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Stimulated emission from a relativistic beam of electrons passing through a spatially periodic right-hand

circularly polarized magnetic field is considered. The amplification is found to be due to a ponderomotive

bunching of the electrons. The effect is completely classical and for an infinite interaction distance a
dispersion relation, which takes into account space-charge effects, describing the scattered field is derived.

Conditions on the pump field amplitude, beam density, and momentum spread of the beam for emission from

individual electrons to occur or for emission from plasma oscillations to occur are examined, Also, emission

from individual electrons over a finite interaction distance is considered and gain is determined for distances
less than an e-folding length.

I. INTRODUCTION

Stimulated emission with the stimulated radiation
occurring in the direction of the electron beam has
recently been observed by Elias e~ al. ' by passing
a beam of relativistic electrons through a spatially
periodic magnetic field polarized transversely to
the beam direction. This effect has been consider-
ed theoretically by several authors. Pantell,
Soncini, and Puthoff' have given a quantum-mech-
anical derivation of the gain for an infinite inter-
action region, while Sukhatme and Wolff' give a
quantum derivation taking into account a finite in-
teraction length. Madey, Schwettman, and Fair-
bank4 also have given a quantum derivation and
pointed out that their formula does not contain
Planek's constant indicating the possibility of a
classical interpretation. They compared their re-
sult with a classical traveling-wave analysis which
bears little resemblance and concluded that a clas-
sical interpretation was not feasibfe. Hopf et al. '
have subsequently shown that Sukhatme and Wolff's
finite interaction length results can" be derived
classically. All of the above derivations neglect
emission from the plasma oscillations of the elec-
tron beam (Raman scattering) which may be im-
portant for large beam densities and has been con-
sidered by Sprangle et al. ' and Kwan et al. '

The motivation for the present work is the issue
raised by Madey, Schwettman, and Fairbank of
their quantum-mechanically derived gain formula
having a limit as Planck's constant was set equal
to zero which raised the question of.whether their
result could be obtained classically. They ex-
pressed substantial doubts that this was the case
and one of the key points presented in support of
these doubts was the fact that their gain expres-
sion differed in what appeared to be a fundamental
way from an expression which had been derived on

the basis of conventional traveling-wave amplifier
theor y. Although class ical der ivations yielding re-
sults in close agreement with the quantum-mech-
anically derived gain formula have appeared, the
issue of disagreement with the results of traveling-
wave tube analysis has not received much attention.
It is our purpose to present an extended version of
classical traveling-wave amplifier theory with the
objective of providing a uniform framework within
which one can study the various regimes of opera-
tion which exist. One result of this analysis is a
resolution of the issue raised in Ref. 4. The an-
alysis presented here takes into account the distri-
bution in momentum along the direction of the rel-
ativistic electron beam, and the interaction be-
tween the electrons is included. Also, the effects
of short amplifier lengths for the case of a suf-
ficiently low-density beam are examined. The
gain formulas for emission from individual elec-
trons or emission from the electron's collective
interactions will be derived along with conditions
on the pump field strength, beam density, and
fractional momentum spread of the beam for the
various operating regimes.

II. DERIVATION OF DISPERSION RELATION

In the following we give a classical derivation of
the emitted radiation taking into account both in-
teraction with individual electrons and plasma os-
cillations by first determining in the laboratory
frame of reference the induced nonlinear driving
current which is then substituted in the wave equa-
tion to give a dispersion relation for the emitted
radiation. As a model we consider a cold, col-
lisionless, infinitely-long, homogeneous, neutral-
ized, relativistic, monoenergetic electron beam
traveling in the +z direction through a spatially
periodic, right-hand circularly polarized magnetic
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field

B,=-,'[(x+iy)B,e' o'+(x —, iy)B,e '""]. (2.1)

The derivation of the growth of the emitted radia-
tion when an electron passes through the field Bp
can be calculated by treating the scattering of an
electron by an electromagnetic field

E, =-,'[(x + iy) exp[i(k, z +(v, t )]

+ (x —iy) exp[-i(k, z+~, t)] E, (2.2)

with the amplitudes B„E,and wave numbers
and frequency A„k„v, being related as follows.
When an electron beam of velocity v2 interacts
with the field, its momentum is perturbed and
satisfies the Lorentz force equation for the spa-
tially periodic magnetic field

d
—5p(z) = evB,[y cosk, z —x sink, z],

and for the electromagnetic field

kgv—5p(z, t) =e 1+—— E, (z, t) .
1

(2 3)

