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Theory of a lossless nonlinear Fabry-Perot interferometer
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A Fabry-Perot interferometer filled with a' medium whose refractive index depends upon intensity has a
multiple-valued transmission-vs-intensity characteristic, When the incident light is circularly polarized, and
the nonlinearity is only cubic in the fields, Maxwell's equations may be solved exactly for the plane-parallel
resonator field in terms of elliptic functions. An accurate approximate analysis is given for more general

cases, including resonators with spherical mirrors and finite beams, where self-focusing is important. The
theory is developed to yield design information for operation as an optical switch, ".transistor, " and power
limiter.

I. INTRODUCTION

The possibility of constructing a bistable optical
device consisting of a multiple pass interfero-
meter containing a saturable absorber was ap-
preciated as early as 1969 by Seidel and by Szdke
et al. ' Experimental efforts to observe bistable
operation prior to 1972 (reviewed in detail by
Austin ) were frustrated primarily by the diffi-
culty of maintaining adequate cavity finesse with
an absorbing intracavity, medium. This problem
was overcome quite recently by Qibbs, McCall,
and Venkatesan, ' who found that bistable operation
can also occur when the nondissipative (reactive)
part of the cavity response is nonlinear. They
succeeded in demonstrating bistability and other
interesting modes of operation, and in construct-
ing a theory which includes. both reactive and dis-
sipative nonlinearity, and adequately described
their experimental results. At about the same
time (but after Qibbs et a/. had demonstrated their
device) we developed a theory of bistable opera-
tion for purely reactive, nondissipative, nonlinear
interferometers. ' The absence of dissipation al-
lows the theory to be carried quite far analytically, '

and in this paper we present a detailed description
of the operation of the nondissipative nonlinear
multiple pass interferometer. Our primary in-
terest is in interferometers filled with media
whose nonlinearity is not resonantly enhanced.
In this case a variety of experimental arrange-
ments are possible involving several incident
beams of different frequencies.

The most tractable model for the nonlinear
medium is one in which the susceptibility is re-
garded as a function of the time-averaged (over
a few optical cycles) squared field. For circu-
larly polarized fields the time average equals the
nonaveraged squared field, and an exact treatment
is possible for cubic nonlinearity and plane par-
allel reflectors with normal incidence (see Sec.

II). An approximate theory, based on the slowly
varying envelope approximation, is also possible,
and leads to simpler expressions. This approxi-
mate theory, given in Sec. III for plane parallel
reflectors, provides the starting point for a dis-
cussion of nonplanar (e.g. , confocal) reflectors
and finite beams contained in Sec. IV. Using a
variational method' which leads to equations in
another context which have been shown to be valid
for powers somewhat below the critical power for
self-focusing, ' we can rather simply include the
effects of self-focusing on the nonlinear inter-
ferometer operating parameters.

In Sec. V, we develop the exact solutions. of the
slowly varying envelope equations for the case
treated approximately in Sec. IV. These solutions,
briefly discussed previously by Glass' and Suy-
dam, ' are the nonlinear generalization of the self-
similar modes of a cavity with spherical reso-
nators. For plane mirrors, they reduce to the
self-trapped modes of which the lowest-order
case was first discussed by Chiao, Garmire, and

Townes. ' After a slight renormalization, the
resonance condition predicted by the variational
approach agrees so closely with the numerical
result that cavity design calculations can be based
with confidence on the analytically tractable re-
sults of Sec. IV.

In Sec. VI we indicate design parameters for
several practical cases. Switching powers as low

as 35 W are possible with CS, in a cavity with 90%
reflectors, and in two-frequency operation
(switching field tuned to a cavity resonance) even
lower switching powers are possible. Use of high-

n, materials such as the nematic liquid crystal
MBBA reduces the required powers below 1W.

II. EXACT THEORY FOR PLANE-PARALLEL REFLECTORS

If the optical field depends only upon the coor-
dinate z along the length of the cavity, and upon
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time t, then within the cavity the field is trans-
verse and obeys

c2o2, E = a2, (E+ 411P) (Gaussian units) .
If the incident beam is monochromatic with angular
frequency (d, and if the nonlinear part of the pol-
arization density P contributes neither loss nor
new frequencies, then (1) becomes

um by a minus sign to emphasize its relation to
the Poynting vector.

