
PHYSICAL B, EVIE% A VOLUME 17, N UMBEB, 1

Spectral c&assification using pattern-recognition technitiues.
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Curium energy levels have been classified according to configuration using pattern-recognition techniques.
Four features —energy level, Lande g, J, and isotope shift —have been used to describe each level, Forty
levels have been assigned with high probability based on consistent results obtained by various pattern
recognition techniques. This represents an increase of 9%,or even levels and 19% for odd levels. In
addition, 14 levels have been assigned to one of two possible configurations. Pattern recognition in general,
as applied to atomic energy-level classification, is discussed.

I. INTRODUCTION

In the preceding paper the utility of pattern rec-
ognition as a tool in classifying atomic transitions
was demonstrated. ' On the basis of the positive
results obtained, we were encouraged to apply
similar techniques to the classification of curium .

energy levels.
A relatively complete line list for Cm I contains

more than 1700 transitions, 87% of which are clas-
sified. ' The total number of observed lines is
greater than 13 000„and this could conceivably be
doubled by observing more intense spectra. ' Most
of these lines can be identified along with respec-
tive energy levels using search programs and other
methods, described elsewhere. ' lt is important to
classify the energy levels according to configura-
tion. At present, there are 335 odd-parity levels
and 348 even-parity levels known; of these, 76 odd
and 170 even levels have been identified according to
to configurations.

In this paper, pattern-recognition techniques are,
applied to known energy levels, and the training
thus achieved is used to predict the configurations
of 54 additional levels: 12 odd and 42 even. This
represents an increase of 16%%uo for odd levels and

27%%uo for even levels.
%e have used the computer package of pattern-

recognition techniques obtained from Kowalski. 4

For a short discussion of pattern recognition and
the different techniques available in the computer
package, the reader is referred to the previous
paper. ' For a more detailed discussion several
excellent reviews are available. ' '

II. PROCEDURE

The Cm I data of &orden and Conway were used. '
Table I lists all unknown levels which have been
classified by &orden and Conway. ' Table II shows
the possible configurations and their properties.

The training data. (levels which have been assigned
a. configuration) were split into two sets, one con-
sisting of odd levels and the other, even levels.
"..'his separation presents no problems since the
parity of all unclasslf led levels 1s known. Each
configuration represents a category. For example,
there are six categories in the even-level data set,
each of the configurations 5f'Vs', 5f 'Vs'Vp,

5f '6d 7sVp, 5f '6d Vs, 5f 'Gd'Vp, and 5f '7 s8s repre-
senting one category. In order to attempt to classify
as many unknown levels as possible, we first used
three parameters (which will be referred to a,s
features): energy level (cm '), Lande g (Lorentz
units), and the J, since these are known for al-
most ail levels. (The energy levels and Lande

g factors may be expressed in any convenient
units. If the possible units of a feature are re-
lated by a proportionality constant, the feature
expressed in one unit will be identical to the same
feature expressed in another unit, after the fea, —

ture has been autoscaled. ) This resulted in rel-
atively poor training (classification) of known
data, and a fourth feature, the isotope shift (IS,
cm '), was incorporated. Isotope-shift data have
not been measured for the odd configurations
5f'6d 7s8s and 5f 'Vs'8s, or for the even configura-
tion 5f'Vs8s Thus the.se configurations have not
been represented in the classification procedure.
The training results using four features were much
improved and are given in Table ID. The large
improvement is to be expected since the IS is
configuration dependent.

Pattern-recognition methods were applied to
all the unknown levels for which the four training
features were available. P redictions of unknown
levels are given in Table IV.

