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The energy levels of two simple examples of screened Coulomb potentials have been analyzed using
nonperturbative methods. The analysis indicates that the energy levels as a function of the perturbation
parameter A\ have a branch cut along the negative real axis; starting from the origin.- Furthermore, there are
singularities on the second sheet, along |[A|e* *™/2 for |\|—0. As a consequence of these singularities,
the energy levels have an asymptotic series in A, which means that one cannot use a power series in A to
describe the energy levels to an arbitrary accuracy. The approximate but nonperturbative expression for the
energy levels, which has been obtained by using dispersion relations, predicts energy levels which are in good
agreement with those obtained from variational calculations.

I. INTRODUCTION

Most of the one-particle potentials that are en-
countered in quantum-mechanical applications do
not allow closed exact solutions either for the en-
ergy eigenvalues or for the wave functions. In
these cases, one resorts to approximate methods
which may be suitable to the particular situation,
to obtain approximate solutions. Perhaps the most
useful solutions in this context are the perturba-
tive solutions. This is due to the observation that
in most of these problems, the Hamiltonian can be
written as a sum of a major term which allows ex-
act solutions and a “small” perturbing term. One
may then obtain solutions in the form of perturba-
tion series which agree with the exact solutions to
an accuracy of increasing powers of the perturba-
tion “parameters.”

An important question which needs to be answered
in determining the usefulness of a perturbation
solution is whether a perturbation solution is
meaningful in the situation: Specifically, does the-
perturbation séries converge for any value of the
perturbation parameter? If it does, what is the
domain of convergence for the series? It is a
very interesting situation that even though the
formal series may diverge, if the series is asymp-
totic it can be quite useful for practical calcula-
tions. This may very likely be the actual situation
for the perturbation expansions in quantum electro-
dynamics.! . ’

Many of the problems faced by the perturbation
approaches and their possible solutions are ad-
mirably illustrated by the anharmonic oscillator,
which is described in the one-dimensional case
by the Hamiltonian

H=(p2/2m)+35 kx®+2x*. 1)

This Hamiltonian is of interest not only as a cor-
rection to the simple harmonic socillator which is
a good approximation to many physical situations,
but also because it describes the one-dimensional
r¢* field theory without normal ordering. It was
shown by Bender and Wu? that the energy levels of
this Hamiltonian have a three-sheeted structure
with A =0 being the accumulation point of branch
points on the lower sheets. The techniques used by
Bender and Wu in proving this were approximate,
but their results have since then been obtained
from more rigorous analyses.>* The perturbation
series for the bound-state energy levels, in powers
of \ is asymptotic in this case® so that for a given
value of 1, there is an optimum number of terms in
the series which gives the best approximationtothe
actual energy levels. It has also been pointed out
that better approximations can be obtained by
using Borel summations® for the series and by
using Padé approximants.” Some of the other at-
tempts at evaluation of anharmonic corrections
have used Hill determinants® and nonpolynomial
interactions.® All in all, one observes an im-
pressive variety of techniques in the analysis of
the anharmonic oscillator.

The problem of screened Coulomb potential is
of great importance in all atomic phenomena in-
volving electronic transitions. It has been analyzed
numerically and analytically by several procedures
such as the WKBJ method,'® the quantum-defect
method,'! and different types of perturbation meth-
ods.'? Of these, the perturbation approach di-
rectly provides systematic solutions as a series in
powers of the perturbation parameter. Here, there
have been significant developments'? from the
practical point of view of obtaining energy levels
and wave functions within restricted regions in-
side the atoms. However there have not been cor-

34



17 NONPERTURBATIVE APPROACH TO SCREENED COULOMB... ' 35

responding attempts to determine the formal analy-
tic structure of the energy levels and the wave
functions as functions of the perturbation param-
eter, and hence the convergence properties of the
perturbation series.