Using the conserved energy

H =-,'E"+-,'(S'/E')+ V(E),

one finds E(g) from the usual energy integral

dE
[2H —(S /E ) —2V(E)]'I2

E"=-E-4~P (2) (12)

where primes denote differentiation with respect
to P=- ez/c. This ordinary differential equation
for E(g) may be integrated in closed form for
many special cases. Let us suppose, for example,
that the envelopes of P and E defined through

P =RePe ', E = Reh e '

pI dl
2IIJ-2V I I —S' '" '

where I= E'. Whe-n V has the form of Eq. (8), (12)
is an elliptic integral of the first kind. Taking g,
at the position g, of a maximum where I=I„one
finds

satisfy I=I +(I, —I ) cn' v(g —(,), (13)

6'; = xo'(&u)$,. +3x,'2,(&u; —1d, ~, 1d)$& S, S;

in the notation of Maker and Terhune. " If the
nonlinear medium is isotropic, then 6' may be
written

(P =(n', l)h+qi8i'S— (4)

where. cn is a Jacobian elliptic function, and I
varies between I and I, in the nonlinear medium.
The parameter v, which plays the role of a re-
fractive index, is defined by

v =122+47T t|~(I +2'I~) .
The parameter m of the elliptic function is

when the field is either linearly or circularly
polarized. Fo r linear polarization

m=411(i, (I, —I )/v' . (15)

(9 g( (3) + (3) + {s)
I 1 X 1111 (X1122 X 1212 X1221)

and for circular polarization

b) (3)
0c ( X1212 X1221)

Let us continue with circularly polarized fields.
In this case E' = —,

'
~

h ~', and (2) with (3) leads to

K" = -n', E-8~q, E'K. (1)

This equation is equivalent to that describing the
motion of a, particle of unit mass in two dimen-
sions in the conservative potential

V=-,'n', E'+2m g, E',

If the total field E is resolved into forward and
ba, ckward travelling components a,ccording to

E = E~ + E~, Ep ~ = Re&~ g~ ~e '

then defining E~ =(E~ E~)' ', etc , we f.ind

E = E~z +E2 + 2EzE2 cos(pz $2) i (16)

where 1t1~ 2 is the phase of Sz, 2, and u11 is the unit
right-circular polarization vector. Recall that the
sense of rotation of circular polarization is not
altered on reflection (the helicity changes sign on
reflection). Comparison of (16) with (13) gives
immediately

where E is the "position" vector and g the "time. "
The corresponding Lagrangian is

I, =(E, ~E,)',
cos (1t1~ —1t12) =cnu(g —&, ) . (16)

L =-,'E" —V(E)

=-,'E" +-,'E'O" —V(E)

where on the second line 8=tan '(E„/E„), and of
course E is the magnitude of E. Since 0 does not
appear in the Lagrangian, the canonically conju-
gate "angular momentum" S =——aL/a 9' is a constant
of the motion:

8 = -E'O' = -E„E,'+ E,E,' = z - E x B .
The last line follows from Maxwell's equations
and the fact that the fields are circularly polar-
ized. 8 differs from the usual canonical moment-

Thus the amplitude of the elliptic function is half
the phase difference between the forward and back-
ward travelling fields.

To find the transmissivity & of an interfero-
meter with mirrors of reflectance R located at
z =0 and z =D, we first remark that at the back
mirror (at D) the phases of forward and backward
travelling fields must coincide (assuming n, &1
and vacuum outside the cavity). Thus

cnv(t~ —&, ) =1.

and (,. = gD—= &uD/c. Also at the back mirror, flux
conservation requires
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signal at ~ may be switched by a somewhat weak-
er signal at (O'. The required detuning (d- u' is
clearly arrays less than the cavity mode spacing.
Numerical examples will be deferred to Sec. VI,
after the finite beam theory is developed.