In addition to the various pattern-recognition
techniques, we have made predictions solely on
the basis of information provided by isotope-shift
and configuration data. The isotope shift exhibits
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Index
No. Level (cm ) J

Lande Isotope
shift

(a) Odd levels

1
2

3
4
5
6
7
8
9

10
11
12

22 640.04
23 282.58
23 299.44.
24 900.55
25 518.80
25 878.11
28 487.41
28 634.99
28 880.03
28 989.06
31 104.82
31 167.95

5
4

3
6
5

5

4
4

0.98
1.176
0.968
1.54
1.51
1.49
1.328
1.731
1.46
l.648
1.485
1.759

0.0
0.0
0.0

—0.40
—0.39
—0.35
—0.18
—0.08
—0.58
—0.25

0.41
0.12

TABLE I. Unknown Cmr levels and data used for clas-
sification in this study.

values characteristic of a given configuration.
Further, because the lowest possible energy level
for each configuration is known, we can eliminate
some unknown levels from certain configurations.
This consideration is important because there are
three configurations which are not represented in
the training sets because isotope-shift data were
not available. On this basis alone we can conclude
that no odd unknown level should belong to a con-
figuration not represented in the training set. The
situation is not as clear cut for even levels. Un-
knowns 17-42 (Table I) may belong to the unrepre-
sented 5f 87s8s configuration. Further discussion
of the possibility that these levels belong to this
configuration will be given later.

III. RESULTS AND DISCUSSION

1
2

3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

25 237.89
26 730.23
27 263.19
28 629.20
31 185.81
31413,22
31 574.14
31 655.78
31 721.56
31 730.96
31 750.19
31954.42
31 975.65
31 982.85
32 441.09
32 787.87
33 391.14
33 433,15
33 439.28
33 518.27
33 860.10
34 290.51
34 317.25
34 520.33
34 526.19
34 858.38
35 139.55
35 335.36
35 459.79
35 461.45
35 838.78
35 943 ~ 30
36 390.78
36 842.85
38 373.25
38 563.03
38 599.35
38 676.40
39 071.53.

39 288.89
40 263.76
40 603.67

2

3
3
2

2
3
4

2

1
2

4

3
7
2
4
3
5
5

5
5
5
7
6

6
6
4

5
3
5
8

3
4

1.38
0.886
1.280
1 ~ 006
1.321
1.255
1.161
1.3 10-

1.411
l.194
1.358
1.51
1.539
1.44
1.297
1.28
1.474
1.54
1.762
1.491
1.40
1.467
1.412
1.573
1.498
1.38
1.230
1.525
1.56
1.33
1.422
1.342
1.58
1.577
1.401
1.336
1.385
1.345
1.531
1.505
1.314
1.57

(b) Even levels

-0.565
—0.28
-0.280
—0.270

0.412
—0.474
—0.487
—0.198
—0.449
—0.472
—0.523
—0.427
—0.509
-0.280

.—0.485
-0.568
—0.462
-0 ~ 374
-0.491
—0.366
—0.393
-0.511
-0.553
—0.318
-0.285

0.313
—0.483
-0.368
-0.380

0.229
—0 ~ 540
-0.490
-0.371

0.277
—0.501
—0.422
-0.382
-0.500
-0.358
—0.524

0.331
—0.497

Overall final predieti. ons are given in Table V.
Unknown levels for which only one configuration
is given are considered to be high probability pre-
dictions because the various methods show consis-
tent agreement for these' levels. Some inconsisten-
cy has peen found for certain levels, which is in-
dicated in Table V. Several of the levels have two
predictions indicated with an "or." These are
thought to be equally likely configurations based on
the various techniques.

In arriving at these predictions, different confi-
dence levels are ascribed to different methods.
We have relied more heavily on those methods
which trained to the highest levels. The value of
the isotope-shift was considered to be important
and was used along with the multihyperplane-sep-
aration technique and the A"-nearest-neighbor ob-
servation (where Z is 1, 3, 4, 5, 6, 7, 8, 9, and
10) as the most reliable classifiers. When further
information became necessary the least-squares
multilinear regression and the minimal-spanning
tree techniques were used.