In this paper, we analyze the analyticity pro-
perties of the energy levels of the screened Cou-
lomb potential for small values of the perturba-
tion parameter. Specifically, we will consider
two types of potentials. In the first part, we con-
sider

V@)==2z/r+1r. (2)

From the analogy with the anharmonic oscillator,
one might expect that in this case also A=0 is a
singular point and the perturbation series is asymp-
totic. We indeed find this to be the situation and
obtain an approximate but nonperturbative expres-
sion for the energy levels for small values of 2,
which illustrates these properties. The techniques
used in this analysis are essentially those used by
Bender and Wu’® in their analysis of the anharmonic
oscillator. In the second part we consider po-
tentials of the form

V(r)=- ;+ by z:’a,.(hr)" . (3)

This type of potential has been used by Pratt and
Tseng,'® the understanding being that the screening
effect is better represented by including more
terms in the expansion. To study the properties
of the resulting perturbation series in powers of
A, we analyze the energy levels for the representa-
tive potential '

z (z-1)

V(r)-—;+hm (4)
which describes screened Coulomb potential cor-
rectly for both A» <1 and A»>1. We obtain an ap-
proximate expression for the energy levels as a
dispersion integral. We deduce that A=0 is again
a branch-point singularity and very likely an ac-
cumulation point of singular points on the second
sheet. The series in powers of X is found to be
asymptotic, which means that the perturbation
series is not rigorously admissible. However,
for a given value of A, there is an optimum number
of terms which could give a good approximation to
the actual energy levels and which could be quite
useful for practical calculations. Many of the
results for this potential (4) are also valid for
other potentials.

We discuss in a separate section the practical
utility of the nonperturbative but approximate ex-
pression for the energy levels for the potential (4).
The agreement of the values of the energy levels

~ of the atoms predicted, with the experimentally

observed values and with those obtained from
variational calculations is very good, thus sug-
gesting the usefulness of a nonperturbative though
approximate approach to the problem of the
screened Coulomb potential.

II. ENERGY LEVELS FOR PERTURBATION A r
The total Hamiltonian for this interaction is

H=p*—z/r+\7, (5)

where the mass is expressed in units of 2m, m
being the mass of the particle. Since the perturba-
tion term A7 dominates the interaction for 7 - «,
we expect the analytic properties of the energy
levels to be similar to those of the anharmonic oscil-
lator.? For‘the same reason, it admitsananalysis
similar to the one used for the anaharmonic oscil-
lator. We first point out some general analyticity

‘ properties of the energy levels and then obtain a

nonperturbative but approximate expression for
the energy levels in the form of a dispersion in-
tegral.

A. Real positive A

The asymptotic behaﬁor of the wave functions is
determined by the A7 term in the interaction and
for X real and positive, it is given by

() o5 exp(_%;\l/zrslz) ) ©)

Furthermore, oné can take ¥(7) to be real in this
region. Then, for a change 6X in A, one has

EMX)=-E(\)+6E(N),
Y, ) =P, ) + 6P(r,2) ,
so that '

(7

HM)6Y(r, \) + (v, \) = SBE(N) (7, 1) + EA)8P(7, 1) .

(8)

Multiply the two sides by (7, A) and integrate by
parts to obtain .

AP |7 |90 = BEMHO) |90 ©

where lzp(x)) is the state vector corresponding
to the wave function (7, 1), or

8E(N) _ (¥ |7 [#(\)
) (CIENEIEN

Since the expression on the right exists and is
finite in view of (6), E(\) is real and analytic for

X real and positive (i.e., A>0) in the sense that the
first derivative exists.

(10)

B. The pointA=0

We now show that A =0 must be a singular point.
For this, we first subject our system to the
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Symanzik scale transformation®:
p—=ap, r-r/a (11)

for which the corresponding unitary transforma-
tion takes the Hamiltonian (5) into

H—-ozz(pz- iﬁi+ H) ) . (12)

7 o’

With the choice a®=2, one has
-1/3
H-—les(pz_%—+7> (13)

from which it follows that the energy levels satisfy
the property -
E(z,0)=223E(zx"1/31). (14)

Suppose that A=0 is a nonsingular point. We
start from large positive A, move along the real
axis towards zero, and after circling the origin
go back to infinity. If A=0 is nonsingular, one
then has from (14), .

lim E(Z,X)=2%/3E(0,1)
=e4"i/37\2/3E(0,1) , (15)

which is contradictory. Hence A=0 is a singular
point of E(z, ).