E
2

O. l—

O.OI-

I
—0.577

FIG. 3. "On" and "off" fields for bistable operation
vs cavity detuning for p = 70%. Es is the minimum
switching field for two-frequency bistable operation.
T, /T is the ratio of "on" to "off" transmissivities at
the "on" field.

go= b+nS, (30)

where n=6wqgD(1+R)/n02(1-R), and 5=n, gD. Re-
peating the argument of Sec. II, we arrive at an
expression for the transmissivity

nS/nI, =7'(b+n$) =[1+I"sin'(b+n$)] ' . (3l)

In Fig. 2 we have plotted the right-hand side of
(31) vs nS If the .incident intensity I, is speci-
fied, then-the corresponding transmissivity may
be found from the intersection of a straight line of-
slope 1/nI, with the 7'-vs-nS curve. This con-
struction, shown in Fig. 1, clearly illustrates the
multiple-valued nature of F-vs-I, curve: for
sufficiently large I„ there are several intersec-
tions. For practical values of the nonlinear index
change, Eq. (31) leads to results indistinguishable
from the exact solution (23) and (24).

Figure 3 summarizes the dependence of the
characteristic features of the transmissivity curve
on the detuning parameter 5. . Of particular inter-
est are the minimum "holding" intensity I, re-
quired to maint3in linear unity in the first "on"
branch of the ~-vs-I, curve, and the "turn-on"
intensity I„required to pass from the "off" to the
first "on" branch. Since the nonlinear response
is in general nonresonant, one may reduce the
turn-on intensity by tuning the frequency of the
switching field into resonance with the cavity. If
the net flux 5 is required to switch the cavity on
for the signal field at frequency &u, then (31) gives
the least required incident switching intensity I,
=S, at the detuned frequency ~'. Here u' is
chosen to make & =1. Figure 3 shows that the de-
tuned switching field is less than the holding sig-
nal over the entire detuning range. Thus a strong

IV. APPROXIMATE THEORY FOR RESONATOR

WITH SPHERICAL MIRRORS

Ldz= 5, dx dy g dz =0 . (33)

Our approximation consists in evaluating (33)
using the trial functions

S~„a„r'Sp= exp —,—i
a 2a

r2
6 exP —

2b, +2

a+a' .
)

(34)
kr'b '
2b '@") '

where gz„gs„gz, Pz, a and b are functions of
z chosen to satisfy (33), and r' =x'+y'. Primes
denote differentiation with respect to z. The quan-
tities S~, and 8» are found to be constant and are
related to the conserved forward and backward
powers

I'~ = xn, eao
I g„,I', Pz =-,'n, eb',

I g, I' .
Upon substituting (34) into (32) and (33), integrat-

ing over the transverse plane, and writing out the
Euler-Lagrange equations implied by (33), one
finds equations for a, b, (F, and g, which can be
integrated simply in some special cases. Here we
are interested only in the high finesse case where
P~ = P~, and the forward and backward beam radii
are essentially equal on any plane of constant z. When
/~4 P~, the forward and backward beams have
waists which do not coincide. When P~ = PB =P,
solutions exist for which a(z) =b(z), and the Euler

%hen the field amplitudes depend upon the trans-
verse variables (x, y), then Eqs. (27) and (28) have
the additional terms V'~$& and &',$~, respectively, —

on the left-hand side, where V'~ =8„'+8,'. The re-
sulting equations describe self-focusing in a res-
onator, and it is necessary to determine under
what conditions the interferometer can be opera-
ted without incurring a catastrophi'c self-focus
within the cavity. We shall employ an approximate
analysis based upon a vari3tional method used by
Vorob'yev for elliptical beam self-focusing. '

Equations (27) and (28), with the V' terrms, may
be derived from the Lagran'gian density

Z =IV, S, l'+ lv, g, I2-a(ggs, g, —g, s, gy)

+fb(age, S.—S.b, S,*)

—(2v~'n/e')(I &~ I'+ I &s I'+4 I &~ &, I') (32)

and the variational principle
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Lagrange equation for a becomes

k'a" = (1 —3P/P, )/a2 . (36)

a'(z)/a' = 1 + (1 —3P/P, }(z/ka20}2, (37)

Here P, =n, c'/Sw)~&@2 is the critical power for self-
trapping (self-focusing just balances diffraction)
in this theory for a purely forward travelling
beam. It is four times greater than the critical
power P, predicted by the "aberrationless"" ap-
proximation and very close to the correct value
P, = 3.77P, inferred from numerical solutions. '
According to (36), the critical power for forma-
tion of a singular self-focus at the beam waist is
reduced by a factor of —,

' in a cavity with 100% re-
Qectors. Taking the origin of z at the point where
the rays are parallel to the z axis, we may write
the solution a(z) of (36}as

.2
1

X .6 .8

FlG. 4. Graphical determination of 7. vs vPO for con-
focal nonlinear interferometer with mirror reflectivity
p =90%. See Eq. (43). Compare with Fig. 2. Only the
first two cavity resonances and the center lines of the
third and fourth are drawn. Beyond the fifth the reson-
ances are too closely spaced to distinguish.

where a, =a(0). This result may be used in the
Euler-Lagrange equation for the axial phase g

2k(F = (-2 —9P/P, )/a' (36) .