(2.4)

Solving Eqs. (2.3) and (2.4) for the perturbed mo-
mentum yields

5p(z) =(eB,/k, )(x cosk,z +y s ink, z), (2.5)

k,g=v, +k, v (2.8)

5p(z, t) = —~ [ xsi (kn, z +e, t) y+cos(k, z +(v, t)].
1

(2.6)

We wish to specify the electromagnetic field in a
manner which yields the same motion as occurs
for the static magnetic field, therefore we equate
the magnitudes of the perturbed momentum:

(2.7)

In addition, since the time dependence must also
be the same,

so that the growths calculated using an electro-
magnetic wave yield the growth for a spatially
periodic magnetic field by making the transforma-
tion given by E(Ls. (2.7) and (2.8).

The total right@and circularly polarized electric
field used in the calculation of the growth is given
by

h (z, t) = —,'[(x —ty)E, exp[-i(k, z + (v, t)]

+ (x —ty)E2 exp[ i(k,z —(d2t)]+ c.c.], (2.9)

where the first term is the pump field which is
traveling opposite to the electron beam with k,
satisfying the linear dispersion (c =speed of light
=1),

k )
= (v (

—(v p (apl/F ) (2.10)

The growth of the backscattered radiation is due
to a bunching of the electrons. The electrons in-
teracting with the electromagnetic field acquire a
small oscillation velocity transverse to the beam
direction. This velocity in turn interacts with the
electromagnetic field through the Lorentz V (z, t)
x B(z, t) force to p'iovide a mechanism coupliqg the
electrons, pump field, and scattered field allowing
the electrons to give up energy to the scattered
radiation.

The distribution function f (p, z, t) of the electrons
from which the driving current is obtained satis-
fies the one-dimensional relativistic collisionless
Boltz mann equating. '

where &u~ = (4vne2/m)'t2 is the plasma frequency,
n the electron number density in the laboratory
frame, and F =any is the electron energy. The
second term in Eq. (2.9) is the backscattered radia-
tion traveling in the same direction as the elec-
trons with k~ containing a small imaginary part
and is Doppler Skirted up in frequency by approx-
imately

(2.11)

f

+V(z, t) z ' ' +e[ vy(z, t)+r(z-, t)+V(z, t)XB(z, t)] z— (2.12)

where Q(z, t) is the self-consistent space-charge
potential describing the interaction between the
electrons which satisfies Poisson's equation

s2y(z, t) = —4mne dP, z, t —1, 2.13

The electromagnetic field is taken to be a small
perturbation on the electron's motion, so the above
equations are solved iteratively by expanding the
velocity V, distribution f, and potential &f& in pow-
ers of the field amplitude:

and the velocity V satisfies the relativistic Lorentz
force equation'

V =vz+v(')(z t)

f f(0) (p) +f(1) (p z t ) +f (2)
(p z t)

(2.15)

(2.16)

dt E
= —[e+V xH-V(V. f)]. (2.14)

(2.17)
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Substituting into Eqs. (2.12)—(2.14) yields

f(i) y(&) y(i) —0 (2.18)
42(-ne dPf ( )

BZ
(2.21)

Bv Bv
+VE

Bt BZ

sf (2) sf (2)
+V

Bt - BZ

=eh+eve x B, (2.19)

+e — + v~'xB z ' =0, 2.20
BZ BP

where v is the constant zero-order beam velocity,
f(')(P) is the initial distribution normalized as
Jf(')dp = 1, v(') is the transverse oscillation velocity,
and f(') describes the density fluctuations producing
the scattering.

Next, Eqs. (2.19)-(2.21) are Fourier transformed
in space and time to give

f,k, (d(,) 2eky (k, (d)

y(»(k (d) =4/en(2)(k (d}/k2

(,),„, ieh (k, (d)

—ffdqdK[(k —g)/((d g)]v")(q, r)' h (k —q, (d K) —Bf ')
(p)

(ikv —(d) BP

(2.22)

(2.23)

(2.24)

For theprocesses of interest only the beat term be-
tween the pump field and scattered field yielding
k =k, +k„~=~,-~, is relevant, so using Eqs.
(2.22} and (2.24) in the expression for f" and keep-
ing only the relevant terms gives