C. Real negative A

Here we consider the properties of the energy
levels for A<0. We confine ourselves only to the
S-wave and evaluate explicitly the imaginary part
of the energy level E,(A) for small, real and
negative A, by using the WKB method.®

The radial equation for the S-wave wave func-
tion is

(- o - 2o a4 =E00x ) (16)
with
X0)=7RO), )

where R(7) is the radial wave function, and N is the
total quantum number. The turning points for this
problem are

-a[t- ()]

7175y 1- 1+72-§— s (18)
_E, [ iz 1/2]'

7’2—-5 1+<1+P}-v—> ’ (19)

which for small values of X have the approximate
expressions

r,~=2/Ey, (20)

¥, Ey/A+2/Ey. 1)

(i) Region »~7,: The equation to be solved is

& z
<W+ ;+EN>X('V)=O- (22)
The solutiori which is regular at »=0 is given by
x(r)=Are*" F (1-2z/2¢,2,2¢er), (23)
where
€=(-EM? (24)

and ,F, is the confluent hypergeometric function,

a a(a+1) x?

S x)=14 =X 2 ..
Fila;b,x)=1+ 5 1Tt 5G+D) 21 + . (25)
If we normalize x(7) so as to give
41rf [x(”)]?dr=1 . (26)
o

for the unperturbed value of €=2z/2N, then
A= @%ﬁ (%) o @)
The asymptotic behavior of x(») for
z/2€=N-0 (28)
where 0 is infinitesimally small, is given by
X)) = AD)rer . . '
X [(2€7)¥ /N1 + (N = 1)16(2er) ¥le*7] .
(29)
(ii) Region from 7, to 7,: In the region 7, <7,

¥,>> 7, one can use the WKB solution to Eq. (16):

Xw(?) =cﬂb'1/2 exp (f pdr)

1

+c,p % exp (- frpd'r> ; (30)
"

where the subscript W indicates that we are using
the WKB approximation, and :

p=0r—z/r—Ey)'2, (31)

For > ¥, but » <7,, one can evaluate the integrals
in (30) approximately to obtain

x0) = eyt 2 explI ()] + e, 2 exp[-1()] , (32)
where

z z oz z z
I(?’):@uilnfr-gz_? In2 + Te 1n<?->. (33)

Comparison of this with the asymptotic behavior
(29) gives

¢, =A(=1)¥1(N = 1)! e’ az (34)
1=ACDTN-DE 25w <
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N+1,-N
N"le €l/2

zZN! ’ (35)

c,=A(-1)¥!
to the leading order in .
We are now in a position to determine the imagin-
ary part of E,(\). For this we first note the rela-
tion )

J(¥)

ImE N(A) = W P}

(36)
where
I = %("*(’)Edr‘ X0 = x(r)_ddT x*(r)) . @7

This result is derived by multiplying (16) by x*(7),
subtracting the complex conjugate of the result,
and integrating by parts. The expression J(7) is
evaluated at » >7, by using the WKB approximation
(30) and going-around 7, to avoid the difficulties
with the turning point 7,. Using the continuation
relations®!* for the turning point »,, one has

J0)=|c, |2 exp(-21,,) , (38)
where
72
I,= f r=-z/r—Ey ) ?ar. (39)
'rl ) .
For x—0, this integral is found to be
2¢¢  z - 16¢* z
Lo -5 (- 55) - - 40
From the perturbative relation
22 3N?
2 o —_— A
CETE -2 (41)

to terms linear in A, use of which is justified by
the result that € (A) has an asymptotic series as
will be shown later, one obtains
z3 23 N
L= = Vo (- F)+ 7 - (42)
The major contribution to the integral inthe de-
nominator of (36) comes from the small-» region.

Thus to the leading order in A, one has from (26),
for v >7,,

1

[ weyar- 4 (43)

Combining the results (36), (38), (42), (43), (35),

—

22 g(N,z) n . N3\ 2N+k A
__TT___[Z (~1)* 17&'(—2—3—) T(2N+Fk)

EyM\)==—-—7+
N =- 2

The integral in (52) is bounded by I'(2N +# + 1)
which again confirms that E () has an asymptotic
series expansion. Of course this is an approximate
expression for E y(\) since one is using an ImE(X’),

and (27), one finally gets
Z3 N2N+ 2e-2N
M EMN) = g5 —rre— |
28 23 44
><exp':——6)\N3 +2N1n<— W >—N] (44)

for A <0 but small. This expression can also be
written as

ImE(\) =g(N,z)(-))"2¥ exp(z®/6)\N°) , (415)
where
) 1/z \6N+1 -3N
g(N,Z)=§(§> (—;V . (46)