Strictly speaking, the minimal-spanning tree
technique is not a supervised learning technique
as are the other methods. It is, therefore, dif-
ficult to ascribe a level of training to it. The min-
imal-spanning tree was mainly used to determine
which unknowns were clustered with which kriowns.
For example, if an unknown was clustered with
knowns of a given configuration, this was evidence
for the level belonging to that configuration. Pre-
dictions which are uncertain (i.e. , more that one
predicted configuration) have been clustered with
roughly equal confidence to two different configur-
ations. For unknown levels which constitute an
entire cluster, no prediction is made. The mini-
mal-spanning tree technique may be looked on as
supplying useful information, but it cannot be con-
sidered to be as reliable as methods such as multi-
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TABLE II. Even and odd configurations of Cmz.

Index no. Configurations
Lowest level

(cm )

Number of levels
Expected Found

'I

Odd

II
III
IV
V

VI
Even
VII

VIIII

IX
X

XI
XII

5f 6d Vs

5f 6d 7s
5f VsVp

5f 6d
5f GdVs8s"
5f Vs 8s

5f Vs

5f Vs 7p
5f 6d7sVp
5f 6dVs
5f Gd 7p
5f VS8s

0.00
10 144.93
17 656.63

(26 103.06)
34 255.& 6
31 000

1 214.18
9 263.37

15 252.70
16932.72

(36128.79)
33 013.09

10
86
74

100
40

12
6

118"
114
252d

26

10
36
13

5
12

0

10
6

77
62
10

5

Lowest level found. The predicted lowest level has not been found.
"Not represented in training set because no isotope-shift data are available.
'Estimated prediction. No levels belonging to this configuration have been found.
Based on S only.

hyperplane separation, K nearest neighbor, or
percentage nearest neighbor.

It will be noted that occasionally the multihyper-
plane-separation method predicts two different
configurations. This can be explained by observing
Fig. 1, which consists of two-dimensional Kar-
hunen-I oeve transformati'on plots of the even- and
odd-level data sets. Although we are dealing with .

four-dimensional space, the first tmo Karhunen-
I.oeve transformation dimensions provide 73.6%
and 14.6% of the total information or variance of
the even and odd data sets, respectively. To illus-
trate this, consider a line separating categories
1 and 2 (i.e., 5f'6d7s and 5f '6d'7p configurations,
Fig. 2). It is seen that an infinite number of lines
may be drawn which effect 100% separation of
these categories. Depending upon where the line
is drawn, different unknowns (category 0) may be
classified differently. This reasoning, best seen
in two dimensions, holds equally for n dimensions.
For example, in four dimensions a, three-dimen-
sional hyperplane mill be the separating surface.

In cases where the .multihyperplane- separation
technique mas ambiguous, E-nearest-neighbor ob-
servations and the isotope shift were utilized. The
high training level of, K nearest neighbors indicates
that the "quality" of the clusters (i.e., the levels
representing a particular configuration) is good;
that is, the clusters are tight and well separated.
Because of this, it mas felt that K-nearest-neigh-
bor observation was a good method for resolving
ambiguities.

As was mentioned earlier, there is the possibil-.

TABLE III. Training results for even- and odd-level
training sets: energy level, J, g, and IS.

Method

Training data classified
correctly Po)

Even levels Odd levels

Multihyperplane separation
K nearest neighbors
Least-squares multilinear
regression

Percentage nea. rest neighbors

96.5
86.0
91.2

80.7

98.1
92.5
80.7

87.6

ity that certain of the even levels belong to the
configuration 5f '7s8s which was not represented
in the training set. In an attempt to determine
which of these levels might actually belong to this
configuration, Karhunen-I oeve transformation
plots of a three-feature (energy level, g, J) data.
set were obtained. The 5f'7s8s configuration was
then represented. From inspection of the plot of
the first two Karhunen-I oeve transformation di-
mensions of this data set (containing 78.3% of the
total information) an estimate can be made of sus-
pect unknowns (see Table VI). These data were
also studied using K-nearest-neighbor observa-
tions to determine unknowns were closest to the
5f'7s8s configuration. These unknowns are also
listed in Table VI.