(,) )
4)(e2n') (k, (d) Sf'" (P)

k(kv —(d) Bp

dpv(i) f(2) (2.29)

The emitted field satisfies the one-dimensional
wave equation

The above expression for f(') is used to calculate
the nonlinear transverse driving current which is
defined by

e2E i. k sf(')(p)2
2(kv'- (d)(d, &d2E Sp

B B B]E =-4m' -~
Bt BZ Bt

(2.30)

x 5(k —k, —k2)5((d +(d, —(d2) . (2.25)

In order to eliminate n(') (k, (d) from the above ex-
pression each side of Eq. (2.25) is multiplied by
the unperturbed electron-number density and in-
tegrated over momentum to yield

(2)(k ) (k ) d
ne E2E2k Bf (p)

2(kv —(d)&d, (d2E ()p

x 5(k —k, - k2)5((d +(d, —&u2),

(2.26)

where e(k, (d} is the dielectric function and is de-
fined by

where I' is a phenomenological filling factor which
describes the coupling of the electron beam to the
electromagnetic mode being amplified. For a uni-
form electromagnetic plane wave and homogeneous
electron beam of infinite cross section, I' is unity,
and for the realistic case of finite beam cross
section, I' is unity when the electron beam com-
pletely fills the electromagnetic beam, that is to
say when the electron-beam radius exceeds the
electromagnetic beam radius. In the opposite case
I' is given to a good approximation by the ratio of
the electron-beam area to the electromagnetic-
beam area. Taking the Fourier transform of Eq.
(2.30) with Eq. (2.29) being substituted on the
right-hand side gives

me'
e(k, (d) =1— Bf "/sp

kv —e (2.27) ((d', —k', )E, = -i(u24mFne

Equation (2.26) is substituted in Eq. (2.25) to give the
final expression for the transformed second-order
distribution

dqdCf" (p, q, &)

x v"'(k, —q, ~2 —&)

f(2)(p k (d}
2(kv —(d)(d &(d2

Hl (df,

kC(k, h))

sf (2)

BP

dp' &f'"/sp'
F.' kv' —u) E

(2.28)

(2.31)

Substituting Eq. (2.22) for v'(" and Eq. (2.28) for f'"
finally yields the dispersion relation for the emit-
ted field
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dp
' e'Eiaf ' /ap m(d~

E L 2&v', (kv —~) e(k, ~)
dp' af"/ap'
E kv -(d E (2.32)

III. ANALYSIS AND DISCUSSION OF GAIN COEFFICIENTS

In order to examine the different regimes, limit-
ing cases are considered. It is first assumed the
density is low in which case Compton scattering
(magnetic brehsstrahlung) occurs and the inter-
action between the bunched electrons is not im-
portant. Next, the low-density case for a finite
interaction length L is examined. Finally, the
large-density limit (Raman effect), where the in-
teraction between the bunched electrons is im-
portant, for an infinite interaction length is looked
at and conditions on the various parameters for
the validity of each regime of operation are ob-
tained.

A. Compton effect (long interaction region)

In the case of low density the first term in the
la.rge parentheses of Eq. (2.32) is negligible and
Eq. (2.32) becomes

mu)', kFe'E', " dp sf~" /ap
kV —(0I

(3.1)

When the phase velocity of the bunching force is
equal to the particle velocity

Equation (2.32) determines the relation between
the emitted frequency e, and wave-number k, .
Since an amplifier is being studied, (d, is taken
to be a real specifiable parameter with situations
being looked for where k, has a negative imaginary
part. The analysis of the dispersion relation is
carried out in Sec. III.

determine 1 —v' =(1/y')[1+(eE, /m&o, )'j, so for
v=1 Eq. (3.2) becomes

4y (0~

1+(eE,/nnu, )" (3.5)

dp af ~' 1

Bp kv —(d

while in the magnetic brehsstrahlung case (3.3)
gives

2y'ko
1+ (eB /mk )2

(3.6)

Equations (3.5) and (3.6) are the Doppler-shifted
frequency of the forward spontaneous synchrotron
radiation as given in-Ref. 1. The correction in
the denominators of (3.5) and (3.6), eE, /m&v,
= eB,/mk„ is typica, lly quite large but does not
threaten the approximations used to derive the
dispersion relation since P~"