D. Dispersion relations

From the above analysis, it follows that E(A)
has a cut along the negative real axis. We assume
that there are no other singularities on the first
sheet, away from the real axis. Guided by the
asymptotic behavior (15) for E(\), we write once-
subtracted dispersion relations:

_ A [(° ImE,(\) ,
E\0)=Ey(0)+ > f_w T v (a7)
Furthermore, one may write
E (N =Eu(0)+ D Ak (48)
k=1
where
1 /% mE,(\) ,
R _ __ N ’
AN_ T [w W d)\ . (49)

If one assumes that the major contribution to the
dispersion integrals comes from the small-)\’
region, we can use (45) to obtain

2
2 Ag(N,z)

Ey(MN)=- 5 -
0 (——K’)-ZNeXp(ZS./GA,Ns) ,
x f ) o e (50)
and
Ak =[gWN,z)/m] (~=1)"*(6N°/2°)*¥** (2N + k) .
(51)

This indicates that the series (48) is é.symptotic.
It is also possible to express (50) as a partial sum

x2N¢ne-x

' " 6N3 2N+n+17\n+1 00
+=1) <7> f e R

which is valid for small A’. However the coef-
ficients of higher powers of A are expected to be
more accurately represented since the small-)\’
region is more important for them.
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E. Continuation onto the second sheet

The integral (50) can be used for continuing E ()
onto the second sheet. As X encircles the origin
and goes onto the second sheet, we distort the path
of integration. Because of the form of the in-
tegrand, the distortion for A —0 is allowed only if
ReA<0. This means that after encircling the
origin, we come across singularities at

argh=+37, (53)

This result is similar to the one for the anharmonic
oscillator.?%°

III. ENERGY LEVELS FOR PERTURBATION A(z - 1)/(1 + A7)

The perturbation A» discussed in the last sec-
.tion can be regarded as representing a reasonable
first-order correction to the Coulomb potential in-
side the atom. However, it differs violently from
the expected screened Coulomb potential outside -
the atom. A perturbation which has the correct
asymptotic behavior is given by the Hamiltonian

2 2 =10
H=p"-3 1+7x (54)
In terms of
ﬁ: 1/)\ s
this Hamiltonian can be rewritten as
2 B E- 1
H=p"-3 = r+B (55)

We will first point out some general properties .
of the energy levels of this Hamiltonian and then
obtain an approximate but nonperturbative expres-
sion for the energy levels as a dispersion integral.

A. Real positive 8
For 8>0, the Hamiltonian H satisfies the in-

equality

H<p*-1/r, (56)
so that the energy levels satisfy the inequality

Ey@,B)<Ey, 67
where E, are the Coulomb energy levels with z
=1. It therefore follows that E y(z, 8) is negative
definite and real since H is Hermitian. One may

also take ¥(7) to be real. Then for a change 63 in
B, one has

E(B)—~E(B)+dE(B),

Y, B) =~ ¥(r, B+ 64(r, B,
so that

(58)

HB)OH(r, B) - (2 - 1)08 @:T ¥r, B)

=0E(B)Y(v, B) + E(B)oY(r, B) . (59)

Multiplying the. two sides by ¥(», 8) and integrating
by. parts, one obtain

PE(B) __(, _ 1) {98 [+ B [0(8)
9B - @@ wey
Since the right-hand side exists and is finite, E())
is real and analytic for >0 in the sense that the
first derivative exists. It should also be noted that
since 8E(B)/88< 0 and E(B=0) is the Coulomb en-
ergy level with z2=1, the relation (57) follows.

(60)

B. Alemma for <0

Here we derive an expression for ImE(g+ic)
for <0, in terms of the value of the wave func-
tion at »=-p8. We begin with the general relation

| (61)

where
Hy=p*-z/r. (62)

This can also be written as

(Ho+ 7552 ~2aite = 000+ 9) v, pric)
= E(B+ie)Y(r, B+ie). (63)

Multiplying the two sides by $*(r, g+ i¢) and integra-
ting by parts, one obtains

E(p+1ie) - EX(B+ic) = =87%i(z - 1)@ | ¥l(r, p+ic) li-e .
(64)

In obtaining this relation, we have thrown away the
surface terms so that it is valid only if ¥(r, g+ ic)
vanishes for »—-«, We have also assumed a nor-
malization

417[ [¥(r, g+ie) [2r°dr=1. (65)
0
Under these conditions one then has
IME(g+ie) = -47*(z = )@ | (7, p+ie) |2, - (66)
In the next section, we will use this relation to
advantage. :

C. ImE@) for <0

As before, we confine ourselves to the Swave,
and to large values of g or equivalently, to small
values of A. If y(r, p+ie)—0 for » =, we only
need to know (- B, g+i¢) in order to be able to de-
termine ImE(p) by using (66).