1 —9P/2P,
2 (4F 4B) (1 3P/P )1/2

to obtain

1 —9P/2P,
eF( ) .(1 3P/P )1(2

(ka2, )2 = —,'(1- 3P/P, )D(2R, —D)

-—,'(1—3P/P, )D (R, =D}, (40)

3Px tan ' 1 ——,+yF, . (39)
k C

ya2 I' 0'

The backward phase looks the same, but with the
sign of the first term reversed.

Let us use this result to analyze the nonlinear
behavior of the family of symmetric stable reso-
nators whose mirrors coincide with surfaces of
constant phase of our Gaussian trial functions (34).
Equation (37} is identical to the spot size formula
for linear Gaussian propagation if k' is increased
by the factor (1 —3P/P, ) '. Consequently, most
of the equations describing the nonlinear resona-
tor resemble closely those familiar from the
linear theory. " In particular, the waist radius
a, for mirror spacing D and radius of curvature
A, is fixed by

2g
[D(2R D)] ' ~2 (41)

As before we choose 6 so the total phase differ-
ence vanishes at the exit mirror at z= —,'D. Thus
at the entrance mirror (z = ——,'D), (41) gives

1 —9P/2P,
-', (k —k,)=-kB+2))

k /P) / kkll ~ Q)

1 —9P/2P,' (1 —3P/P, )'"
(42)

The phase (42) is all we need to derive a para
metric equation for the transmissivity versus the
incident power P, similar to Eqs. (23), (24), or '

(31). By analogy with (29), we can hope to cor-
rect our error in setting P~ = P~ = P by replacing P by

P = (P +PB)=P (1—+R)/2(1 —R),
where P, is the net energy flux through the med-
ium. The implicit equation for P, , corresponding
to (31), is

vP /vP, = 1(vP, ) =[1+Fsin2[5+f(vP, )]j ',

where the last line is correct for a confocal cavity.
The spot size a, it the mirrors satisfies

(ka', )' = (1 —3P/P, )R.'D/(2R, D)—
-(1 —3P/P, )D' (R, =D).

where F and 5 are the same as in (31), and

2-3 — Df (X) —
(1 )1/2 tan

-- 11(2 —3x)/(1-x)'" (R, =L)); (44)

The nonlinear phase difference —2'(gF —gB) which
we require for our transmissivity analysis is
given by (39) and (40):

v —= 3(1+R)/2(1 —R)P, .
Equation (43) may still be solved graphically as in
Fig. 2, but the right-hand side is no longer identi-
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FIG. 5. Transmissivity v vs vPO determined by con-
struction of Fig. 4. Compare with Fig. 1. . We show only
the first two resonances and the limiting curve (corres-
ponding to formation of a catastrophic self-focus in the
cavity). Units of P are 1/v.

cal to the linea'r Fabry-Perot tuning curve because
f(vP, ) is not linear (see Fig. 4).

The singular denominator of (44) ensures that an
infinite nonlinear tuning range is possible for
powers below the critical power for catastrophic

self-focus formation a,t —,'P, . Figures 4 and 5 show
how the infinity of Fabry-Perot resonances are
squeezed into the range 0 & v P, = 1. The graphical
solution shows that the incident power required to
hold the interferometer in the "on" state ean never
exceed 1/v =-', (1 —R)P, for high mirror reflectivity.
The power at frequency ~, required to turn the
cavity transmissivity "on" for a signa. l at ~, when

e, is tuned to minimize this power, is also less
than 1/v. Figure 6 shows curves for turn-on and
holding powers for a confocal cavity.