~

=
~
5p/my( is the

quantity that has been treated as being small.
In evaluating the integral in Eq. (3.1) it is nec-

essary to take account of the fact that k, may be
complex and that a Landau contour" must be used.
To this end we write k =k' —it', where k' and l
are real, so that I' represents the amplitude gain
per unit length. For I'&0 (and assuming v & 0)
the integral can be evaluated along the real P
axis. The value for I'& 0 is obtained by analyti-
cally continuing the function defined by the inte-
gral from .positive I". It is useful to write the
integral in Eq. (3.1) as follows (I'& 0):

(k, +k, )v = &u, —(u,

for Compton scattering, or

kov = 402 —k2V

(3.2)

(3.3)

dp af~" k'v —(o
E' aP (k'v —~)'+ I v'

. I'v
+ g (k'v —~)'+ I'v'

E =my = (P'+
~
ap

~

'+m')'~', (3.4)

where
~
ap

~

' = e'E', /&u', = e'B', /k', is given by Eqs.
(2.6) and (2.5). The momenta appearing in Eq.
(3.4) are related to the zero-order velocity by
vE =P and the transverse oscillation velocity by
v~'~ E =ap. Taking &o, =k„e,=k, in Eq. (3.2) gives
u), =u, (1 —v')/(1+ v)'. Equation (3.4) is used to

for magnetic bremsstrahlung, the bunching force
will appear to be stationary with respect to the
electrons and for a small velocity difference the
electrons will either lose or obtain energy from
the wave. Equations (3.2) and (3.3) are also a con-
sequence of energy-momentum conservation. The
kinetic energy of the electr'ons is

(3.7)

and to distinguish two cases depending upon which
of the two factors af ~'~/ap, 1/(kv —&u) is more
rapidly varying as a function of P. Evidently, for
sufficiently small I it is 1/(kv —v) which is the
more rapidly varying, while for large I' the op-
posite is the case (assuming, as we do, that k'v
—u&=0 at the peak of fi''). The two cases are
characterized by I'/k'«b, v/v and I"/k'» hv/v,
respectively, where Av is the width of the velocity
distribution.

Case 2: small I' limit. Where useful we treat
af ~'~/ap and smooth functions of v as slowly vary-
ing and write-
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dp Bf ~'i 1

8P O'V —(d

dp Bf k v —40

E Bp (k'v —(d) +r V where

(3.12)

i I aE Bf~'l
+ m'k' 8p

1
2/4 —

q(k' —u)u)'+ I'
PCO&FC (d Bg/BI'd

7R 'UP C02

which yields

dp Bf" 1 ~E Bf~'l

E2 BP kV —(d m 2k' BP

(3.6)

(3.9)

We note that for this limit analytic con".inuation to
negative I" simply amounts to using Eq. (3.8) for
the real part of the integral (which depends only on
I') and Eq. (3.9) for the imaginary part. Substi-
tution into Eq. (3.1) then yields for the amplitude
growth rate I',

(o)z(uq jc E~E Bf (3.10)
4(d&(d26l ~P Q) )

V=

I

Bf "/BP ~„ i, . describes the character of the elec-
tron population levels. When it is positive the
population is inverted and amplification takes
place. When it is negative there is absorption.

After taking due care with notational difference,
Eq. (3.10) may be compared with the quantum-
rnechanically derived results of Befs. 1 and 2.
Equation (3.10) is a factor of 2 larger than the re-
sult of Bef. 2. The difference arises from the
fact that the mode number equation [their Eq. (6)]
is a factor of 2 too large due to the erroneous in-
clusion of both polarizations. In order to corn-
pare Eq. (3.10) with the equation given in Ref. 1
we reexpress the result in terms of the frequency
distribution function g(e) of the spontaneous ra, dia. —

tion that would be emitted by the beam as it passes
through the magnet. In this long interaction-
length regime the line shape arises entirely from
the distribution of Doppler shifts so that there is a
direct connection between f~' (p) and g(e). Ne-
glecting terms which vary little over the wi.dths of
the rapidly varying function we find

,Bf'" 4, Bg
Bp [I+(ca /mk )'J' B~

Equation (3.12) is identical with the result of Ref.
1 v hen the order Bo correction in the denominator
can be neglected. It is noted that when the order
B, correction in the denominator is not negligible,
Eq. (3.12) and the result in Ref. 1 are in slight dis-
agreement. The p~ correction may not appear in

'their result due to a systematic neglect of terms
of this order in their calculation. It is interesting
that the agreement between the p'Bf~'i/Bp formula
is exact while only approximate in the w'Bg/B~
form. It will be shown later that Eq. (3.12) also
applies in the case of a short interaction length as
does the result in Ref. 1. Our conclusion, there-
fore', is that the results obtained classically and
quantum mechanically are the same.

t"ase 2. small r v limit. We treat f~~' as the only
rapidly varying quantity and write

dp Bf(0)

F BP kV —(d
[E '(kv —(u) ']„„dpf~ol

km'

Eo(kvo —4&)
(3.13).