The radial equation for the S-wave wave func-
tion is

daz z z
<'W'7+ HB)X(?’) E (p)x(7) (67)
with
X(r)=7R(¥) " (68)

as before. The turning points for this case are

which for large values of g have the approximate
expressions

/ylz_z/EN’ . (71)
v, = —p+(z=1)/Ey . (72)

(i) Region »~7,: The equation for this region is
the same as in the previous case, i.e., Eq. (22),
as also the solution (23) and its asymptotlc be-
havior (29).

(ii) Region from 7, to 7,: In the region », <7
and 7, > 7, one may use the WKB solution to Eq.
(87),

XW(T)=01P'1/2exp<fr pdr)

71

_ 1+ gE,
Vy=— 3E, [1+ (1-

+Czp'1/2exp(—frpdr>, (73)
1
where

_/z-1  z /2

,,-(HB _;-E,,) : (74)

For »>v, but »<<7,, one can evaluate the integrals
in (73) approximately to obtain

X(r)=C, e/ 2 explI()] + Coe™/2exp[-1 ()], (75)
where as before ¢=(-E,)"/? and

= 2 _E_ZE Z (R
I(7) =5 Iny 5 " < In2 + 5 1n<€2>- (76)

Comparison of this with the aéymptotic behavior
(29) gives

C,=A(=1)¥ (N = 1)1 ;ﬁ'ﬁl e, 17)
NNfle-N
Co=A(-D* = &/ (78)

to leading order in & where
8=N-2z/2¢. - (19)

Similarly, for », - »> v, but »~7,, one has
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X(r)= C,&2 exp[1(p)] + C,e™/2 exp[-I(p)] , (80)

\
where

p=¢—4f2
and
z-1 z-1
I(p)=€p+ 5 1np+.2€
z-1 z-1
~ 5= ln<— 4€2>+112 (81)
with

~ Z Be?\_z-1 Bez'>
‘~-€ﬁ—2€ ln<_ z >— 2¢ 1n<_z—1
2z -1
2¢

In2 - (82)
Heré, we have dropped terms of the order 1/3.
Simplification of the above expressions and re-
tention of the terms to the leading order in §,
leads to

» z-1 Bz
I(p)~ep+ P Inp - SN

N Bgz\ = N
A -Nm<_ﬁ) + (g, (83)

where we have used the perturbative relation

2 z-1

ex 2 _E=C 84
ST 5 . (84)
which is justified by the result that E()) has an
asymptotic series as will be shown later.

(iii) Region »~7,: The equation to be solved is
d? z-1
<-d?_ - ﬁ—B—+EN>X(’V)—O. (85)

This can be transformed into Whittaker’s equa-
tion.'® The solution which decreases exponentially
for » — v,> 7, is Whittaker’s function:

x() = Bpe U[1+(z = 1)/2¢, 2, 2¢p], (86)

where B is the normalization constant, p=7+ g,
and

U(a,2,x)= _I"Ta_l_T)
(F(a 2, x)lnx+z (2) r'
x[zl)(a+r)—zl)(1+r)—w(2+r)]> + Wi)‘x—
a,=ala+1)+-+(a+v-1), a,=1, - (87)

¥a)=T"(a)/T(a).
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For determining the normalization constant B,
we look atthe behavior of x(») for » —7,<< », but
Y Vo

x('r) :::B(z{)'l'(x-l)lze p-(z-1)/ze e‘-e,. (88)

Comparing this with the second term in the asymp-
totic behavior (80) of the WKB solution, we obtain

BeA (_;)!N-x (_ ENZ_>N(2-1/z) exp (-g% -M)’
(89)

where A is given by (27).