The above discussion indicates several mays in
which pattern-recognition techniques may lead to
erroneous classifications even mhere all methods



SPECTRAL CLAS SIFICATION USING. . . II. APPLICATION. . .

TABLE IV. Curium unknowns by configuration.

273

Index no. A

Classification type ~

8 C D E
Classification type

Index no. A 8 C D

Odd levels Even Levels

1
2

3
4
5
6
7
8
9

10
11
12

1

3
4
5
6
7
8
9

10
11
12
13
14

II I II
rr I II
II I II
II II II
II $I Ir
II II II
II II Ir
II I II
III Iv IV
Ir rr n
IV IV
rr II II

I
I
I
III
II
II
II
II
III
II
III
II

Even levels

X
IX

IX
IX

X
X
X

x x
VII VII IX
rx vrr rx
VII VII V/I, XI
IX IX X
X X X
X X X
IX IX VII, IX
IX IX X, IX
X X X
X X X
IX IX Ix
x x rx
IX IX IX

II
II
II
III
rr
II
II
II
IU
II
II
Ir

IX
IX
IX
X
X

VII, IX
IX
X
X
IX
IX
IX

I

I
II

f.r

. I
I
IV
II
III

X, XI
IX
IX,VII
IX
IX, X
IX, X
IX, X
VII, IX
IX, X
IX, X
X, XI
IX, X
X, XI
IX

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

X X
X X
IX XI
IX IX
X X
IX IX
IX . IX
X XI
X XI
IX fX
Ix rx
Ix rx
X XI
IX IX
IX IX
IX IX
X XI
IX QI
IX IX
IX IX
XI XI
IX XI
IX IX
XI XI
IX IX
XI xr
IX X
XI 2g

X
X
IX,
IX
rx
IX
IX
X
X
IX
IX
.IX
X
IX
IX
IX
XI
XI
rx
IX
XI,
XI,
IX
XI
IX
XI
IX
XI

X
X

X X
. X
X
IX
Ix
X
X
IX
IX
IX

X
X
IX
X
X
X, IX
rx

IX, X X
IX X

IX
X
X
X
IX
X

X
X
IX, X
IX
IX
IX
IX
X

X
IX
IX

IX
IX
IX
XI
X, XI
IX
IX
X
X
IX
XI
IX, X
XI
IX
XI

IX, X
X,Xf
IX, X
IX:
IX, X, XI
IX.
IX
X, XI
X,XI
Ix
IX
IX
IX, X
IX
IX
IX
X, XI
IX, X
IX
IX
X, XI
IX, X
IX
X, XI, IX
IX
X, XI
IX
X, IX

'See Table II for key to configuration.
"The key to methods used for classification is as follows: (A) Data are autoscaled and then the multihyperplane-

separation technique is applied. -(8) The Karhunen-Loeve transformation is performed followed by the multihyperplane-
separation technique. (C) E-nearest-neighbor observations are made vrhereE is ]., 3, 4, 5, 6, 7, 8, 9, or 10. (D)
Least-squares multilinear-regression analysis is performed. (E) Percentage of nearest-neighbor observations are
made. (I ) Isotope-shift data are used.

employed give consistent predictions. these pos-
sible disadvantages, as well as some unique advan-
tages of pattern recognition in classifying atomic
energy levels, merit further comment.

A high level of training implj. es that predictions
~ based on this training may Pe regarded with high

confidence. However, this will be trne only when
all of the categories in the training set are well
represented. Therefore, each category should
contain as much known data as possible'. For
atomic energy levels this number is clear)y lim-
ited as can be seen in Table II, where the number
of expected levels for each configuration is given,
The number of levels are in most cases based on
an 'S' parent term only. They are probably not
exact values, but in any case should serve to be
good approximations. It is seen that these esti-
mates vary greatly. A category cari be considered
well represented if it contains a relatively large

fraction of the expected number of levels. The
configuration 5f "6d Vs Vp and 5f '6d Vs are well rep-
resented while the 5f "6d'Vp configuration is not.
We will refer to this idea as "training quality. "
The, term should not be confused with what we have
called the level of training.