The dispersion relation (3.1) is then found to be

Fe2@2~2 P2 ~ 3
1 P

2Q) yEO(kvo (d)
(3.14)

(3.15)

Equation (3.14) is identical to the dispersion rela-
tion which is found by applying standard traveling-
wave tube theory to a monoenergetic electron beam
bunched by the VxB force. We have a quartic ex-
pression for k2 which can, in the usual way, be re-
placed by a cubic by setting &u22 —k', =2~,(~, -k, ) on
the left-hand side. This substitution eliminates the
uninteresting backward wave. Maximum gain is ob-
tained when the velocity matching wave number k»,
defined by k,o

= (+, —|d, )/vo —k, , is also precisely
equal to +,. This occurs when ~, =&a»=-u&, (1+v,)/
(1 —vo). With this assumption Eq. (3.14) becomes

(d2
[1+ (cE&/Bz(d&) J 8 co

(3.11) which yields the three well known roots

i~/3 g-e
where the frequency and momentum derivatives are
related by Eqs. (3.3) and (3.2). . Equation (3.10)
then becomes (v=1)

k —k = e"~'
2 20 (3.16)
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From this (using k,=+„v0=1)we obtain the follow-
ing expression for the maximum gain p»

(3.18)

One sees that for a given ap/p one is always in the
case 1 regime for sufficiently small +„Ey ' IIow-
ever, aq one increases &~@» say with the aim of
increasing the gain, condition (3.18) is events)ally
violated and Eq. (3.17) takes oyer. Thus while the
gain increases linearly in +~E', with small values
of that parameter, it increases only as (id~E', )'~'
for large values.

When the frequency matching condition is not
satisfied, the gain is reduced. For ~iii, .—+»~«2y'ii
we find

(&2 &20)
2 y K

(3.19)

For ~, —.&2,&0 there is a threshold for gain, but

Equation (3.17) is of the same form as that quoted
in Ref. 4 as Eq. (5). The contrast between I', and
I", is seen pot to arise as a difference between a
quantum and classical description as there sug-
gested, but rather as from the differing physical
circumstances associated with case 1 and case 2.
Under the condition of case 2 a correct quantum
treatment must give Eq. (3.17). We note that under
case 1 conditions only a portion of the electron
distribution participates in the process, while
under case 2 conditions all participate. It should
also be mentioned that the distinction between these
two cases has long been familiar in plasma physics
in the context of two-stream instabilities and non-
linear Landau damping.

Equation (3.10) can be used to reexpress the con-
dition which distinguishes case 1 from case 2 in
terms of the coupling strength. Defining Ap' by
~iaf~"/ap~, „=l/gp', we find that the condition I', /k,
«av/v implies

there is no threshold for &, -&30)0. This may be
expressed by the requirement for gain &2 ' 40po
&-2' '3Ky'. Wpen (d~ —(d»»2y K„ the gain is given
by

VYyii' '
((Li —(LI ) i (3.20)

The root of Eq. (3.14) which exhibits gain always
occurs near a zero of kvo v. Evenwhen(4, —~2p
is large and positive, the real part of kvp 4)' is
always positive. Hence, the bunching wave velocity
iu/k' is always less than v~ as expected.

B. Compton effect (short interaction region)

g order to obtain the growth for Compton scat-
tering over a finite interaction length I. Eqs. (2.19)
and (2.20) with p~') =0 are used. Since the inter-
action length is finite, these equations cap no long-
er be solved using Fourier transforms but must
be integrated directly over position. Keeping only
the beat term, giving k =kz+kq co (L)2 (rOy' EQ.
(2.20) becomes

af&» af&'& ie E,E,k af. & &

+v = — ' ', exp[-i(kz —&iit)]
98 2E(d ~ (d2 Bp

(3.21)

whose solution is given when integrated from 0 to
z by [neglectingz dependence of E~ as in Eq. (3.25)]

~ p(o)

[ -i've e-i&a/v ]
kf i (3 22)

BP

Equation (2.19) gives for the transverse oscillation
velocity

v'" (z, t) = (eE,/iid, E)(x +iy) exp[i(k, z +(o, t)] .