We are now in a position to evaluate the ImE( ﬁ)
by using (66). Since the leading contribution to the
normalization integral (65) comes from the small-
7 region, one can take the wave function (23) for
normalizing the wave function. Since this wave
function satisfies the condition (26), our wave
functions are normalized according to the require-
ment of the relation (66). Therefore using (86),
(87), and (88) we have

|B|?
2T+ (2 - D/20]°

(90)

ImE,(B+1ie)=—47n°(z - 1)

This can also be written in the form
ImEN(ﬁ+i<)=—f(N,2)(—B)2‘2"‘5”"eXP(Bz/N), (91)

where

B |

f(N, z)= T%Wr (N\)z(zz-%)N/g

o _exp[-2N(z - 1)/z]

W G- DN/ (92)

D. Dispersion relation

The preceding analysis indicates that E,(}) has
a cut along the negative real axis. Furthermore,
for A~ the energy levels are expected to tend
to those of Coulomb potential with z=1. Hence,
with the assumption that there are no other singu-
larities on the first sheet away from the real axis,
one may write once-subtracted dispersion rela-
tions for E,(A):

ImE, (X + ze)

Ey(0)=Ey(0)+ = f —W—T—dh' (93)

Furthermore, if one writes

Ey(\)=Ey(0)+ ) A%aF " (94)
k=1 :
we have
1 % ImE (N +1i¢)
kR _ _— N ’
A= f = a. (95)

If one assumes that the major contribution to the
dispersion integrals comes from the small-\’
region, we can use (91) to obtain

(A =)

EN(A) == 4N2

and

e = SN:2) (_1)»1( ﬂ> BN et 2Nz - 1)/2)
m - V4 / '

which indicates that the series (94) is asymptotic.

z2 . Xf(N Z) fo ( )\1)2(1-2z)N/z exp(z/A'N)

ax’ (96)

(97)

In using (91) it must be remembered that the phase of

1 'is opposite to that of g. It is also possible to express (96) as a partial sum

By =~

7\!‘5 ,

The integral here is bounded by T (n +1+2N(2z
-1)/z) for x>0, which again confirms that
E,(») has an asymptotic series expansion. The
use of (96) which is valid for small )\’ intro-
duces an approximation in the above results, but
the coefficients of higher powers of X are expected
to be given fairly accurately since the small-\’
region is more important for them.

F, z)!:z A (o l)bu( )’*‘”f‘”‘”"f(k+ 2Nz -1)/2)

+( 1)" (N n+1+2N(22z~1) /2 )\"+1fw
0

K +2N (22+1) /z Pd
dx

T1+MNx/z

—

(98)

E. Continuation to the second sheet

The integral (96) can be used for continuing E, ()
onto the second sheet by distorting the path of in-
tegration. Because of the form of the integrand,
the distortion for A — 0 is allowed only if Rex< 0.
This means that after encircling the origin, we
come across singularities at
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arg =+37 (99)

which is similar to the result (53) for the \» per-
turbation.

IV. COMPARISON WITH THE EXPERIMENTAL AND
VARIATIONAL ENERGY LEVELS

We have shown in the previous sections that the
energy levels for two “reasonable” screened po-
tentials, i.e., potentials (2) and (4), have
asymptotic series expansions. This is also ex-
pected to be true for potentials of the type

V@)=—2z2/r+1xvte ™™ (100)

since for A <0, the energy levels will develop an
imaginary part. For the energy levels with asymp-
totic series expansions, one cannot use perturba-
tion series expansions to obtain the energy levels
to an arbitrary accuracy. However the use of the
first few terms may give fairly accurate values

for the energy levels so that the perturbation
series can yet be of some use.

In this section, we will consider the practical
utility of the approximate but nonperturbative ex-
pansion for the energy levels E ,()) for representa-
tive potential (54) of Sec. III. This is relevant in
view of the above discussion that the perturbation
series is expected to be asymptotic. Actually
we will use twice-subtracted dispersion relations:

AZ

22 O ImE,(\'+i€
Ey\)=- Nz +(Z—1)7\+—ﬂf al )

’
UV

(101)

with ImE ()’ +7€) given by (91) except for the sign.
The reason for this is that we have already used

the first two terms of (101) in obtaining (91).
Furthermore, in the evaluation of ImE ,(\’ +i¢€)
we have used WKB analysis in the region of »
which satisfies »,> 7> 7, which is justified only
if ,>7,. From the approximate expressions (71)
and (72), it therefore follows that the ImE ,(\’)
given by (91) is valid only in the region
—\'<z/8N?, (102)

where we have neglected 1 compared to z. For

our phenomenological analysis, therefore, we use

BN =- 25 42—

Az O ImE y(\' +i€) .,
+ —’”‘ -z/aNz m dax’ . (103)
For determining A we use the relation
PEPWALE (104)

corresponding to the z dependence of the recipro-
cal of the Thomas- Fermi radius of the atom.!?