Consider a two-category problem, one of which
is well represented and the other of which is poorly
represented. An unknown level actually belonging
to a well represented configuration should have a
higher confidence of being corre'ctly assigned (to
that category) Awell re.presented category will
have more levels near its boundaries as represen-
ted in four-dimensional space (coordinates being
energy level, g, J, and 18) than will a poort, y rep-
resented category. Therefore, separating hyper-
planes will more likely classify thi. s unknd@n cor-
rectly. Other techniques such as E nearest neigh-
bors should perform similarly. However, an un-
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TABLE V. Net configuration predictions for unknown levels.

Index no. Level (cm ) Conf iguration Index no. Level (cm ~) Configuration

5
6
7
9

10
12

24 900.55
25 518.80
25 878.11
28487.41
28 880.03
28 989.06
31 167.95

5f.6d 7s
5f76d Vs

5f 6d Vs

5f76d27s

5f 6d
5f 6d Vs

5f 6d Vs

A. High-certainty predictions
Odd

29
30
31
32
33

37
38
39
40
41
42

35459.79
35 461.45
35 838.78
35 943.30
36 390.78
36 842.85
38 599.35
38 676.40
39 071.51
39 288.89,
40 263.76
40 603.67

5f76d VsVp

5f Gd 7s7p
5f Gd 7p
5f 6d Vp

5f 6dVsVp

5f 6d 7s7p '

5f 6dVsVp

5f 6d 7p
5f 6d7sVp
5f 6d 7p
5f 6dVs7p
5f 6d Vp

1
3
6
7
8
9

10
11
12
14
15
16
18
20
21
23
24
25
26
27
28

25 237.89
27 263.19
31413.22
31 574.14
31 655.78
31721.56
31730.96
31750.19
31 954.42
31982.85
32 441.09
32 787.87
33 433.15
33 518.27
33 860,10
34 317.25
34 520.33
34 526.19
34 858.38
35 139.55
35 33'5.36

5f 6dVs
5f 6dVs7p
5f 6dVs
5f 6d7s
5f -6d7sVp

5f 6d 7s7p
5f 6dVs
5f GdVs

5f Gd7s7p
5f Gd7s7p
5f 6d7s
5f86d7s
5f Gd 7s7p
5f76d VsVp

5f GdVsVp
5f86dVs
5f7 6d 7s7p.
5f. 6d 7sVp

5f Gd7sVp

5f GdVs

5f~8d7sVp

4
22
35
36

28 629.20
34 290.51
38 373.25
38 563.03

5f8Vs (5f Gd7s7p)
5f 6d7s (5f 6d Vp)

5f76d27p (5f86d 7s)
5f 6d Vp (5fBGd7s)

C ~ Equally likely predictions
Odd

1
2

3
8

11

Even
2

5
13
17
19

22 640.04
23 282.58
23 299.44
28 634.99
31 104.82

26 730.23
31 185.81
31 975.65
33 391.14
33 439.28

5f 6d Vs or 5f GdVs

5f 6d 7s or 5f Gd7s
5f 6d 7s or 5f'6dVs
5f 6d Vs or 5f GdVs
5fTGd3 or 5f 6d Vs

5f 6d Vs7p or 5f 7s
5f 6dVs or 5f GdVsVP

5f 6dVs or 5f 6dVsVp

5f 6d 7sVp or 5f 6d Vs

5f 6d 7s7p or 5f 6d Vs

B. Medium-certainty predictions
Even

known belonging to a poorly represented configura, —

tion is more likely to be classified incorrectly.
Ideally, the boundaries of each category will be
well defined so that all unknowns will be located
within them. For such a case, predicted configur-
ations will have a confidence matching the level
of training. To summarize, poorly represented
categories should be weighted to reflect their
true importance.

The previous discussion implies systems having
experimentally accurate data are needed for pat-
tern-recognition techniques to work best. Also,
the levels in the training set must be correctly
classified, and they must be truly representative.