(3.23)

Substituting Eqs. (3.23) and (3.22) into the definition
of the driving current (2.29) the wave equation for
the emitted Held Eq. (2.30) becomes

a a' . -2&e nFkEE2(z) dp aft i/ap, E,(z)exp[-i(k, z -(u,t)]=, ' ',
)E (kp —vZ

x 1-exp i k -—: z exp -i k, ~ -&, t . 3.24(d

Under the assumption of small growth in the
available length, I'~L «1, integrating the wave
equation (3.24) from 0 to L gives the amplitude
gain per unit length

m~~Fke'E,' dp af "'/a p . , (k —&u/v)L

L2 k,idEp (k —(q/v)' 2

(3.25)



KROLL AND McMULLIN 17

This expression is a factor of 4 larger than the
quantum-mechanically derived result of Sukhatme
and Wolff, and it is the same as the classically
derived result of Hopf et al . To reexpress Eq.
(3.25) in terms of the sharp line approximation
to the spontaneous line shape, which takes the
form in this case

2(l v) «& sin'gk (u/V)L

n (k —~/ v)'L

Eq. (3.25) is integrated by parts treating
(

E 'P ' as slowly varying and yields

1 af '" sin'2 (k (u)L

Ep ap '
(k —&/v) L

(3.26)

774) gg
2my (1 —v) Ep a&d

where the momentum derivative has been reex-
pressed in terms of the frequency derivative.
Using k= m, k, =(u„v= 1, Eq. (3.25) becomes

E2 eE 2 2 g2 ~ eQ 2~ 2

with

~~+'e'(u'a g/a (u

VEP& 2

(3.28)

(3.29)

where 8 = (&u/v P) ,' I, . Assum—ing that last term
in Eq. (3.2'9) is negligible and k=k, =sr, » ~, gives
the maximum

0 54 ~2 ~ 3 ~ 2g2L2F

16 c0 E5 (3.30)

This expression. is valid only for situations in
which I'~Lis well below unity. As L increases
one might heuristically expect the L on the right-

Equations (3.28) and (3.'l2) are identical so that
expressing the growth in terms of'the spontaneous
line-shape function has the virtue of giving the
same result for a short and long interaction region. .
By taking the limit of the finite interaction length
L going to infinity Eq. (3.25) yields I'„and taking
this limit corresponds to the case of exact momen-
tum conservation since it gives a Dirac delta func-
tion with Eq. (3.2) as its argument. For the case of
a sharp momentum distribution f '"= 5(p —p, ), Eq.
(3.25) is integrated by parts to give

m& kp'e E ~2~+' 8 sin g

2L&u'k 8p+' a8 8'

L' sin'8 8E 'p '

hand side to be properly replaced by 1/I'z, and
it is interesting to observe that one then obtains
an expression of the same form as Eq. (3.17).

2 —k2 — kV0 —K

e282+e'- k
2E2 2~2 1/ 2 p

0 0 1 i- 0

2

(3.31)

where the linear dispersion equation (2.10) for
k„&2 has been taken into account in the first term
on the left-hand side of Eq. (3.31) and P, =E, was
used to obta, in the square-bracketed term on the
right-hand side of Eq. (3.31). When k/y, '~'» ~~
in Eq. (3.31), this exp'ression becomes identical,
for a Debye length of zero, to Eq. (25) of Ref. 7.
The right-hand side of Eq. (3.31) can be thought of
as a coupling between the emitted wave and the
plasma wave on the electron beam. Only the
Stokes case kv, &u= w~/y, ' ' gives gain. De-
fining q = (e2 —&u~/y, )'~' and the frequency-velocity
matching condition. for the Stokes case k1vp+ c01

—&,+ qv, = &~/y, '~' then give (v, =1)

-e E,Qe t- k
2 l 8 E2 1/2~2 1/2 p

I 0r0 1, r0

which yields the maximum amplitude gain

vg eE, v E
&0"1 nr 0" r 0"

(3.32)

When. the frequency- velocity matching condition
is not satisfied, Eq. (3.33) is replaced by (v, = 1)

I", = (I",——,'(o. + gv, )')'i' (3.34)

where ot = k,v, —m, + e, —~~ /y', '. In order to ob-
tain amplification the pump field has to be large
enough to overcome the frequency mismatch in

Eq. (3.34) and has a. threshold obtained by setting
Eq (3.34) equal to zero.