We fit the experimental values'® of the energy
levels with N=1,2 for z2=14 to z=84. The integra-
tion in (103) is carried out numerically, and we
find that very good fits are obtained for a value of
2,=0.49 in the units defined before, for which the
Bohr radius a, has a value of 2, i.e., 3,=0.98/a,.
The values of the energy levels E, and E, pre-
dicted are shown in Table I for z ranging from 14
to 84, at intervals of 5. The table also includes
the experimentally observed energy levels'® and
those obtained from variational calculations using
Coulomb wave functions. Except for E, with z =14,
the agreement between predictions and the ex-
perimental values as well as those from variational

TABLE I. Predicted and experimental binding energies Ey (in keV) with N=1,2 for some

values of z.
E, E,

z Dispersion Expt. Variational Dispersion Expt. Variational
14 -1.89 -1.84 ~1.94 -9.17(-2) -1.49(-1) -1.61(-1)
19 -3.71 -3.61 =3.77 —3.42(-1) -3.77(~1) —3.94(-1)
24 -6.16 -5.99 —6.20 -7.24(-1) —6.95(-1) —7.45(-1)
29 -9.26 —8.98 -9.28 -1.24 -1.10 -1.22
34 -1.30(1) -1.27(1) -1.31(1) -1.89 -1.65 -1.82
39 -1.74(1) -1.70(1) -1.74Q1) ~2.70 -2.37 —2.59
44 —-2.25(1) —2.21(1) —-2.25(1) -3.64 -3.22 -3.44
49 —2.82(1) —2.79(1) -2.83(1) —4.73 —4.24 —4.50
54 -3.45(1) -3.46(1) -3.46(1) -5.97 -5.45 -5.67
59 —4.15(1) —4.20(1) —4.16(1) -7.35 —6.83 -7.01
64 —4.92(1) ~5.02(1) —-4.94(1) -8.89 —8.38 —8.46
69 -5.76(1) -5.94(1) -5.77(1) -1.06(1) -1.01(1) —1.01(1)
74 —6.66(1) —6.95(1) —6.66(1) -1.24(1) -1.21(1) -1.18(1)
79 -7.63(1) -8.07(1) -7.63(1) -1.44(1) —1.43(1) —1.38(1)
84 -8.66(1) —9.31(1) -8.66(1) -1.65(1) -1.69(1) —1.58(1)
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calculations is very satisfactory. The energy
levels for higher N values or smallerz values
should not be expected to come out correctly, in
view of the fact that we have not taken into account
the large-)\’ contribution to the dispersion in-
tegral. This suggests that the nonperturbative ap-
proach to the screened Coulomb potential may be
pertinent and useful from a practical point of view.

V. SUMMARY

We have analyzed the energy levels of two simple
examples of screened Coulomb potentials by non-
perturbative methods. We find that the energy
levels as functions of the perturbation parameter
A, have a branch cut along the negative real axis,
starting from the origin. Furthermore, there are
singularities on the second sheet, for A — 0 with a
phase of + 37, which prevent analytic continuation
across | A |e*3"/2 and |x |~ 0. The consequence of
these singularities is that the energy levels have
an asymptotic series in A. Such a series is di-

vergent, but for a given value of A, the first few
terms of the series can give a good apprdxima—
tion to the energy levels. The series may be use-
ful to arbitrary accuracy if one uses Padé ap-
proximants? or. Borel summations.®

The approximate but nonperturbative expression
for the energy levels, which we have obtained by
using dispersion relations and the WKB approxi-
mation to connect the known solutions in two sepa-"
rated regions, is found to predict the observed en-
ergy levels quite satisfactorily. This indicates
that apart from the formal requirements, such
nonperturbative analyses may have an important
practical role in the description of screened Cou-
lomb potentials.
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