The above factors must be considered mhen ap-
plying pattern recognition to atomic energy levels.
However, these techniques have an inherent advan-
tage over conventional classification techniques in
that they are capable of looking at all the differen-
tiating parameters of a level, simultaneously.
Conventional techniques use all the parameters

utilized in this study, but often consider only one
or two at a time. The initial classification steps
consider wavelengths to establish the position of
the energy levels, and configurations are assigned
largely on the basis of IS values alone. For curi-
um many of the unclassified levels do not have IS
data. . (This would present a problem for both con-
ventional and pattern-recognition techniques. )
Furthermore, observed values of IS overlap for
different configurations, making a classification
on this basis alone clearly ambiguous. In these
cases pattern recognition has the advantage of
looking at all four parameters at once. Two-di-
mensional plots of these parameters show that
they are all related in some mky to configuration.
Thus, it is clearly advantageous to use all features
simultaneously in an attempt to resolve uncertain;
ties arising from use Of isotope shift alone. A
further advantage mould be gained by using a three-
dimensional graphics terminal to observe the data.
In the present ease a three-dimensional Karhunen-
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FIG. 2. Plot of the first and third eigenvectors from
the Karhunen-Loeve transformation for even levels. The
original three features were energy level, J, and g.
The categories are the same as in Fig. 1.
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IV. CONCLUSION

+& X ++ ~X~~~
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We have classified 40 levels of curium repre-
senting an increase of 9/0 for even levels and 19/~
for odd levels, over previously published results.
On the basis of the consistent results obtained by

m

A
ITl
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fTl
O

0

+ + + X g + +Q(+ +~/) @7J

x +

TABLE VI. Unknown even levels which may belong to
the configuration 5f 7s8s: (A) determined from Fig. .2;
(B) determined from K-nearest-neighbor observation,
three-feature data set.

Level (cm ~)
EIGENVECTPR 1

FIG. 1. (a) Plot of the first two eigenvectors from the
Karhunen-Loeve transformation for odd levels. Category
1 (0) is the configuration 5f 6d7s, 2 (6) is 5f 6d 7s,
3 (+) is 5f87s?p, and 4 (x) is 5f76d3. (b) Plot of the
first two eigenvectors for even levels. Category 1 (0) is
5f 7s2, 2 (A) is 5f 7s ?P, 3 (+) is 5f 6d?s?p, 4 (x) is
Gf 6d?s, and Q is 5f ~6d ?p. E3 represents an unknown
level. For both plots, the original four features were
energy level, J, g, and IS. The odd-level plot contains
19% of the total information, and the even plot contains
9%.

Loeve transformatiori projection from the original
four parameters would provide 90% or more oi the
total information of the data set and therefore be
an e~ellent approximation to it.

Index no.

18
22
23
24
25
26
27
28
29
30
31
32
33
35
38
39
42

33 433.15
34 290.51
34 317.25
34 520.33
34 526.19

35 139.55
35 335.36
35459.79
35461.45

' ~ ~ ~

35 943.30
36 390.78
38 373.25
38 676.40
39 071.51
40 603.67

8

33 433.15

34 317.25

34 858.38
35 139.55
35 335.36
35459.79
35461.45
35 838.78
35 943.30

39 0 71.51
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the pattern-recognition techniques, the assign-
ments are thought to be highly certain. As dis-
cussed previously these certainties will vary With
the training quality of the categories. Fourteen
additional levels have been assigned to one of two
configurations. P attern-recognition techniques
were not capable of resolving ambiguities in these
cases. The newly classified levels should be of
considerable help in assigning configurations to
more levels of curi~m. Our techniques will also
be useful as snore isotope-shift and Zeeman-effect
data become available.

Pattern recognition is most useful when a rep-
resenlative training set is available. Therefore,

conventional methods of classification will aIways
be important. Once this training set is available,
however, pattern recognition offers unique advan-
tages in looking at the entire data set, and as such,
has the potential to be an extremely useful aid in
the classification of atomic transitions and levels.
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