By taking the limit as && becomes sma, l.l in Eq.
(3.31) this expression is seen to become Eq. (3.14)
from which l2 was obtained. Thus the Compton
and Raman effects are not distinct processes.
There is a. single peak in gain and the Hama. n. peak
at k,vo+a, —m, +qvo=w~/yo moves toward the
Compton position k,v, + e, —ur, (1 —v, ) = 0 as &u~ goes

C. Raman effect (long interaction region)

When the beam density becomes large enough, so
that the interaction between the electrons becomes
important, emission from the plasma oscillations
of the beam (Raman effect) will take place. All
of the terms in the infinite- interactiori-length ex-
pression (2.32) are kept and the integrals can be
performed along the real axis from —~ to ~. In-
tegrating by parts and using f '"= 5(p —p,), & = 1
—(~~2/y ',)/(kv, —(u)' gives
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TABLE I. Summary of operating regimes.

Parameter ordering

ApP«Q «
p

Dpor & «P«
P p

Ap Qp 3

or 0 ««P and &~P«
~ p': p

Peak amplitude gain

Dp

p
« 0 «P

or Q& ««P and «O'pPAp &p

p p

~3 Pi/3„~/3 A'2"=2P "' 7

p

or «P«&
p

~2 1/2@i/2 k2
z'3 — P &p

to zero. The condition for I', to occur is

1 —1
(kv, —&u)' ~~2/y', (kv, - ~)' (3.35)

which, when frequency-velocity matching is used,
becomes

eE (2$(g) /y'~'F)'~'
a

&& p o

k/yo" + ~, (3.36)

The Raman gain formula I', then makes a transition
to the Compton effect (1", for &u~y', ~'/v, - Ap/p
otherwise to 1",) when the condition (3.36) becomes
violated.

The regimes of operation and applicable peak
amplitude gain formulas are summarized in Table
I. All of the gain formulas and operating regimes
are characterized by a pump parameter (c = speed
of light= 1) P=e &OF/m ko=e E,'F/m &u, , density
parameter Q~ = e~y/~2 (which is assumed to be
much less than unity for the expressions given
in the Table), and fractional line width 4&@/&o or
momentum spread hP/P= (&&a/2&)[1+ (P!F)'].
From the Table it is seen that as a rule of thumb
for bp/p being larger than the other parameters
I', is usually the applicable gain formula, I', is

usually applicable for a large pump parameter P,
and I", for a large density parameter Q~.

For concreteness we now give several numerical
examples. From Ref. 1 for a magnetic field of
&,=2.4x 10' G, linewidth b.u/2m = 2 x 10 ~, pump
field wave number k, = 1.96 cm ', emitted wave
number k, = 5.93 x 10' cm ', plasma frequency ~~
= 2.43 x 10' sec ', filling factor I' = 2 x 10 ', and

y = 47.1 the relevant parameters are then Q~ = 9.4
x 10 ', P= 10~, bP/P= 2.5x. 10~. Examining Table
I indicates that I', is the relevant gain formula as
was used in Ref. 1. In Ref. 7 the example of y= 2,
k, /&o~ = 2.2, v, = 14.22 v~, F= 1 gives Q~ = 9.94
x10 ', P = 0.207 (v, /u~ )' (&o, = eBO/m) so that at
&u, /~~ = 0.69, P= Q~ and Table I indicates that a
transition between I', and I', should occur. This
may be the reason for the discrepancy between
the theoretical Ra&an growth-rate predictions and
numerical simulation in Fig. 12 of Ref. 7. As a
final numerical example the parameters given in

Ref. 7 for an astron beam with ~~ =9.77x10'o
sec ' and 8,=5&&10' 0, k, =g cm ', k, =2m@10'
cm ', y= 10, hp/P = 10 ', F= 1 give Q = 1.64
x 10 ', P = 0.87 so that the region where the gain
is given by I', is being realized and not the Raman
effect I', .
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