It is unfortunately not possible to reduce the sol-
utions in this section to those of Secs. I-III for
beams infinite in transverse extent. The problem
is that the phase of a finite beam irieludes an ad-
ditional nonlinea, r contribution because it is par-
tially confined by a self-induced waveguide. This
effect decreases the phase velocity below the value
expected from the direct nonlinear index change.

V. EXACT SOLUTIONS OF SVEA EQUATIONS

FOR A RESONATOR WITH SPHERICAL MIRRORS

If, as in Sec. IV, we assume that at each point
within the cavity the net flux vanishes, then ( h„~'
= ~$z ~', and Eq. (27}becomes

2ike, g„+ V2rgr= —(4II(o'II/c')3
~ h~ ~'gr . (45)

This has the same form as thd slowly varying en-
velope equation for a, self-focusing beam travelling
to the right, except that qis increased by the fac-
tor 3. The self-focusing equation is known to pos-
sess similarity solutions of the form' '

h~=a 'f(r/a)e' &,

where a~ is a quadratic function of z. If the origin
of z is chosen where da/dz =a' =0, then

I I I I
I I I I I I

—5

a'(z)/a', =1+(gz/ka, ) .
The phase required for self-similarity is

$F=-(cI/2P) tan '(Pz/ka, )-kr'a'/2a,

where

cI = —2+ (12IIuP II/c')f'(0),

and f satisfies

f"+f '/p= (o'+ P'p')f (12m+'q/c')f'—;

(4V)

(48)

(49)

(50)

O.i-

FIG. 6. "On" and "off" powers for single- and double-
frequency operation of a confocal cavity. Compare with
Fig. 3. Power units are 1/v.

in which a prime denotes a, derivative with respect
to p =r/a The para. meter P is related to the in-
cident power and the axial field f (0}. In practice
one fixes P and determines f (0) such that the solu-
tion of (50) has no nodes (for the analog of the
TEM«mode) and decays to zero at large radial
distances. When P = 0, the nodeless solution re-
duces to the Chiao, Ga,rmire, a,nd Townes self-
trapped mode. '
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Equation (47) is, as (37), identical to the spot
size formula for linear Gaussian propagation if k
is simply increased by the factor I/P. Thus 8'
in (47) plays the role of 1 —3P/P, in (37). The
spot size formulas for a, symmetric cavity with
spherical mirrors are similar to (40) and (41):

(pa~)~ = -'P2g(2' Ll)

(ya .) = P2ft D/(2P D)

(51)

(52)

To find the ratio a/P numerically, it is conven-
ient to cast (50) into dimensionless form. Setting~'-=(a (p', and y'—= 12vr&u'qf'/c'jn [, one finds

+y /&=ysgn&+(P /& ).x y —y (54)

The phase difference at the entrance mirror cor-
responding to (42) is

'(0 -0)-= -&D- (o'/P) tan ' [Dj(2P, -D1'". (53

eter required for our interferometer theory,
agrees almost exactly with the "exact" self- simi-
lar phase expression if P, is replaced by the ac-
tual critical power 1.07P, . The much poorer
agreement between P' and 1 —3P/P, can perhaps
be understood as a, consequence of the'significant
departure of the shape f(p) from the Gaussian
function assumed in the approximate theory.

In view of the very widespread use of the aber-
rationless approximation in self-focusing theory, "
we should point out that that approximation does
not give results for the phase in agreement with
the exact SVEA self-similar solutions. The aber-
rationless equations are derived by substituting
the Gaussian trial functions (34) into the SVEA
equations and matching coefficients of x'" for
n=0, 1. The resulting equations analogous to (36)
and (38) are

o =+2/(y', +1},

u'a'=(1 —3P/P, )/ 'a,

-2k/~ = (2 —3P/P, )/a',
(57)

(58)

where the upper (lower) sign is for o. &0 (o.&0). If
the dimensionless power P is defined as

(55)

then the actual power is easily seen to be

P 6PIc

Figure 7 shows n/2P and P' vs 3P/P, computed
from (54). On the same graph is drawn the ap-
proximate expressions derived in Sec. IV. The
approximate phase (42) which is the only param-

FIG. 7. Comparison of exact numerical solutions for
the axial phase factor for the self-similar modes of a
nonlinear confocal cavity (circles) and the phase pre-
dicted by the variational approximation (solid curve).
The dashed curve is the renormalized approximate
theory. Also shown is the spot size factor p~ (crosses)
and the unrenormalized approximate result 1 —3P/P,
(solid line) . ,

where P, =-,'P, . Even if P, is replaced by the cor-
rect critical power, the phase is poorly repre-
sented by (58).

