',) =4. What, if anything, happens in
the neighborhood of either of these values for spat-
ial dimension is a completely open question. There
is no soundly based evidence that d =4 or d = —,

' are
special dimensions for turbulence.

APPENDIX B; STATISTICS OF RATIO VARIABLES

The idea underlying the original 1962 Kolmo-
gorov log-normality assumption was explained by
Paglom" in 1966. The averaged dissipation e~(r)
can be written as a product of identically distri-
buted random variables. If these variables are
approximately statistically independent, then the
logarithm of their sum will have an asymptotically
normal distribution. The variables which. enter
this product are the ratio variables

C(r) dr =(e(x)[v, (~) —v, (-~)])=0 (A6)
q(r, I) = e *(r)/e*(l)

for homogeneous turbulence, assuming that cor-
relation functions factor in the limit of infinite
separ ation.

Equations (A3) and (A5) are, however, not com-
patible since the numerical value of the exponent

q is less than 1. The most plausible resolution of
this apparent paradox is that Eq. (A3) be incorrect.
One would a priori expect the leading-order term
in an asymptotic expansion of C(r) to be propor-
tional to r ', but we have a kind of orthogonality
expressed by Eq. (A5) which suggests that the
amplitude of this leading-order term must vanish.
In Ref. 8 we suggested that Eq. (A3) be tested ex-
perimentally. We now believe that this test would
be negative. Either C(r) has no inertial range
power law, or its large-r behavior is of the form
r ~, with p& 1. We have no theoretical idea how to
calculate the exponent P if it exists. Since Eq.
(A3) is not valid, the scaling argument of Eq. (A4)
is equally suspect, and thus the conclusion in Ref.
8 that t9= —,'cv is not logically sound. This does not
of course mean that it is incorrect. We reach the
same conclusion here by a different route, but that
route involves an additional physical assumption.

We might also comment on the discussion in Ref.
8 on the role of variable spatial dimensionality.
The details of this discussion have no merit, but
the qualitative point that a natural dimension is

In a very interesting paper, Novikov" derived
some remarkable properties of these ratio vari-
ables. If the strong scale-similarity condition

([q(r, I))') =(I/r) "~ (B2,)

p2 =0,22~ p, 3 =0.61, p, ~
= 1.13.

This is approximately the quadratic dependence '

on p that would be obtained from a log-normal dis.-
tribution. This is not surprising since approxi-

holds for all integer values of P, then q(r, y) is
statistically independent of q(y, I) for r & y& I, and.

q(r, I) is asymptotically log-nortnai for I/r- ~.
The scaling exponents p.~ are not, however, given
by those for the asymptotic log-normal distribu-
tion,

V,*= le&p(P —1). (~3)
(

The ideas of Novikov have been tested experi-
mentally by Van Atta and Yeh, "and their data
agree well with scale similarity and its predicted
consequences. They do not, however, pay much
attention to the numerical values of their measured
exponents. We will look more closely at these
va, lues, and suggest that they indicate serious
problems about the dynamical relevance of the
ratio variables.

Van Atta and Yeh find
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mate log-normality should lead, to low-order mo-
ments which are consistent with the asymptotic
distribution. It is only for high-order moments
where the quadratic dependence is mathematically
inadmissible and physically unexpected, More im-
portant, however, is that the value of p, is much
smaller than the value of p. =0.5 measured from
the fluctuations in K(x). Thus taking the ratio in

Eq. (Bl) strongly reduces the fluctuations even
when /»r so that the denominator fluctuates much
less than the numerator. This is presumably due
to the long-range corrtelations between the random
variables in numerator and denominator in Eq.
(Bl).

In Novikov's paper the use of ratio variables
keeps the fluctuations bounded, and it is essential
to his proofs. Experiments show us that this

bounding of fluctuations is physically as mell as
mathematically imports, nt. The fact that p,, c p.

means that there is no simple relat:jog between the
statistics of the ratio variables and the statistics
of dissipation fluctuations. The Ekolmogorov-,

Yaglom-Novikov arguments seem internally con-
sistent with the observed fluctuations of ratio
variables, but they tell us very little about the
physically more important dissipation fluctuations,
Thus there is no imcompatibility between the ap-
proximately quadr@tie P dependency of the p.~ in

Eq, (B4) and the predicted linear dependence of the

f~ and y~ in Eqs. (48) and (49). It would be nice
to understand better the observed exponents in

Eq. (B4), but this seems peripheral to the under-
standing of the dynamically important scaling ex-
ponents.
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