VI. DISCUSSION AND NUMERICAL EXAMPLES

The tuning curves of Fig. 6 show that even for a
cavity with the modest finesse of 30, powers on
the order of 1/10v suffice to change a confocal non-

linear interferometer from a, reflecting to a trans-
mitting state. Taking q=n, n, /4m, and repla, cing
P, by P, /0. 93, we can write 1/v as

1/v = 27.2(A.'/n, )(1 —R)/(I +R) Watts,

where X is in cm and n, in esu. '
Thus for CS,

(n, =10 "esu for linear polarization), A. =500 nm,
and 8=90%, we have 1/v =357 W, so that opera-
ting powers on the order of 35 W are possible.
Materials with much grea. ter nonlinear indices
are available. The nematic liquid crystal MBBA,
for example, has a, nonlinea. rity about 70 times
larger than that of CS,." Using 90% reflectors
one should therefore be able to observe bistable
operation with switching powers on the order of
0.5 W. Even smaller powers could be used with
higher finesse, longer cavities, and multiple-
frequency operation (switching with frequency e,
and holding with frequency e).

If the detuning angle is small, the transmis-
sivity of the nonlinear interferometer is a sen-
sitive function of the incident intensity, and may,
be operated in a "transistor" mode similar to that
demonstrated by Gibbs et al.' In this mode one
biases the incident field with a cw' beam which
tunes the cavity nonlinearly to a, region where the

-vs-P, curve is nearly vertical. Then a, sma. ll
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modulation on the bias beam causes large changes
in the transmissivity, with consequent large mod-
ulated output signal. The transfer curve for such
operation is obtained by multiplying the ~-vs-P,
curve by I'0. In another interesting mode of operation,
the transmissivity at frequency e can be modulated
by a relatively weak signal at Io„where the cavity is
just off resonance for v but resonant for e, . In
still another mode the device operates as a power
stabilizer since, as can be seen from the graphi-
cal solution for & vs P, (Fig. 5), the transmis-
sieity is nearly inversely proportional to the in-
cident power on the "on" branch of the operating
curve.

In all of these applications, the response time of
the device is limited either by the response time
of the cavity, which is roughly

r, = 2n, D/c ling~ I,
or by the response time r of the nonlinearity. For
a 1-cm cavity with 90go reflectors, r„„is about 1

nsec. The medium response time is sensitive to
the nature of the nonlinear mechanism. In CS„
where molecular reorientation is dominant,
is about 2 psec. In the liquid crystal MBBA, T

= 40 nsec. " New solid materials are being de-
veloped which have nonlinearities comparable to
MBBA, but with response times many orders of
magnitude shorter. " The possibility of very short
switching times is one of the significant advantages
of nonresonant operation.

VII. SUMMARY

We have shown that exact analytical solutions
may be obtained in parametric form for the trans-
missivity of a nonlinear plane-parallel Fabry-Per-
ot interferometer with cubic nonlinearity and cir-
cular polarization. At low intensities the equations
in the slowly varying envelope approximation
(SVEA) which can also be solved exactly for this
case, give results in excellent agreement with the
exact solutions. This agreement lends credibility
to the SVEA predictions for interferometers with
spherical mirrors. We could obtain tractable eq-
uations in this case only in the limit that forward
and backward powers were equal (high finesse
case), whereupon the cavity modes are identical
to the self-similar modes of self-focusing beams.
Using a variational method, we found analytical
expressions for the phases of the forward and
backward amplitudes which again allowed the
transmissivity to be expressed analytically in
parametric form. The phases obtained this way
agree almost identically with the numerical solu-
tions of the SVEA self-focusing equations after the
critical power is renormalized. Thus simple,
reliable expressions are available for the trans-
missivity of a nonlinear interferometer with
spherical mirrors. Because of the effective index
change associated with self-induced waveguiding
in the spherical mirror geometry, the powers re-
quired for bistable operation are reduced sub-
stantially relative to the plane mirror geometry.
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